Startseite Sintering Bi2O3–B2O3–ZnO ternary low temperature glass by hydration device to solidify iodine containing silver-coated silica gel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sintering Bi2O3–B2O3–ZnO ternary low temperature glass by hydration device to solidify iodine containing silver-coated silica gel

  • Wenhong Han , Guilin Wei , Yi Liu , Xirui Lu EMAIL logo , Shunzhang Chen , Zhentao Zhang , Yi Xie und Xiaoyan Shu EMAIL logo
Veröffentlicht/Copyright: 31. Dezember 2021

Abstract

A new glass solidification process aims at radioactive iodine waste was explored in order to reduce the possible harm to environment. Samples with different iodine content in silver-coated silica gel were pretreated by hydration device at 300 °C and then sintered at relatively low temperatures (500, 550 and 600 °C). XRD results show that AgI is mainly chemically fixed in the glass network with some AgI particles being physically wrapped by the glass. Moreover, as the sintering temperature reached to 550 °C, B element crystallized. SEM-EDS results show that Ag and I elements are enriched, while the other elements are evenly distributed. AFM results showed that the sample surface becomes rougher as the iodine content increases in the silver coated silica gel. The FT-IR results show that the structure of the sintered sample is mainly composed of [BiO3], [BiO6] and [BO3]. This study provides a new sintering method by hydration device for the treatment of radioactive iodine waste.


Corresponding author: Xirui Lu, State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang Sichuan 621010, P. R. China; Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang Sichuan 621010, P. R. China; and National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang Sichuan 621010, P. R. China, E-mail: ; and Xiaoyan Shu, Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang Sichuan 621010, P. R. China; and National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang Sichuan 621010, P. R. China, E-mail:

Funding source: Southwest University of Science and Technology

Award Identifier / Grant number: 20fksy10

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors appreciate the support from the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (No. 20fksy10).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Durrani, M. New designs on nuclear energy. Phys. World 2002, 15, 42; https://doi.org/10.1088/2058-7058/15/7/40.Suche in Google Scholar

2. Mohammed, H., Sadeek, S., Mahmoud, A. R., Diab, H., Zaky, D. Natural radioactivity and radiological hazard assessment of Egyptian oil ashes. Environ. Sci. Pollut. Res. 2016, 23, 15584; https://doi.org/10.1007/s11356-016-6736-8.Suche in Google Scholar

3. Adamantiades, A., Kessides, I. Nuclear power for sustainable development: current status and future prospects. Energy Pol. 2009, 37, 5149; https://doi.org/10.1016/j.enpol.2009.07.052.Suche in Google Scholar

4. Zhou, S., Zhang, X. L. Nuclear energy development in China: a study of opportunities and challenges. Energy 2010, 35, 4282–4288; https://doi.org/10.1016/j.energy.2009.04.020.Suche in Google Scholar

5. Ewing, R. C., Weber, W. J., Jr, F. W. C. Radiation effects in nuclear waste forms for high-level radioactive waste. Prog. Nucl. Energy 1995, 29, 63–127; https://doi.org/10.1016/0149-1970(94)00016-Y.Suche in Google Scholar

6. Chmielewski, A. G., Szołucha M, M. Radiation chemistry for modern nuclear energy development. Radiat. Phys. Chem. 2016, 124, 235–240; https://doi.org/10.1016/j.radphyschem.2016.01.002.Suche in Google Scholar

7. Kessler, G. Requirements for nuclear energy in the 21st century nuclear energy as a sustainable energy source. Prog. Nucl. Energy 2002, 40, 309–325; https://doi.org/10.1016/S0149-1970(02)00024-0.Suche in Google Scholar

8. Ledingham, D., Carey, P., Junejo, S. The dangers of iodine-based contrasts in an elderly patient with thyroid disease. BMJ Case Rep. 2015, 24, 1; https://doi.org/10.1136/bcr-2014-207657.Suche in Google Scholar PubMed PubMed Central

9. Beckers, C., Alexander, W. D., Burger, A., Lazarus, J., Krenning, E., Schlumberger, M., Williams, D. 131I therapy for thyrotoxicosis towards 2000. Eur. J. Nucl. Med. 1996, 23, 13; https://doi.org/10.1007/BF01247386.Suche in Google Scholar

10. Vermeulen, H., Westerbos, S. J., Ubbink, D. T. Benefit and harm of iodine in wound care: a systematic review. J. Hosp. Infect. 2010, 76, 191–199; https://doi.org/10.1016/j.jhin.2010.04.026.Suche in Google Scholar PubMed

11. Hou, X., Hansen, V., Aldahan, A., Possnert, G., Lind, O. C., Lujaniene, G. A review on speciation of iodine-129 in the environmental and biological samples. Anal. Chim. Acta 2009, 632, 181–196; https://doi.org/10.1016/j.aca.2008.11.013.Suche in Google Scholar

12. Robens-Palavinskas, E., Hauschild, J., Aumann, D. C. Iodine-129 in the Environment of a nuclear fuel reprocessing plant: VI. Comparison of measurements of 129I concentrations in soil and vegetation with predictions from a radiological assessment model. J. Environ. Radioact. 1989, 10, 67–78; https://doi.org/10.1016/0265-931X(89)90005-2.Suche in Google Scholar

13. Zhang, L. Y., Hou, X. L. Speciation analysis of 129I and its applications in environmental research. Radiochim. Acta 2013, 101, 525–540; https://doi.org/10.1524/ract.2013.2077.Suche in Google Scholar

14. Shimizu, Y., Ooki, A., Onishi, H., Takatsu, T., Kuma, K. Seasonal variation of volatile organic iodine compounds in the water column of Funka Bay, Hokkaido, Japan. J. Atmos. Chem. 2017, 74, 205–225; https://doi.org/10.1007/s10874-016-9352-6.Suche in Google Scholar

15. Satoh, Y., Imai, S. Flux and pathway of iodine dissolution from brackish lake sediment in the northeast of Japan. Sci. Total Environ. 2021, 789, 147942; https://doi.org/10.1016/j.scitotenv.2021.147942.Suche in Google Scholar

16. Kekli, A., Aldahan, A., Meili, M., Possnert, G., Buraglio, N., Stepanauskas, R. 129I in Swedish rivers: distribution and sources. Sci. Total Environ. 2003, 309, 161–172; https://doi.org/10.1016/S0048-9697(03)00010-X.Suche in Google Scholar

17. Moran, J. E., Oktay, S. D., Santschi, P. H. Sources of iodine and iodine-129 in rivers. Water Resour. Res. 2002, 38, 1–10; https://doi.org/10.1029/2001wr000622.Suche in Google Scholar

18. Haefner, D. R., Tranter, T. J. Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: A Literature Survey. Technical report; Idaho National Laboratory (INL), 2007.10.2172/911962Suche in Google Scholar

19. Li, Y., Zhou, T., Wang, Z., Zhang, J. The research on deposition of iodine aerosol in the severe nuclear power plant. In 2011 Asia-Pacific Power and Energy Engineering Conference; IEEE, 2011; pp. 1–4.10.1109/APPEEC.2011.5748922Suche in Google Scholar

20. Bo, A., Sarina, S., Zheng, Z., Yang, D., Liu, H., Zhu, H. Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent. J. Hazard Mater. 2013, 246–247, 199–205; https://doi.org/10.1016/j.jhazmat.2012.12.008.Suche in Google Scholar PubMed

21. Ampelogova, N. I., Kritskii, V. G., Krupennikova, N. I., Skvortsov, A. I. Carbon-fiber adsorbent materials for removing radioactive iodine from gases. Atom. Energy 2002, 92, 336–340; https://doi.org/10.1023/A:1016558127710.10.1023/A:1016558127710Suche in Google Scholar

22. Xu, X. F., Wang, G., Ma, H. L., Dong, P., Fu, H. Y., Luo, W. Study of new adsorbent platinum-coated copper for radioactive iodine. J. Isot. 2014, 27, 157–161.Suche in Google Scholar

23. Joffrey, H., Andrey, R., Habiba, N., Virginie, L., Grégoire, A., Jean, D. T. Porous sorbents for the capture of radioactive iodine compounds: a review. RSC Adv. 2018, 8, 29248–29273; https://doi.org/10.1039/C8RA04775H.Suche in Google Scholar

24. Lemesle, T., Méar, F. O., Campayo, L., Pinet, O., Revel, B., Montagne, L. Immobilization of radioactive iodine in silver aluminophosphate glasses. J. Hazard Mater. 2014, 264, 117–126; https://doi.org/10.1016/j.jhazmat.2013.11.019.Suche in Google Scholar

25. Audubert, F., Lacout, J. L., Tetard, F., Ca Rpena, J. Elaboration of an iodine-bearing apatite iodine diffusion into a Pb3 (VO4)2 matrix. Solid. State. Ions. 1997, 95, 113–119; https://doi.org/10.1016/S0167-2738(96)00570-X.Suche in Google Scholar

26. Yang, J. H., Park, H. S., Cho, Y. Z. Al2O3-containing silver phosphate glasses as hosting matrices for radioactive iodine. J. Nucl. Sci. Technol. 2017, 54, 1330–1337; https://doi.org/10.1080/00223131.2017.1365025.Suche in Google Scholar

27. Vance, E. R., Gregg, D. J., Grant, C., Stopic, A., Maddrell, E. R. Silver iodide sodalite for 129I immobilization. J. Nucl. Mater. 2016, 480, 177–181; https://doi.org/10.1016/j.jnucmat.2016.08.013.Suche in Google Scholar

28. Tang, J., Guo, Z. Investigation of adsorption properties of the silver nitrate impregnated silica gels for radioiodine. Chin. J. Nucl. Sci. Eng. 1987, 7, 144–148, 163.Suche in Google Scholar

29. Qi, W., Qifei, H., Huabo, D., Feng, L., Yangsheng, Z., Cheng, X. Study on technical system for characterization of hazardous wastes in China. J. Environ. Sci. Res. 2006, 5, 165–179.Suche in Google Scholar

30. He, L., Chen, L., Dong, X., Zhang, S., Wang, S. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Inside Chem. 2021, 7, 699–714; https://doi.org/10.1016/j.chempr.2020.11.024.Suche in Google Scholar

31. Chapman, K. W., Chupas, P. J., Nenoff, T. M. Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation. J. Am. Chem. Soc. 2010, 132, 8897–8899; https://doi.org/10.1021/ja103110y.Suche in Google Scholar PubMed

32. Garino, T. J., Nenoff, T. M., Krumhansl, J. L., Rademacher, D. X. Low-temperature sintering Bi–Si–Zn-oxide glasses for use in either glass composite materials or core/shell 129I waste forms. J. Am. Chem. Soc. 2011, 94, 2412–2419; https://doi.org/10.1111/j.1551-2916.2011.04542.x.Suche in Google Scholar

33. Riley, B. J., Chun, J., Ryan, J. V., Matyáš, J., Li, X. S., Matson, D. W., Sundaram, S. K., Strachan, D. M., Vienna, J. D. Chalcogen-based aerogels as a multifunctional platform for remediation of radioactive iodine. RSC Adv. 2011, 1, 1704–1715; https://doi.org/10.1039/C1RA00351H.Suche in Google Scholar

34. Matyas, J., Engler, R. K. Assessment of methods to consolidate iodine-loaded silver-functionalized silica aerogel 2013, No. PNNL-22874, https://doi.org/10.2172/1110476.Suche in Google Scholar

35. Matyá, J., Canfield, N., Sulaiman, S., Zumhoff, M. Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams. J. Nucl. Mater. 2016, 476, 255–261; https://doi.org/10.1016/j.jnucmat.2016.04.047.Suche in Google Scholar

36. Liu, Q., Hou, X., Zhou, W., Fu, Y. C. Accelerator mass spectrometry analysis of ultra-low-level 129I in carrier-free AgI-AgCl sputter targets. J. Am. Soc. Mass Spectrom. 2015, 26, 725–733; https://doi.org/10.1007/s13361-015-1086-1.Suche in Google Scholar PubMed

37. Guentay, S., Cripps, R. C., Jaeckel, B., Bruchertseifer, H. On the radiolytic decomposition of colloidal silver iodide in aqueous suspension. Nucl. Technol. 2005, 150, 303–314; https://doi.org/10.13182/NT05-A3624.Suche in Google Scholar

38. Lemesle, T., Montagne, L., Méar, F., Revel, B., Campayo, L., Pinet, O. Bismuth silver phosphate glasses as alternative matrices for the conditioning of radioactive iodine. Part B. Phys. Chem. Glasses B 2015, 56, 71–75; https://doi.org/10.13036/17533562.56.2.071.Suche in Google Scholar

39. Estefanía, M. Q., Mónica, A., Villaquirán, C., Ruby, M. G., Muñoz-Saldaña, J. Effect of ZnO content on the physical, mechanical and chemical properties of glass-ceramics in the CaO–SiO2–Al2O3 system. Ceram. Int. 2019, 46, 4322–4328; https://doi.org/10.1016/j.ceramint.2019.10.154.Suche in Google Scholar

40. Wei, G., Luo, F., Li, B. S., Liu, Y., Yang, J. J., Zhang, Z. T., Liu, Y., Shu, X. Y., Xie, Y., Lu, X. R. Immobilization of iodine waste forms: a low-sintering temperature with Bi2O3–B2O3–ZnO glass. Ann. Nucl. Energy 2021, 150, 107817; https://doi.org/10.1016/j.anucene.2020.107817.Suche in Google Scholar

41. ASTM. Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: the product consistency test (PCT). ASTM: West Conshohocken, PA, 2002.Suche in Google Scholar

42. Wang, X., Liu, Y., Xie, Y., Dadong, X. L., Wei, G. L., Li, B. S., Zhang, Z. T., Chen, S. Z., Shu, X. Y., Wang, X., Liu, Y., Xie, Y., Shao, D. D., Lu, X. R. Boron assisted low temperature immobilization of iodine adsorbed by silver-coated silica gel. J. Nucl. Mater. 2019, 526, 151758; https://doi.org/10.1016/j.jnucmat.2019.151758.Suche in Google Scholar

43. Zhang, Y. P., Yang, Y. X., Ou, Y. W., Hua, W., Zheng, J. H., Chen, G. R. Effect of Sb2O3 on thermal properties of glasses in Bi2O3–B2O3–SiO2 system. J. Am. Chem. Soc. 2009, 92, 1881–1883; https://doi.org/10.1111/j.1551-2916.2009.03127.x.Suche in Google Scholar

44. Zhu, X. M., Mai, C. L., Li, M. Y. Effects of B2O3 content variation on the Bi ions in Bi2O3–B2O3–SiO2 glass structure. J. Non-Cryst. Solids 2014, 388, 55–61; https://doi.org/10.1016/j.jnoncrysol.2013.12.007.Suche in Google Scholar

45. Rao, N. S., Purnima, M., Bale, S., Kumar, K. S., Rahman, S. Spectroscopic investigations of Cu2+ in Li2O–Na2O–B2O3–Bi2O3 glasses. Bull. Mater. Sci. 2006, 29, 365–370; https://doi.org/10.1007/BF02704136.Suche in Google Scholar

46. Hou, Z. X., Wang, S. H., Xue, Z. L., Lu, H. R., Niu, C. L., Wang, H., Sun, B., Su, C. H. Crystallization and microstructural characterization of B2O3–Al2O3–SiO2 glass. J. Non-Cryst. Solids 2010, 356, 201–207; https://doi.org/10.1016/j.jnoncrysol.2009.11.004.Suche in Google Scholar

47. Lin, P., Lin, T., He, P., Sekulic, D. P. An influence of a glass composition on the structure and properties of Bi2O3–B2O3–SiO2–ZnO glass system with addition of BaO, CaO and Fe2O3. J. Mater. Sci. Mater. Electron. 2018, 29, 232–243; https://doi.org/10.1007/s10854-017-7909-z.Suche in Google Scholar

48. Mansour, E., El-Damrawi, G. Electrical properties and FTIR spectra of ZnO–PbO–P2O5 glasses. Physica B 2010, 405, 2137–2143; https://doi.org/10.1016/j.physb.2010.01.121.Suche in Google Scholar

49. Shaaban, E. R., Shapaan, M., Saddeek, Y. B. Structural and thermal stability criteria of Bi2O3–B2O3 glasses. J. Phys. Condens. Mater. 2008, 20, 155108; https://doi.org/10.1088/0953-8984/20/15/155108.Suche in Google Scholar

50. Singh, D., Singh, K., Singh, G., Mohan, S., Arora, M., Sharma, G. Optical and structural properties of ZnO–PbO–B2O3 and ZnO–PbO–B2O3–SiO2 glasses. J. Phys. Condens. Mater. 2008, 20, 553–560; https://doi.org/10.1088/0953-8984/20/7/075228.Suche in Google Scholar

51. Ardelean, I., Cora, S., Rusu, D. EPR and FT-IR spectroscopic studies of Bi2O3–B2O3–CuO glasses. Physica B 2008, 403, 3682–3685; https://doi.org/10.1016/j.physb.2008.06.016.Suche in Google Scholar

52. Mellott, N. P., Pantano, C. G. A mechanism of corrosion‐induced roughening of glass surfaces. Int. J. Appl. Glass Sci. 2013, 4, 274–279; https://doi.org/10.1111/ijag.12035.Suche in Google Scholar

53. Buckwalter, C. Q., Pederson, L. R., Mcvay, G. L. The effects of surface area to solution volume ratio and surface roughness on glass leaching. J. Non-Cryst. Solids 1982, 49, 397–412; https://doi.org/10.1016/0022-3093(82)90135-1.Suche in Google Scholar

54. Sukhorukova, I. V., Sheveyko, A. N., Shvindina, N. V., Denisenko, E. A., Ignatov, S. G., Shtansky, D. V. Approaches for controlled Ag+ ion release: influence of surface topography, roughness, and bactericide content. ACS Appl. Mater. Interfaces 2017, 9, 4259–4271; https://doi.org/10.1021/acsami.6b15096.Suche in Google Scholar PubMed

55. Grosfils, P., Lutsko, J. F. Impact of surface roughness on crystal nucleation. Crystals 2021, 11, 4–2021; https://doi.org/10.3390/cryst11010004.Suche in Google Scholar

56. Liu, Y., Wei, G. L., Feng, Y. X., Lu, X. R., Chen, Y., Sun, R. J., Peng, L., Ma, M. H., Zhang, Y., Zhang, Z. T. The effect of boron on zeolite-4A immobilization of iodine waste forms with a novel preparation method. J. Radioanal. Nucl. Chem. 2020, 324, 579–587; https://doi.org/10.1007/s10967-020-07079-8.Suche in Google Scholar

57. Lee, C. W., Pyo, J. Y., Park, H. S., Yang, J. H., Heo, J. Immobilization and bonding scheme of radioactive iodine-129 in silver tellurite glass. J. Nucl. Mater. 2017, 492, 239–243; https://doi.org/10.1016/j.jnucmat.2017.05.024.Suche in Google Scholar

58. Liu, Y., Li, B. S., Shu, X. Y., Zhang, Z. T., Wei, G. L., Liu, Y., Chen, S. Z., Xie, Y., Lu, X. R. Low-sintering-temperature borosilicate glass to immobilize silver-coated silica-gel with different iodine loadings – sciencedirect. J. Hazard Mater. 2021, 403, 123588; https://doi.org/10.1016/j.jhazmat.2020.123588.Suche in Google Scholar PubMed

Received: 2021-03-19
Accepted: 2021-12-18
Published Online: 2021-12-31
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1032/pdf?lang=de
Button zum nach oben scrollen