Startseite The influence of piperazine diamine templates on the synthesis, structures and properties of uranyl oxalate complex
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The influence of piperazine diamine templates on the synthesis, structures and properties of uranyl oxalate complex

  • Yaxuan Zou , Xueling Qiao , Yin Su und Jiangang He EMAIL logo
Veröffentlicht/Copyright: 2. August 2021

Abstract

As an important nuclear material, uranium is one of the most concerned elements in the nuclear fuel cycle, which could interact with many inorganic and organic ligands. Amine templates have a significant structural-oriented effect on the construction of uranyl oxalate complex. In this work, the piperazine diamine templates were used to synthesize uranyl oxalate complex and their crystal structures were resolved by single crystal diffraction, and their spectra were studied by IR, Raman, UV–vis, fluorescence, and EPR techniques. The final results show that crystal structures, properties and applications of uranyl oxalate complex have a close correlation with polyamine templates. The single crystal structure results show that the structural-oriented effect of piperazine diamine template is greatly affected by the proportion and concentration of solute in the surrounding environment. And the alkyl substituents on N atoms of amine templates are related to the tight of structures. Interestingly, 5# has a potential application as the original material for multiple reuse of fluorescent sensor materials. At present, there is no clear and in-depth study on the internal mechanism of such phenomena in solid uranyl complexes, and the specific mechanism needs to be further explored.


Corresponding author: Jiangang He, Radiochemistry Lab, School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, China, E-mail:
Xueling Qiao, Present address: Lanzhou Hailiang Experimental School, Lanzhou, 730046, China. Xueling Qiao and Yaxuan Zou contributed equally to this work.

Funding source: Fundamental Research Funds for the Central Universities 10.13039/501100012226

Award Identifier / Grant number: lzujbky-2019-12

Award Identifier / Grant number: lzujbky-2021-19

Award Identifier / Grant number: lzujbky-2019-kb06

Acknowledgments

Great gratitude to Ms. Xueling QIAO for the scientific advice on crystal structures analysis.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by the Fundamental Research Funds for the Central Universities (lzujbky-2021-19, lzujbky-2019-12, lzujbky-2019-kb06).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Loiseau, T., Mihalcea, I., Henry, N., Volkringer, C. The crystal chemistry of uranium carboxylates. Coord. Chem. Rev. 2014, 266, 69–109; https://doi.org/10.1016/j.ccr.2013.08.038.Suche in Google Scholar

2. Abraham, F., Arab-Chapelet, B., Rivenet, M., Tamain, C., Grandjean, S. Actinide oxalates, solid state structures and applications. Coord. Chem. Rev. 2014, 266, 28–68; https://doi.org/10.1016/j.ccr.2013.08.036.Suche in Google Scholar

3. Nelson, A. G. D., Alekseev, E. V., Albrecht-Schmitt, T. E., Ewing, R. C. Uranium diphosphonates templated by interlayer organic amines. J. Solid State Chem. 2013, 198, 270–278; https://doi.org/10.1016/j.jssc.2012.10.008.Suche in Google Scholar

4. Xiong, Y., Wang, Y. Uranyl oxalate species in high ionic strength environments: stability constants for aqueous and solid uranyl oxalate complexes. Radiochim. Acta 2021, 109, 177–185; https://doi.org/10.1515/ract-2020-0083.Suche in Google Scholar

5. Silver, M. A., Albrecht-Schmitt, T. E. Evaluation of f-element borate chemistry. Coord. Chem. Rev. 2016, 323, 36–51; https://doi.org/10.1016/j.ccr.2016.02.015.Suche in Google Scholar

6. Babo, J. M., Albrecht-Schmitt, T. E. High temperature synthesis of two open-framework uranyl silicates with ten-ring channels: Cs-2(UO2)(2)Si8O19 and Rb-2(UO2)(2)Si5O13. J. Solid State Chem. 2013, 197, 186–190; https://doi.org/10.1016/j.jssc.2012.07.048.Suche in Google Scholar

7. Thangavelu, S. G., Cahill, C. L. A family of uranyl coordination polymers containing O-donor dicarboxylates and trispyridyltriazine guests. Cryst. Growth Des. 2016, 16, 42–50; https://doi.org/10.1021/acs.cgd.5b00778.Suche in Google Scholar

8. Tsushima, S., Brendler, V., Fahmy, K. Aqueous coordination chemistry and photochemistry of uranyl(VI) oxalate revisited: a density functional theory study. Dalton Trans. 2010, 39, 10953–10958; https://doi.org/10.1039/c0dt00974a.Suche in Google Scholar PubMed

9. Andrews, M. B., Cahill, C. L. Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures. Chem. Rev. 2013, 113, 1121–1136; https://doi.org/10.1021/cr300202a.Suche in Google Scholar PubMed

10. Cui, Y., Yue, Y., Qian, G., Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162; https://doi.org/10.1021/cr200101d.Suche in Google Scholar PubMed

11. Yoon, M., Srirambalaji, R., Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231; https://doi.org/10.1021/cr2003147.Suche in Google Scholar PubMed

12. Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Ferey, G., Morris, R. E., Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268; https://doi.org/10.1021/cr200256v.Suche in Google Scholar PubMed

13. Kuhn, H. J., Braslavsky, S. E., Schmidt, R. Chemical actinometry. Pure Appl. Chem. 2004, 76, 2105–2146; https://doi.org/10.1351/pac200476122105.Suche in Google Scholar

14. Ayodele, O. B. Influence of oxalate ligand functionalization on Co/ZSM-5 activity in Fischer Tropsch synthesis and hydrodeoxygenation of oleic acid into hydrocarbon fuels. Sci. Rep. 2017, 7, 10008; https://doi.org/10.1038/s41598-017-09706-z.Suche in Google Scholar PubMed PubMed Central

15. Serezhkina, L. B., Peresypkina, E. V., Neklyudova, N. A., Virovets, A. V., Serezhkin, V. N. Crystal structure and IR spectroscopic study of (CN3H6)(2) (UO2)(2)(C2O4)(CH3COO)(4). Crystallogr. Rep. 2013, 58, 275–279; https://doi.org/10.1134/s1063774513020235.Suche in Google Scholar

16. Ling, J., Qiu, J., Burns, P. C. Uranyl peroxide oxalate cage and core-shell clusters containing 50 and 120 uranyl ions. Inorg. Chem. 2012, 51, 2403–2408; https://doi.org/10.1021/ic202380g.Suche in Google Scholar PubMed

17. Medrish, I. V., Virovets, A. V., Peresypkina, E. V., Serezhkina, L. B. Synthesis and structures of Cs-4 (UO2)(2)(C2O4)(SO4)(2)(NCS)(2) center dot 4H(2)O and (NH4)(4) (UO2)(2)(C2O4)(SO4)(2)(ncs)(2) center dot 6H(2)O. Russ. J. Inorg. Chem. 2008, 53, 1034–1039; https://doi.org/10.1134/s0036023608070103.Suche in Google Scholar

18. Thuery, P., Riviere, E. Uranyl-copper(II) heterometallic oxalate complexes: coordination polymers and frameworks. Dalton Trans. 2013, 42, 10551–10558; https://doi.org/10.1039/c3dt51020d.Suche in Google Scholar PubMed

19. Thuery, P. The first uranyl-lanthanide heterometallic complexes: metal-organic frameworks with DOTA and oxalato ligands. CrystEngComm 2008, 10, 1126–1128; https://doi.org/10.1039/b808611g.Suche in Google Scholar

20. Serezhkina, L. B., Peresypkina, E. V., Medvedkov, Y. A., Virovets, A. V., Serezhkin, V. N. Synthesis and crystal structure of Cs-2 (UO2)(2)(C2O4)(3) and Cs-2 UO2(C3H2O4)(2) center dot H2O. Russ. J. Inorg. Chem. 2013, 58, 1465–1469; https://doi.org/10.1134/s0036023614010148.Suche in Google Scholar

21. Serezhkina, L. B., Marukhnov, A. V., Peresypkina, E. V., Virovets, A. V., Medrish, I. V., Pushkin, D. V. Synthesis and X-ray diffraction study of K-4 (UO2)(2)(C2O4)(3)(NCS)(2) center dot 4H(2)O. Russ. J. Inorg. Chem. 2008, 53, 837–841; https://doi.org/10.1134/s0036023608060028.Suche in Google Scholar

22. Serezhkina, L. B., Peresypkina, E. V., Virovets, A. V., Neklyudova, N. A., Pushkin, D. V. Crystal structure of {NH2C(NHC6H5)(2)}(3) UO2(C2O4)(2)(NCS) center dot 1.25H(2)O. Crystallogr. Rep. 2008, 53, 651–654; https://doi.org/10.1134/s1063774508040160.Suche in Google Scholar

23. Serezhkina, L. B., Peresypkina, E. V., Virovets, A. V., Medvedkov, Y. A., Serezhkin, V. N. Synthesis and structure of (NH4)(3) UO2(C3H2O4)(2)(NCS) center dot 2H(2)O. Crystallogr. Rep. 2014, 59, 48–52; https://doi.org/10.1134/s1063774513050106.Suche in Google Scholar

24. Shu, Y. B., Xu, C., Liu, W.-S. A uranyl hybrid compound designed from urea-bearing dipropionic acid. Eur. J. Inorg. Chem. 2013, 2013, 3592–3595; https://doi.org/10.1002/ejic.201300555.Suche in Google Scholar

25. Wu, H. Y., Ma, Y. Q., Zhang, X., Zhang, H., Yang, X.-Y., Li, Y.-H., Wang, H., Yao, S., Yang, W. Syntheses, structures and luminescent properties of two organic templated uranyl phosphonates. Inorg. Chem. Commun. 2013, 34, 55–57; https://doi.org/10.1016/j.inoche.2013.05.004.Suche in Google Scholar

26. Su, Y., Zou, Y. X., Qiao, X. L., He, J. G. The influence of amine templates on the structures and properties of uranyl oxalate complex. J. Radioanal. Nucl. Chem. 2021, 327, 1375–1385; https://doi.org/10.1007/s10967-021-07618-x.Suche in Google Scholar

27. Su, Y., Qiao, X. L., He, J. G. Syntheses, structures and properties of uranyl oxalate complexes templated by amines. J. Coord. Chem. 2021, 74, 1146–1158; https://doi.org/10.1080/00958972.2021.1894419.Suche in Google Scholar

28. Wang, L. H., Shang, R., Zheng, Z., Liu, C. L., Wang, Z.-M. Two systems of [DabcoH2]2+/[PipH2]2+–Uranyl–Oxalate showing reversible crystal-to-crystal transformations controlled by the diammonium/uranyl/oxalate ratios in aqueous solutions ([DabcoH2]2+= 1,4-Diazabicyclo-[2.2.2]-octaneH2and [PipH2]2+= PiperazineH2). Cryst. Growth Des. 2013, 13, 2597–2606; https://doi.org/10.1021/cg400364x.Suche in Google Scholar

29. Cetisli, H., Cilgi, G. K., Donat, R. Thermal and kinetic analysis of uranium salts Part 1. Uranium (VI) oxalate hydrates. J. Therm. Anal. 2012, 108, 1213–1222.10.1007/s10973-011-1826-9Suche in Google Scholar

30. Dollimore, D., Jones, L., Nicklin, T., Spooner, P. Thermal decomposition of oxalates. Part 13.1-Surface area changes in the thermal decomposition of uranyl oxalate. J. Chem. Soc.-Faraday Trans. 1973, 69, 1827–1833; https://doi.org/10.1039/f19736901827.Suche in Google Scholar

31. Denning, R. G. Electronic structure and bonding in actinyl ions and their analogs. J. Phys. Chem. 2007, 111, 4125–4143; https://doi.org/10.1021/jp071061n.Suche in Google Scholar PubMed

32. Liu, G., Beitz, J. V. Optical spectra and electronic structure. In The Chemistry of the Actinide and Transactinide Elements; Springer Netherlands: Berlin, 2006; pp. 2013–2111.10.1007/1-4020-3598-5_18Suche in Google Scholar

33. Lermontov, A. S., Lermontova, E. K., Wang, Y.-Y. Synthesis, structure and optic properties of 2-methylimidazolium and 2-phenylimidazolium uranyl acetates. Inorg. Chim. Acta. 2009, 362, 3751–3755; https://doi.org/10.1016/j.ica.2009.04.032.Suche in Google Scholar

34. Rabinowitch, E. B. R. Spectroscopy and Photochemistry of Uranyl Compounds; Pergamon Press: Oxford, 1964.10.1016/B978-0-08-010180-4.50007-XSuche in Google Scholar

35. Bukalov, S. S., Vdovenko, V. M., Ladygin, I. N., Suglobov, D. N. Raman Spectra of uranyl anion complexes. J. Appl. Spectrosc. 1970, 12, 263–265; https://doi.org/10.1007/bf00617102.Suche in Google Scholar

36. Twahir, U. T., Ozarowski, A., Angerhofer, A. Redox cycling, pH dependence; ligand effects of Mn(III) in oxalate decarboxylase from Bacillus subtilis. Biochemistry 2016, 55, 6505–6516; https://doi.org/10.1021/acs.biochem.6b00891.Suche in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2021-1058).


Received: 2021-05-28
Accepted: 2021-07-10
Published Online: 2021-08-02
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1058/html
Button zum nach oben scrollen