Home Physical Sciences Determination of radioprotective and genotoxic properties of sulfamide derivatives
Article
Licensed
Unlicensed Requires Authentication

Determination of radioprotective and genotoxic properties of sulfamide derivatives

  • Bünyamin Aygün , Burak Alaylar EMAIL logo , Akın Akıncıoğlu , Bünyamin Alım , Ebu Talip Kocaman , Mehmet Karadayı , Mohammed Ibrahim Abu Al-Sayyed , Şeyma Aksu , Erdem Şakar , Özgür Fırat Özpolat , Süleyman Göksu , Medine Güllüce and Abdulhalik Karabulut
Published/Copyright: October 27, 2021

Abstract

Some potential drug active substances with the ability to reduce the effects of radiation on human tissues and cells were investigated. For this purpose, eight different types of sulfamide derivatives were synthesized and nuclear radiation protection parameters were determined. Neutron radiation reduction parameters such as the half-value layer effective removal cross-sections, mean free path, and the number of particles passing through the sample were determined with GEANT4 code. Additionally, the gamma radiation attenuation parameters of the materials examined were determined using Phy-X/PSD software in the energy area of 0.015–15 MeV. These parameters are the half-value layer, mass attenuation coefficient, mean free path, exposure buildup factor and effective atomic number. Neutron radiation absorption experiments were applied using an 241Am-Be fast neutron source. All results obtained for neutron radiation were compared with paraffin and water. It has been found that the ability of sulfamide derivatives to absorb these radiations is superior to reference materials. To determine whether these derivatives could have adverse effects on human health, their genotoxic potential was determined using the Ames/Salmonella bacterial reversion test. The results showed that these derivatives can be considered genotoxically safe in tests at concentrations up to 5 mM. Thus, it is suggested that the derivative materials examined in this study can be used as active substances for a drug to be made for protection against both neutron and gamma radiation.


Corresponding author: Burak Alaylar, Department of Molecular Biology and Genetics, Faculty of Science and Arts, Agri Ibrahim Cecen University, Agri, Turkey, E-mail:

Funding source: Scientific and Technological Research Council of Turkey

Award Identifier / Grant number: Grant No. 112T881

Funding source: Ataturk University

  1. Author contributions: Burak Alaylar, Bünyamin Aygün, Akın Akıncıoğlu and Mehmet Karadayı designed and conducted the experiments. Süleyman Göksu, Akın Akıncıoğlu and Ebu Talip Kocaman synthesized sulfamide derivatives. Mehmet Karadayı, Burak ALAYLAR and Şeyma Aksu tested to geno-toxic potential of sulfamide derivatives. Bünyamin Aygün, Bünyamin Alım, Mohammed Ibrahim Abu Al-Sayyed, Erdem Şakar, Özgür Fırat Özpolat analysed neutron and gamma experiment data. Abdulhalik Karabulut, Medine Güllüce and Süleyman Göksu analyzed data. Burak Alaylar, Bünyamin Aygün, Akın Akıncıoğlu and Bünyamin Alım wrote the manuscript. All authors read and approved the manuscript.

  2. Research funding: The authors are indebted to the Scientific and Technological Research Council of Turkey (TÜBITAK, Grant No. 112T881) and Ataturk University for their financial support of this work.

  3. Conflict of interest statement: No potential conflict of interest was reported by the author(s).

References

1. Hilas, O., Ezzo, D. C., Jodlowski, T. Z. Doripenem (Doribax), a new carbapenem antibacterial agent. Pharmacol. Ther. 2018, 33, 134–136.Search in Google Scholar

2. Barlier, A., Jaquet, P. Quinagolide--a valuable treatment option for hyperprolactinaemia. Eur. J. Endocrinol. 2006, 154, 187–195; https://doi.org/10.1530/eje.1.02075.Search in Google Scholar PubMed

3. Di Fiore, A., De Simone, G., Alterio, V., Riccio, V., Winum, J. Y., Carta, F., Supuran, C. T. The anticonvulsant sulfamide JNJ-26990990 and its S,S-dioxide analog strongly inhibit carbonic anhydrases: solution and X-ray crystallographic studies. Org. Biomol. Chem. 2016, 14, 4853–4858; https://doi.org/10.1039/c6ob00803h.Search in Google Scholar PubMed

4. Göksu, S., Naderi, A., Akbaba, Y., Kalin, P., Akincioǧlu, A., Gülçin, I., Durdagi, S., Salmas, R. E. Carbonic anhydrase inhibitory properties of novel benzylsulfamides using molecular modeling and experimental studies. Bioorg. Chem. 2014, 56, 75–82; https://doi.org/10.1016/j.bioorg.2014.07.009.Search in Google Scholar PubMed

5. Ax, A., Schaal, W., Vrang, L., Samuelsson, B., Hallberg, A., Karlén, A. Cyclic sulfamide HIV-1 protease inhibitors, with sidechains spanning from P2/P2′ to P1/P1′. Bioorg. Med. Chem. 2005, 13, 755–764; https://doi.org/10.1016/j.bmc.2004.10.042.Search in Google Scholar PubMed

6. Brodney, M. A., Barreiro, G., Ogilvie, K., Hajos-Korcsok, E., Murray, J., Vajdos, F., Ambroise, C., Christoffersen, C., Fisher, K., Lanyon, L., Liu, J., Nolan, C. E., Withka, J. M., Borzilleri, K. A., Efremov, I., Oborski, C. E., Varghese, A., Oneill, B. T. Spirocyclic sulfamides as β-secretase 1 (BACE-1) inhibitors for the treatment of Alzheimers disease: utilization of structure based drug design, watermap, and cns penetration studies to identify centrally efficacious inhibitors. J. Med. Chem. 2012, 55, 9224–9239; https://doi.org/10.1021/jm3009426.Search in Google Scholar PubMed

7. Bolli, M. H., Boss, C., Binkert, C., Buchmann, S., Bur, D., Hess, P., Iglarz, M., Meyer, S., Rein, J., Rey, M., Treiber, A., Clozel, M., Fischli, W., Weller, T. The discovery of N-[5-(4-bromophenyl)-6-[2-[(5-bromo-2-pyrimidinyl)oxy]ethoxy]-4-pyrimidinyl]-N′ propylsulfamide (Macitentan), an orally active, potent dual endothelin receptor antagonist. J. Med. Chem. 2012, 55, 7849–7861; https://doi.org/10.1021/jm3009103.Search in Google Scholar PubMed

8. Boufas, W., Dupont, N., Berredjem, M., Berrezag, K., Becheker, I., Berredjem, H., Aouf, N. E. Synthesis and antibacterial activity of sulfonamides. SAR and DFT studies. J. Mol. Struct. 2014, 1074, 180–185; https://doi.org/10.1016/j.molstruc.2014.05.066.Search in Google Scholar

9. Chris Krueger, A., Madigan, D. L., Jiang, W. W., Kati, W. M., Liu, D., Liu, Y., Maring, C. J., Masse, S., McDaniel, K. F., Middleton, T., Mo, H., Molla, A., Montgomery, D., Pratt, J. K., Rockway, T. W., Zhang, R., Kempf, D. J. Inhibitors of HCV NS5B polymerase: synthesis and structure-activity relationships of N-alkyl-4-hydroxyquinolon-3-yl-benzothiadiazine sulfamides. Bioorg. Med. Chem. Lett. 2006, 16, 3367–3370; https://doi.org/10.1016/j.bmcl.2006.04.015.Search in Google Scholar PubMed

10. Akincioglu, A., Akincioglu, H., Gülçin, I., Durdagi, S., Supuran, C. T., Göksu, S. Discovery of potent carbonic anhydrase and acetylcholine esterase inhibitors: novel sulfamoylcarbamates and sulfamides derived from acetophenones. Bioorg. Med. Chem. 2015, 23, 3592–3602.10.1016/j.bmc.2015.04.019Search in Google Scholar PubMed

11. Göcer, H., Akincioğlu, A., Göksu, S., Gülçin, I., Supuran, C. T. Carbonic anhydrase and acetylcholinesterase inhibitory effects of carbamates and sulfamoylcarbamates. J. Enzym. Inhib. Med. Chem. 2015, 30, 316–320; https://doi.org/10.3109/14756366.2014.928704.Search in Google Scholar PubMed

12. Akıncıoğlu, A., Kocaman, E., Akıncıoğlu, H., Salmas, R. E., Durdagi, S., Gülçin, İ., Supuran, C. T., Göksu, S. The synthesis of novel sulfamides derived from β-benzylphenethylamines as acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase enzymes inhibitors. Bioorg. Chem. 2017, 74, 238–250; https://doi.org/10.1016/j.bioorg.2017.08.012.Search in Google Scholar

13. Guidez, J., May, R., Moss, R., Askienazy, S., Hildebrand, J. Neutron use in nuclear medicine. Radiol. Nucl. Med. 1999, 1, 10–14.Search in Google Scholar

14. Morgan, W. F., Sowa, M. B. Non-targeted effects induced by ionizing radiation: Mechanisms and potential impact on radiation induced health effects. Cancer Lett. 2015, 356, 17–21. https://doi.org/10.1016/j.canlet.2013.09.009 Search in Google Scholar

15. Kaewkhao, J., Korkut, T., Korkut, H., Aygün, B., Yasaka, P., Tuscharoen, S., Insiripong, S., Karabulut, A. Monte Carlo design and experiments on the neutron shielding performances of B2O3–ZnO–Bi2O3 glass system. Glass. Phys. Chem. 2017, 43, 560–563; https://doi.org/10.1134/s1087659617060050.Search in Google Scholar

16. Sayyed, M. I. Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. J. Alloys. Compd. 2017, 695, 3191–3197; https://doi.org/10.1016/j.jallcom.2016.11.318.Search in Google Scholar

17. Alım, B. Determination of radiation protection features of the Ag2O doped boro-tellurite glasses using Phy-X/PSD software. J. Inst. Sci. Technol. 2020, 10, 202–213; https://doi.org/10.21597/jist.640027.Search in Google Scholar

18. Aygün, B., Şakar, E., Cinan, E., Yorgun, N. Y., Sayyed, M. I., Agar, O., Karabulut, A. Development and production of metal oxide doped glasses for gamma ray and fast neutron shielding. Radiat. Phys. Chem. 2020, 174, 108897; https://doi.org/10.1016/j.radphyschem.2020.108897.Search in Google Scholar

19. Cinan, E., Aygün, B., Sayyed, M. I., Özdemir, Y. Measurement of L X-ray production cross sections and relative intensities of some lanthanide compounds depending on the temperature. Radiochim. Acta. 2019, 108, 415–423; https://doi.org/10.1515/ract-2019-3198.Search in Google Scholar

20. Rammah, Y. S., Özpolat, F., Alım, B., Şakar, E., El-Mallawany, R., El-Agawany, F. I. Assessment of gamma-ray attenuation features for La+3 co-doped zinc borotellurite glasses. Radiat. Phys. Chem. 2020, 176, 109069; https://doi.org/10.1016/j.radphyschem.2020.109069.Search in Google Scholar

21. Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., Kurudirek, M. Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020, 166, 108496.10.1016/j.radphyschem.2019.108496Search in Google Scholar

22. Delnavaz, A., Salavatiha, A., Kalhor, A. Effective parameters in gamma radiation transmission rate from heavy concrete with iron oxide and barite aggregates. J. Mater. Civ. Eng. 2017, 29, 04017140; https://doi.org/10.1061/(asce)mt.1943-5533.0001979.Search in Google Scholar

23. Aygün, B. Neutron and gamma radiation shielding properties of high-temperature-resistant heavy concretes including chromite and wolframite. J. Radiat. Res. Appl. Sci. 2019, 12, 352–359; https://doi.org/10.1080/16878507.2019.1672312.Search in Google Scholar

24. Khan, M. U., Ahmad, S., Naqvi, A. A., Al-Gahtani, H. J. Shielding performance of heavy-weight ultra-high-performance concrete against nuclear radiation. Prog. Nucl. Energy 2020, 130, 103550; https://doi.org/10.1016/j.pnucene.2020.103550.Search in Google Scholar

25. Sayyed, M. I. Investigation of shielding parameters for smart polymers. Chin. J. Phys. 2016, 3, 408–415; https://doi.org/10.1016/j.cjph.2016.05.002.Search in Google Scholar

26. Bel, T., Arslan, C., Baydogan, N. Radiation shielding properties of poly (methyl methacrylate)/colemanite composite for the use in mixed irradiation fields of neutrons and gamma rays. Mater. Chem. Phys. 2019, 221, 58–67; https://doi.org/10.1016/j.matchemphys.2018.09.014.Search in Google Scholar

27. Aygün, B., Şakar, E., Singh, V. P., Sayyed, M. I., Korkut, T., Karabulut, A. Experimental and Monte Carlo simulation study on potential new composite materials to moderate neutron-gamma radiation. Prog. Nucl. Energy 2020, 130, 103538; https://doi.org/10.1016/j.pnucene.2020.103538.Search in Google Scholar

28. Nagaraja, N., Manjunatha, H. C., Seenappa, L., Sridhar, K. N., Ramalingam, H. B. Radiation shielding properties of silicon polymers. Radiat. Phys. Chem. 2020, 171, 108723; https://doi.org/10.1016/j.radphyschem.2020.108723.Search in Google Scholar

29. Singh, V. P., Medhat, M. E., Shirmardi, S. P. Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results. Radiat. Phys. Chem. 2015, 106, 255–260; https://doi.org/10.1016/j.radphyschem.2014.07.002.Search in Google Scholar

30. Aygün, B., Şakar, E., Korkut, T., Sayyed, M. I., Karabulut, A., Zaid, M. H. M. Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications. Results Phys. 2019, 12, 1–6; https://doi.org/10.1016/j.rinp.2018.11.038.Search in Google Scholar

31. Alım, B., Şakar, E., Baltakesmez, A., Han, İ., Sayyed, M. I., Demir, L. Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: part I. Radiat. Phys. Chem. 2020, 166, 108455.10.1016/j.radphyschem.2019.108455Search in Google Scholar

32. Aygün, B. High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nucl. Eng. Technol. 2020, 52, 647–653; https://doi.org/10.1016/j.net.2019.08.017.Search in Google Scholar

33. Korkut, T., Aygün, B., Bayram, Ö., Karabulut, A. Study of neutron attenuation properties of super alloys with added rhenium. J. Radioanal. Nucl. Chem. 2015, 306, 119–122; https://doi.org/10.1007/s10967-015-4063-z.Search in Google Scholar

34. Akman, F., Kaçal, M. R., Sayyed, M. I., Karataş, H. A. Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloys Compd. 2019, 782, 315–322; https://doi.org/10.1016/j.jallcom.2018.12.221.Search in Google Scholar

35. Manjunatha, H. C., Sathish, K. V., Seenappa, L., Gupta, D., Cecil Raj, S. A. A study of X-ray, gamma and neutron shielding parameters in Si-alloys. Radiat. Phys. Chem. 2019, 165, 108414; https://doi.org/10.1016/j.radphyschem.2019.108414.Search in Google Scholar

36. Şakar, E., Büyükyıldız, M., Alım, B., Şakar, B. C., Kurudirek, M. Leaded brass alloys for gamma-ray shielding applications. Radiat. Phys. Chem. 2019, 159, 64–69.10.1016/j.radphyschem.2019.02.042Search in Google Scholar

37. Reisz, J. A., Bansal, N., Qian, J., Zhao, W., Furdui, C. M. Effects of ionizing radiation on biological molecules – mechanisms of damage and emerging methods of detection. Antioxidants Redox Signal. 2014, 21, 260–292; https://doi.org/10.1089/ars.2013.5489.Search in Google Scholar PubMed PubMed Central

38. Baldacchino, G., Brun, E., Denden, I., Bouhadoun, S., Roux, R., Khodja, H., Sicard-Roselli, C. Importance of radiolytic reactions during high-LET irradiation modalities: LET effect, role of O2 and radiosensitization by nanoparticles. Cancer Nanotechnol. 2019, 10, 1–21; https://doi.org/10.1186/s12645-019-0047-y.Search in Google Scholar

39. Alaylar, B., Aygün, B., Turhan, K., Karadayi, G., Şakar, E., Singh, V. P., Sayyed, M. I., Pelit, E., Karabulut, A., Güllüce, M., Turgut, Z., Isaoglu, M. Characterization of gamma-ray and neutron radiation absorption properties of synthesized quinoline derivatives and their genotoxic potential. Radiat. Phys. Chem. 2021, 184, 109471; https://doi.org/10.1016/j.radphyschem.2021.109471.Search in Google Scholar

40. Jin-Song, W., Hai-Juan, W., Hai-Li, Q. Biological effects of radiation on cancer cells. Mil. Med. Res. 2018, 5, 20; https://doi.org/10.1186/s40779-018-0167-4.Search in Google Scholar PubMed PubMed Central

41. Raviraj, J., Bokkasam, V. K., Kumar, V. S., Reddy, U. S., Suman, V. Radiosensitizers, radioprotectors, and radiation mitigators. Indian J. Dent. Res. 2014, 25, 83–90; https://doi.org/10.4103/0970-9290.131142.Search in Google Scholar PubMed

42. Kuefner, M. A., Brand, M., Engert, C., Schwab, S. A., Uder, M. Radiation induced DNA double-strand breaks in radiology. Rofo 2015, 187, 872–878; https://doi.org/10.1055/s-0035-1553209.Search in Google Scholar PubMed

43. Smith, T. A., Kirkpatrick, D. R., Smith, S., Smith, T. K., Pearson, T., Kailasam, A., Herrmann, K. Z., Schubert, J., Agrawal, D. K. Radioprotective agents to prevent cellular damage due to ionizing radiation. J. Transl. Med. 2017, 15, 232; https://doi.org/10.1186/s12967-017-1338-x.Search in Google Scholar PubMed PubMed Central

44. Hosseinimehr, S. J. Potential utility of radioprotective agents in the practice of nuclear medicine. Cancer Biother. Radiopharm. 2009, 24, 723–731; https://doi.org/10.1089/cbr.2009.0635.Search in Google Scholar PubMed

45. Jagetia, G. C., Shirwaikar, A., Rao, S. K., Bhilegaonkar, P. M. Evaluation of the radioprotective effect of Ageratum conyzoides Linn. extract in mice exposed to different doses of gamma radiation. J. Pharm. Pharmacol. 2003, 55, 1151–1158; https://doi.org/10.1211/0022357021576.Search in Google Scholar PubMed

46. Jagetia, G. C., Venkatesh, P., Baliga, M. S. Evaluation of the radioprotective effect of bael leaf (Aegle marmelos) extract in mice. Int. J. Radiat. Biol. 2004, 80, 281–290; https://doi.org/10.1080/09553000410001679776.Search in Google Scholar PubMed

47. Jagetia, G. C. Radioprotective potential of plants and herbs against the effects of ionizing radiation. J. Clin. Biochem. Nutr. 2007, 40, 74–81; https://doi.org/10.3164/jcbn.40.74.Search in Google Scholar PubMed PubMed Central

48. Aygün, B., Alaylar, B., Turhan, K., Şakar, E., Karadayı, M., Sayyed, M. I., Pelit, E., Güllüce, M., Karabulut, A., Turgut, Z., Alım, B. Investigation of neutron and gamma radiation protective characteristics of synthesized quinoline derivatives. Int. J. Radiat. Biol. 2020, 11, 1423–1434; https://doi.org/10.1080/09553002.2020.1811421.Search in Google Scholar PubMed

49. Almenas, K., Lee, R., Almenas, K., Lee, R. Neutron interaction with matter. Nucl. Eng. 1992, 1, 53–82; https://doi.org/10.1007/978-3-642-48876-4_3.Search in Google Scholar

50. El-Khayatt, A. M., Akkurt, I. Photon interaction, energy absorption and neutron removal cross section of concrete including marble. Ann. Nucl. Energy 2013, 60, 8–14; https://doi.org/10.1016/j.anucene.2013.04.021.Search in Google Scholar

51. Zhang, X., Yang, M., Zhang, X., Wu, H., Guo, S., Wang, Y. Enhancing the neutron shielding ability of polyethylene composites with an alternating multi-layered structure. Compos. Sci. Technol. 2017, 150, 16–23; https://doi.org/10.1016/j.compscitech.2017.06.007.Search in Google Scholar

52. Alım, B., Şakar, E., Han, İ., Sayyed, M. I. Evaluation the gamma, charged particle and fast neutron shielding performances of some important AISI-coded stainless steels: part II. Radiat. Phys. Chem. 2020, 166, 108454.10.1016/j.radphyschem.2019.108454Search in Google Scholar

53. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gomez Cadenas, J. J., Gonzalez, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F. W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampen, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O’Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M. G., Ranjard, F., Rybin, A., Sadilov, S., Di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J. P., Wenaus, T., Williams, D. C., Wright, D., Yamada, T., Yoshida, H., Zschiesche, D. GEANT4 – a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 2003, 506, 250–303; https://doi.org/10.1016/s0168-9002(03)01368-8.Search in Google Scholar

54. Tuğcu, F. T., Turhan, K., Karadayi, M., Güllüce, M. Synthesis of 4-thiazolidinone derivatives and assessment of their toxicological properties. Rom. Biotechnol. Lett. 2018, 23, 13276–13286.Search in Google Scholar

55. Turhan, K., Ozturkcan, S. A., Turgut, Z., Karadayi, M., Gulluce, M. Protective properties of five newly synthesized cyclic compounds against sodium azide and N-methyl-N′-nitro-N-nitrosoguanidine genotoxicity. Toxicol. Ind. Health 2012, 28, 605–613; https://doi.org/10.1177/0748233711416954.Search in Google Scholar

56. Mortelmans, K., Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. 2000, 455, 29–60; https://doi.org/10.1016/s0027-5107(00)00064-6.Search in Google Scholar

57. Maron, D., Ames, B. N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 1983, 113, 173–215; https://doi.org/10.1016/0165-1161(83)90010-9.Search in Google Scholar

58. Turhan, K., Ozturkcan, S. A., Turgut, Z., Karadayi, M., Aslan, A., Gulluce, M. Genotoxic and antigenotoxic assessment of four newly synthesized dihydropyridine derivatives. Toxicol. Ind. Health 2014, 30, 275–783; https://doi.org/10.1177/0748233712456060.Search in Google Scholar PubMed

59. Ozturkcan, S. A., Turhan, K., Turgut, Z., Karadayi, M., Gulluce, M. Ultrasonic synthesis, characterization of β-aminoketones by bismuth(III) triflate and determination of antigenotoxic properties. Toxicol. Ind. Health 2015, 31, 911–919; https://doi.org/10.1177/0748233713484649.Search in Google Scholar PubMed

Received: 2021-08-02
Accepted: 2021-09-28
Published Online: 2021-10-27
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1088/html?lang=en
Scroll to top button