Abstract
As an important nuclear material, uranium is one of the most concerned elements in the nuclear fuel cycle, which could interact with many inorganic and organic ligands. Amine templates have a significant structural-oriented effect on the construction of uranyl oxalate complex. In this work, the piperazine diamine templates were used to synthesize uranyl oxalate complex and their crystal structures were resolved by single crystal diffraction, and their spectra were studied by IR, Raman, UV–vis, fluorescence, and EPR techniques. The final results show that crystal structures, properties and applications of uranyl oxalate complex have a close correlation with polyamine templates. The single crystal structure results show that the structural-oriented effect of piperazine diamine template is greatly affected by the proportion and concentration of solute in the surrounding environment. And the alkyl substituents on N atoms of amine templates are related to the tight of structures. Interestingly, 5# has a potential application as the original material for multiple reuse of fluorescent sensor materials. At present, there is no clear and in-depth study on the internal mechanism of such phenomena in solid uranyl complexes, and the specific mechanism needs to be further explored.
Funding source: Fundamental Research Funds for the Central Universities 10.13039/501100012226
Award Identifier / Grant number: lzujbky-2019-12
Award Identifier / Grant number: lzujbky-2021-19
Award Identifier / Grant number: lzujbky-2019-kb06
Acknowledgments
Great gratitude to Ms. Xueling QIAO for the scientific advice on crystal structures analysis.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was supported by the Fundamental Research Funds for the Central Universities (lzujbky-2021-19, lzujbky-2019-12, lzujbky-2019-kb06).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Loiseau, T., Mihalcea, I., Henry, N., Volkringer, C. The crystal chemistry of uranium carboxylates. Coord. Chem. Rev. 2014, 266, 69–109; https://doi.org/10.1016/j.ccr.2013.08.038.Suche in Google Scholar
2. Abraham, F., Arab-Chapelet, B., Rivenet, M., Tamain, C., Grandjean, S. Actinide oxalates, solid state structures and applications. Coord. Chem. Rev. 2014, 266, 28–68; https://doi.org/10.1016/j.ccr.2013.08.036.Suche in Google Scholar
3. Nelson, A. G. D., Alekseev, E. V., Albrecht-Schmitt, T. E., Ewing, R. C. Uranium diphosphonates templated by interlayer organic amines. J. Solid State Chem. 2013, 198, 270–278; https://doi.org/10.1016/j.jssc.2012.10.008.Suche in Google Scholar
4. Xiong, Y., Wang, Y. Uranyl oxalate species in high ionic strength environments: stability constants for aqueous and solid uranyl oxalate complexes. Radiochim. Acta 2021, 109, 177–185; https://doi.org/10.1515/ract-2020-0083.Suche in Google Scholar
5. Silver, M. A., Albrecht-Schmitt, T. E. Evaluation of f-element borate chemistry. Coord. Chem. Rev. 2016, 323, 36–51; https://doi.org/10.1016/j.ccr.2016.02.015.Suche in Google Scholar
6. Babo, J. M., Albrecht-Schmitt, T. E. High temperature synthesis of two open-framework uranyl silicates with ten-ring channels: Cs-2(UO2)(2)Si8O19 and Rb-2(UO2)(2)Si5O13. J. Solid State Chem. 2013, 197, 186–190; https://doi.org/10.1016/j.jssc.2012.07.048.Suche in Google Scholar
7. Thangavelu, S. G., Cahill, C. L. A family of uranyl coordination polymers containing O-donor dicarboxylates and trispyridyltriazine guests. Cryst. Growth Des. 2016, 16, 42–50; https://doi.org/10.1021/acs.cgd.5b00778.Suche in Google Scholar
8. Tsushima, S., Brendler, V., Fahmy, K. Aqueous coordination chemistry and photochemistry of uranyl(VI) oxalate revisited: a density functional theory study. Dalton Trans. 2010, 39, 10953–10958; https://doi.org/10.1039/c0dt00974a.Suche in Google Scholar PubMed
9. Andrews, M. B., Cahill, C. L. Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures. Chem. Rev. 2013, 113, 1121–1136; https://doi.org/10.1021/cr300202a.Suche in Google Scholar PubMed
10. Cui, Y., Yue, Y., Qian, G., Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162; https://doi.org/10.1021/cr200101d.Suche in Google Scholar PubMed
11. Yoon, M., Srirambalaji, R., Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231; https://doi.org/10.1021/cr2003147.Suche in Google Scholar PubMed
12. Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Ferey, G., Morris, R. E., Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268; https://doi.org/10.1021/cr200256v.Suche in Google Scholar PubMed
13. Kuhn, H. J., Braslavsky, S. E., Schmidt, R. Chemical actinometry. Pure Appl. Chem. 2004, 76, 2105–2146; https://doi.org/10.1351/pac200476122105.Suche in Google Scholar
14. Ayodele, O. B. Influence of oxalate ligand functionalization on Co/ZSM-5 activity in Fischer Tropsch synthesis and hydrodeoxygenation of oleic acid into hydrocarbon fuels. Sci. Rep. 2017, 7, 10008; https://doi.org/10.1038/s41598-017-09706-z.Suche in Google Scholar PubMed PubMed Central
15. Serezhkina, L. B., Peresypkina, E. V., Neklyudova, N. A., Virovets, A. V., Serezhkin, V. N. Crystal structure and IR spectroscopic study of (CN3H6)(2) (UO2)(2)(C2O4)(CH3COO)(4). Crystallogr. Rep. 2013, 58, 275–279; https://doi.org/10.1134/s1063774513020235.Suche in Google Scholar
16. Ling, J., Qiu, J., Burns, P. C. Uranyl peroxide oxalate cage and core-shell clusters containing 50 and 120 uranyl ions. Inorg. Chem. 2012, 51, 2403–2408; https://doi.org/10.1021/ic202380g.Suche in Google Scholar PubMed
17. Medrish, I. V., Virovets, A. V., Peresypkina, E. V., Serezhkina, L. B. Synthesis and structures of Cs-4 (UO2)(2)(C2O4)(SO4)(2)(NCS)(2) center dot 4H(2)O and (NH4)(4) (UO2)(2)(C2O4)(SO4)(2)(ncs)(2) center dot 6H(2)O. Russ. J. Inorg. Chem. 2008, 53, 1034–1039; https://doi.org/10.1134/s0036023608070103.Suche in Google Scholar
18. Thuery, P., Riviere, E. Uranyl-copper(II) heterometallic oxalate complexes: coordination polymers and frameworks. Dalton Trans. 2013, 42, 10551–10558; https://doi.org/10.1039/c3dt51020d.Suche in Google Scholar PubMed
19. Thuery, P. The first uranyl-lanthanide heterometallic complexes: metal-organic frameworks with DOTA and oxalato ligands. CrystEngComm 2008, 10, 1126–1128; https://doi.org/10.1039/b808611g.Suche in Google Scholar
20. Serezhkina, L. B., Peresypkina, E. V., Medvedkov, Y. A., Virovets, A. V., Serezhkin, V. N. Synthesis and crystal structure of Cs-2 (UO2)(2)(C2O4)(3) and Cs-2 UO2(C3H2O4)(2) center dot H2O. Russ. J. Inorg. Chem. 2013, 58, 1465–1469; https://doi.org/10.1134/s0036023614010148.Suche in Google Scholar
21. Serezhkina, L. B., Marukhnov, A. V., Peresypkina, E. V., Virovets, A. V., Medrish, I. V., Pushkin, D. V. Synthesis and X-ray diffraction study of K-4 (UO2)(2)(C2O4)(3)(NCS)(2) center dot 4H(2)O. Russ. J. Inorg. Chem. 2008, 53, 837–841; https://doi.org/10.1134/s0036023608060028.Suche in Google Scholar
22. Serezhkina, L. B., Peresypkina, E. V., Virovets, A. V., Neklyudova, N. A., Pushkin, D. V. Crystal structure of {NH2C(NHC6H5)(2)}(3) UO2(C2O4)(2)(NCS) center dot 1.25H(2)O. Crystallogr. Rep. 2008, 53, 651–654; https://doi.org/10.1134/s1063774508040160.Suche in Google Scholar
23. Serezhkina, L. B., Peresypkina, E. V., Virovets, A. V., Medvedkov, Y. A., Serezhkin, V. N. Synthesis and structure of (NH4)(3) UO2(C3H2O4)(2)(NCS) center dot 2H(2)O. Crystallogr. Rep. 2014, 59, 48–52; https://doi.org/10.1134/s1063774513050106.Suche in Google Scholar
24. Shu, Y. B., Xu, C., Liu, W.-S. A uranyl hybrid compound designed from urea-bearing dipropionic acid. Eur. J. Inorg. Chem. 2013, 2013, 3592–3595; https://doi.org/10.1002/ejic.201300555.Suche in Google Scholar
25. Wu, H. Y., Ma, Y. Q., Zhang, X., Zhang, H., Yang, X.-Y., Li, Y.-H., Wang, H., Yao, S., Yang, W. Syntheses, structures and luminescent properties of two organic templated uranyl phosphonates. Inorg. Chem. Commun. 2013, 34, 55–57; https://doi.org/10.1016/j.inoche.2013.05.004.Suche in Google Scholar
26. Su, Y., Zou, Y. X., Qiao, X. L., He, J. G. The influence of amine templates on the structures and properties of uranyl oxalate complex. J. Radioanal. Nucl. Chem. 2021, 327, 1375–1385; https://doi.org/10.1007/s10967-021-07618-x.Suche in Google Scholar
27. Su, Y., Qiao, X. L., He, J. G. Syntheses, structures and properties of uranyl oxalate complexes templated by amines. J. Coord. Chem. 2021, 74, 1146–1158; https://doi.org/10.1080/00958972.2021.1894419.Suche in Google Scholar
28. Wang, L. H., Shang, R., Zheng, Z., Liu, C. L., Wang, Z.-M. Two systems of [DabcoH2]2+/[PipH2]2+–Uranyl–Oxalate showing reversible crystal-to-crystal transformations controlled by the diammonium/uranyl/oxalate ratios in aqueous solutions ([DabcoH2]2+= 1,4-Diazabicyclo-[2.2.2]-octaneH2and [PipH2]2+= PiperazineH2). Cryst. Growth Des. 2013, 13, 2597–2606; https://doi.org/10.1021/cg400364x.Suche in Google Scholar
29. Cetisli, H., Cilgi, G. K., Donat, R. Thermal and kinetic analysis of uranium salts Part 1. Uranium (VI) oxalate hydrates. J. Therm. Anal. 2012, 108, 1213–1222.10.1007/s10973-011-1826-9Suche in Google Scholar
30. Dollimore, D., Jones, L., Nicklin, T., Spooner, P. Thermal decomposition of oxalates. Part 13.1-Surface area changes in the thermal decomposition of uranyl oxalate. J. Chem. Soc.-Faraday Trans. 1973, 69, 1827–1833; https://doi.org/10.1039/f19736901827.Suche in Google Scholar
31. Denning, R. G. Electronic structure and bonding in actinyl ions and their analogs. J. Phys. Chem. 2007, 111, 4125–4143; https://doi.org/10.1021/jp071061n.Suche in Google Scholar PubMed
32. Liu, G., Beitz, J. V. Optical spectra and electronic structure. In The Chemistry of the Actinide and Transactinide Elements; Springer Netherlands: Berlin, 2006; pp. 2013–2111.10.1007/1-4020-3598-5_18Suche in Google Scholar
33. Lermontov, A. S., Lermontova, E. K., Wang, Y.-Y. Synthesis, structure and optic properties of 2-methylimidazolium and 2-phenylimidazolium uranyl acetates. Inorg. Chim. Acta. 2009, 362, 3751–3755; https://doi.org/10.1016/j.ica.2009.04.032.Suche in Google Scholar
34. Rabinowitch, E. B. R. Spectroscopy and Photochemistry of Uranyl Compounds; Pergamon Press: Oxford, 1964.10.1016/B978-0-08-010180-4.50007-XSuche in Google Scholar
35. Bukalov, S. S., Vdovenko, V. M., Ladygin, I. N., Suglobov, D. N. Raman Spectra of uranyl anion complexes. J. Appl. Spectrosc. 1970, 12, 263–265; https://doi.org/10.1007/bf00617102.Suche in Google Scholar
36. Twahir, U. T., Ozarowski, A., Angerhofer, A. Redox cycling, pH dependence; ligand effects of Mn(III) in oxalate decarboxylase from Bacillus subtilis. Biochemistry 2016, 55, 6505–6516; https://doi.org/10.1021/acs.biochem.6b00891.Suche in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2021-1058).
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Modeling of sorption kinetics of U(VI) micro-quantities nanostructured materials with anatase mesoporous structures
- The influence of piperazine diamine templates on the synthesis, structures and properties of uranyl oxalate complex
- Quantum molecular dynamics investigations of protactinium (V) fluoro and oxofluoro complexes in solution
- Impact of sulfate on the solubility of Tc(IV) in acidic to hyperalkaline aqueous reducing systems
- Comparative studies on the adsorption of various radioactive nuclides from waste aqueous solutions on graphene oxide, inorganic and organic ion exchangers
- Radioiodinated esomeprazole as a model for peptic ulcer localization
- Application of instumetal neutron activation analysis method for determination of some trace elements in lichens around three sites in Algiers
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Modeling of sorption kinetics of U(VI) micro-quantities nanostructured materials with anatase mesoporous structures
- The influence of piperazine diamine templates on the synthesis, structures and properties of uranyl oxalate complex
- Quantum molecular dynamics investigations of protactinium (V) fluoro and oxofluoro complexes in solution
- Impact of sulfate on the solubility of Tc(IV) in acidic to hyperalkaline aqueous reducing systems
- Comparative studies on the adsorption of various radioactive nuclides from waste aqueous solutions on graphene oxide, inorganic and organic ion exchangers
- Radioiodinated esomeprazole as a model for peptic ulcer localization
- Application of instumetal neutron activation analysis method for determination of some trace elements in lichens around three sites in Algiers