Home Application of a novel gas phase synthesis approach to carbonyl complexes of accelerator-produced 5d transition metals
Article
Licensed
Unlicensed Requires Authentication

Application of a novel gas phase synthesis approach to carbonyl complexes of accelerator-produced 5d transition metals

  • Michael Götz EMAIL logo , Alexander Yakushev , Stefan Götz , Antonio Di Nitto , Christoph E. Düllmann , Masato Asai , Birgit Kindler , Jörg Krier , Bettina Lommel , Yuichiro Nagame , Tetsuya K. Sato , Hayato Suzuki , Tomohiro Tomitsuka , Katsuyuki Tokoi , Atsushi Toyoshima and Kazuaki Tsukada
Published/Copyright: December 22, 2021

Abstract

In 2014 the first synthesis of a transactinide carbonyl complex – seaborgium hexacarbonyl – was reported. This was achieved in gas-phase chemical experiments in a beam-free environment behind the recoil separator GARIS. Extending this work to heavier elements requires more efficient techniques to synthesize carbonyl complexes as production rates of transactinide elements drop with increasing atomic number. A novel approach was thus conceived, which retains the benefit of a beam-free environment but avoids the physical preseparation step. The latter reduces the yields for products of asymmetric reactions such as those used for the synthesis of suitable isotopes of Sg, Bh, Hs and Mt. For this a series of experiments with accelerator-produced radioisotopes of the lighter homologues W, Re and Os was carried out at the tandem accelerator of JAEA Tokai, Japan. A newly developed double-chamber system, which allows for a decoupled recoil ion thermalization and chemical complex formation, was used, which avoids the low-efficiency physical preseparation step. Here, we demonstrate the feasibility of this newly developed method using accelerator-produced short-lived radioisotopes of the 5d homologues of the early transactinides.


Corresponding author: Michael Götz, Department of Chemistry – TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt, Germany; and Helmholtz Institute Mainz, 55099 Mainz, Germany, E-mail:

Funding source: Japan Atomic Energy Agency 10.13039/501100005118

Funding source: German Federal Ministry for Education and Research 10.13039/501100002347

Award Identifier / Grant number: 05P15UMFNA

Acknowledgment

This work has been partly supported by the Program on the Scientific Cooperation between GSI and JAEA in Research and Development in the Field of Ion Beam Application. We thank the operating staff of the JAEA-Tokai Tandem Accelerator for providing stable beams and the mechanical workshops at the GSI Helmholtzzentrum für Schwerionenforschung for their support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We gratefully acknowledge financial support by the Reimei Research Program (Japan Atomic Energy Agency) and the German Federal Ministry for Education and Research under contract 05P15UMFNA.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Pyykkö, P., Desclaux, J. P. Relativity and the periodic system of elements. Acc. Chem. Res. 1979, 12, 276–281.10.1021/ar50140a002Search in Google Scholar

2. Türler, A., Pershina, V. Advances in the production and chemistry of the heaviest elements. Chem. Rev. 2013, 113, 1237–1312.10.1021/cr3002438Search in Google Scholar PubMed

3. Türler, A., Eichler, R., Yakushev, A. Chemical studies of elements with Z ≥ 104 in gas phase. Nucl. Phys. A 2015, 944, 640–689.10.1016/j.nuclphysa.2015.09.012Search in Google Scholar

4. Düllmann, Ch. E., Gregorich, K. E., Pang, G. K., Dragojević, I., Eichler, R., Folden, C. M.III, Garcia, M. A., Gates, J. M., Hoffman, D. C., Nelson, S. L., Sudowe, R., Nitsche, H. Gas chemical investigation of hafnium and zirconium complexes with hexafluoroacetylacetone using preseparated short-lived radioisotopes. Radiochim. Acta 2009, 97, 403–418.10.1524/ract.2009.1630Search in Google Scholar

5. Düllmann, Ch. E., Folden, C., Gregorich, K., Hoffman, D., Leitner, D., Pang, G., Sudowe, R., Zielinski, P., Nitsche, H. Heavy-ion-induced production and physical preseparation of short-lived isotopes for chemistry experiments. Nucl. Instrum. Methods Phys. Res., Sect. A 2005, 551, 528–539.10.1016/j.nima.2005.05.077Search in Google Scholar

6. Düllmann, Ch. E. Physical preseparation: a powerful new method for transactinide chemists. Eur. Phys. J. B 2007, 45, 75–80.10.1140/epjd/e2007-00033-9Search in Google Scholar

7. Even, J., Ballof, J., Brüchle, W., Buda, R. A., Düllmann, Ch. E., Eberhardt, K., Gorshkov, A., Gromm, E., Hild, D., Jäger, E., Khuyagbaatar, J., Kratz, J.-V., Krier, J., Liebe, D., Mendel, M., Nayak, D., Opel, K., Omtvedt, J. P., Reichert, P., Runke, J., Sabelnikov, A., Samadani, F., Schädel, M., Schausten, B., Scheid, N., Schimpf, E., Semchenkov, A., Thörle-Pospiech, P., Toyoshima, A., Türler, A., Vilas, V. V., Wiehl, N., Wunderlich, T., Yakushev, A. The recoil transfer chamber—an interface to connect the physical preseparator TASCA with chemistry and counting setups. Nucl. Instrum. Methods Phys. Res., Sect. A 2011, 638, 157–164; https://doi.org/10.1016/j.nima.2011.02.053.Search in Google Scholar

8. Even, J., Yakushev, A., Düllmann, Ch. E., Dvorak, J., Eichler, R., Gothe, O., Hild, D., Jäger, E., Khuyagbaatar, J., Kratz, J.-V., Krier, J., Niewisch, L., Nitsche, H., Pysmenetska, I., Schädel, M., Schausten, B., Türler, A., Wiehl, N., Wittwer, D. Rapid synthesis of radioactive transition-metal carbonyl complexes at ambient conditions. Inorg. Chem. 2012, 51, 6431–6433; https://doi.org/10.1021/ic300305m.Search in Google Scholar PubMed

9. Even, J., Ackermann, D., Asai, M., Block, M., Brand, H., Di Nitto, A., Düllmann, Ch. E., Eichler, R., Fan, F., Haba, H., Hartmann, W., Hübner, A., Hessberger, F. P., Huang, M., Jäger, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J.-V., Krier, J., Kudou, Y., Kurz, N., Laatiaoui, M., Lommel, B., Maurer, J., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Qin, Z., Sato, T. K., Schädel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Usoltsev, I., Wakabayashi, Y., Wang, Y., Wiehl, N., Yakushev, A., Yamaki, S. In situ synthesis of volatile carbonyl complexes with short-lived nuclides. J. Radioanal. Nucl. Chem. 2014, 303, 2457–2466; https://doi.org/10.1007/s10967-014-3793-7.Search in Google Scholar

10. Even, J., Yakushev, A., Düllmann, Ch. E., Dvorak, J., Eichler, R., Gothe, O., Hartmann, W., Hild, D., Jäger, E., Khuyagbaatar, J., Kindler, B., Kratz, J.-V., Krier, J., Lommel, B., Niewisch, L., Nitsche, H., Pysmenetska, I., Schädel, M., Schausten, B., Türler, A., Wiehl, N., Wittwer, D. In-situ formation, thermal decomposition, and adsorption studies of transition metal carbonyl complexes with short-lived radioisotopes. Radiochim. Acta 2014, 102, 1093–1110; https://doi.org/10.1515/ract-2013-2198.Search in Google Scholar

11. Wang, Y., Qin, Z., Fan, F.-L., Fan, F.-Y., Cao, S.-W., Wu, X.-L., Zhang, X., Bai, J., Yin, X.-J., Tian, L.-L., Zhao, L., Tian, W., Li, Z., Tan, C.-M., Guo, J.-S., Gäggeler, H. W. Gasphase chemistry of Mo, Ru, W, and Os metal carbonyl complexes. Radiochim. Acta 2014, 102, 69–76; https://doi.org/10.1515/ract-2014-2157.Search in Google Scholar

12. Usoltsev, I., Eichler, R., Wang, Y., Even, J., Yakushev, A., Haba, H., Asai, M., Brand, H., Di Nitto, A., Düllmann, Ch. E., Fangli, F., Hartmann, W., Huang, M., Jäger, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Sato, T., Schädel, M., Steiner, J., Steinegger, P., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Wakabayashi, Y., Wiehl, N., Yamaki, S., Qin, Z. Decomposition studies of group 6 hexacarbonyl complexes. Part 1: production and decomposition of Mo(CO)6 and W(CO)6. Radiochim. Acta 2016, 104, 141–151; https://doi.org/10.1515/ract-2015-2445.Search in Google Scholar

13. Usoltsev, I., Eichler, R., Türler, A. Decomposition studies of group 6 hexacarbonyl complexes. Part 2: modelling of the decomposition process. Radiochim. Acta 2016, 104, 531–537; https://doi.org/10.1515/ract-2015-2447.Search in Google Scholar

14. Cao, S., Wang, Y., Qin, Z., Fan, F., Haba, H., Komori, Y., Wu, X., Tan, C., Zhang, X. Gas-phase chemistry of ruthenium and rhodium carbonyl complexes. Phys. Chem. Chem. Phys. 2016, 18, 119–125; https://doi.org/10.1039/c5cp05670e.Search in Google Scholar PubMed

15. Nash, C. S., Bursten, B. E. Prediction of the bond lengths, vibrational frequencies, and bond dissociation energy of octahedral seaborgium hexacarbonyl, Sg(CO)6. J. Am. Chem. Soc. 1999, 121, 10830–10831; https://doi.org/10.1021/ja9928273.Search in Google Scholar

16. Pershina, V., Iliaš, M. Carbonyl compounds of Tc, Re, and Bh: electronic structure, bonding, and volatility. J. Chem. Phys. 2018, 149, 204306; https://doi.org/10.1063/1.5055066.Search in Google Scholar PubMed

17. Pershina, V., Iliaš, M. Penta- and tetracarbonyls of Ru, Os, and Hs: electronic structure, bonding, and volatility. J. Chem. Phys. 2017, 146, 184306; https://doi.org/10.1063/1.4983125.Search in Google Scholar

18. Iliaš, M., Pershina, V. Carbonyl compounds of Rh, Ir, and Mt: electronic structure, bonding and volatility. Phys. Chem. Chem. Phys. 2020, 22, 18681–18694.10.1039/D0CP02118KSearch in Google Scholar

19. Even, J., Yakushev, A., Düllmann, C. E., Haba, H., Asai, M., Sato, T. K., Brand, H., Di Nitto, A., Eichler, R., Fan, F. L., Hartmann, W., Huang, M., Jager, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Qin, Z., Schadel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Turler, A., Usoltsev, I., Wakabayashi, Y., Wang, Y., Wiehl, N., Yamaki, S. Synthesis and detection of a seaborgium carbonyl complex. Science 2014, 345, 1491–1493; https://doi.org/10.1126/science.1255720.Search in Google Scholar PubMed

20. Haba, H., Kaji, D., Kudou, Y., Morimoto, K., Morita, K., Ozeki, K., Sakai, R., Sumita, T., Yoneda, A., Kasamatsu, Y., Komori, Y., Shinohara, A., Kikunaga, H., Kudo, H., Nishio, K., Ooe, K., Sato, N., Tsukada, K. Production of 265Sg in the 248Cm(22Ne,5n)265Sg reaction and decay properties of two isomeric states in 265Sg. Phys. Rev. C 2012, 85, 024611-1–024611-11; https://doi.org/10.1103/physrevc.85.024611.Search in Google Scholar

21. Haba, H., Fan, F., Kaji, D., Kasamatsu, Y., Kikunaga, H., Komori, Y., Kondo, N., Kudo, H., Morimoto, K., Morita, K., Murakami, M., Nishio, K., Omtvedt, J. P., Ooe, K., Qin, Z., Sato, D., Sato, N., Sato, T. K., Shigekawa, Y., Shinohara, A., Takeyama, M., Tanaka, T., Toyoshima, A., Tsukada, K., Wakabayashi, Y., Wang, Y., Wulff, S., Yamaki, S., Yano, S., Yasuda, Y., Yokokita, T. Production of 266Bh in the 248Cm(23Na,5n)266Bh reaction and its decay properties. Phys. Rev. C 2020, 102, 024625; https://doi.org/10.1103/physrevc.102.024625.Search in Google Scholar

22. Wilk, P. A., Gregorich, K. E., Türler, A., Laue, C. A., Eichler, R., Ninov, V., Adams, J. L., Kirbach, U. W., Lane, M. R., Lee, D. M., Patin, J. B., Shaughnessy, D. A., Strellis, D. A., Nitsche, H., Hoffman, D. C. Evidence for new isotopes of element 107:266Bh and 267Bh. Phys. Rev. Lett. 2000, 85, 2697–2700; https://doi.org/10.1103/physrevlett.85.2697.Search in Google Scholar

23. Dvorak, J., Brüchle, W., Chelnokov, M., Düllmann, Ch. E., Dvorakova, Z., Eberhardt, K., Jäger, E., Krücken, R., Kuznetsov, A., Nagame, Y., Nebel, F., Nishio, K., Perego, R., Qin, Z., Schädel, M., Schausten, B., Schimpf, E., Schuber, R., Semchenkov, A., Thörle, P., Türler, A., Wegrzecki, M., Wierczinski, B., Yakushev, A., Yeremin, A. Observation of the 3n evaporation channel in the complete hot-fusion 26Mg + 248Cm leading to the new superheavy nuclide 271Hs. Phys. Rev. Lett. 2008, 100, 132503-1–132503-4; https://doi.org/10.1103/physrevlett.100.132503.Search in Google Scholar

24. Oganessian, Y. T., Utyonkov, V. K., Abdullin, F. S., Dmitriev, S. N., Graeger, R., Henderson, R. A., Itkis, M. G., Lobanov, Y. V., Mezentsev, A. N., Moody, K. J., Nelson, S. L., Polyakov, A. N., Ryabinin, M. A., Sagaidak, R. N., Shaughnessy, D. A., Shirokovsky, I. V., Stoyer, M. A., Stoyer, N. J., Subbotin, V. G., Subotic, K., Sukhov, A. M., Tsyganov, Y. S., Türler, A., Voinov, A. A., Vostokin, G. K., Wilk, P. A., Yakushev, A. Synthesis and study of decay properties of the doubly magic nucleus 270Hs in the 226Ra + 48Ca reaction. Phys. Rev. C 2013, 87, 034605-1–034605-8; https://doi.org/10.1103/physrevc.87.034605.Search in Google Scholar

25. Götz, M., Götz, S., Kratz, J.-V., Ballof, J., Düllmann, Ch. E., Eberhardt, K., Mokry, C., Renisch, D., Runke, J., Sato, T. K., Thörle- Pospiech, P., Trautmann, N., Yakushev, A. Gas phase synthesis of 4d transition metal carbonyl complexes with thermalized fission fragments in single-atom reactions. Radiochim. Acta 2021, 109, 153–165.10.1515/ract-2020-0052Search in Google Scholar

26. Zvára, I., Chuburkov, Y., Belov, V., Buklanov, G., Zakhvataev, B., Zvarova, T., Maslov, O., Caletka, R., Shalaevsky, M. Experiments on chemistry of element 104-kurchatovium V. J. Inorg. Nucl. Chem. 1970, 32, 1885–1894.10.1016/0022-1902(70)80598-XSearch in Google Scholar

27. Zvára, I., Belov, V., Chelnokov, L., Domanov, V., Hussonois, M., Korotkin, Y., Schegolev, V., Shalayevsky, M. Chemical separation of kurchatovium. Inorg. Nucl. Chem. Lett. 1971, 7, 1109–1116.10.2172/4932529Search in Google Scholar

28. Zvára, I., Yakushev, A. B., Timokhin, S. N., Honggui, X., Perelygin, V. P., Chuburkov, Y. T. Chemical identification of element 106 (thermochromatography of oxochlorides). Radiochim. Acta 1998, 81, 179–187.10.1524/ract.1998.81.4.179Search in Google Scholar

29. Stolarz, A. Target preparation for research with charged projectiles. J. Radioanal. Nucl. Chem. 2013, 299, 913–931; https://doi.org/10.1007/s10967-013-2652-2.Search in Google Scholar

30. Ziegler, J. Computer Code SRIM-2013 last checked: 03.02.2021. http://www.srim.org/.Search in Google Scholar

31. Ziegler, J. F. The Stopping and Ranges of Ions in Matter; Pergamon Press: New York, 2013.Search in Google Scholar

32. Düllmann, Ch. E., Eichler, B., Eichler, R., Gäggler, H., Jost, D., Piguet, D., Türler, A. IVO, a device for in situ volatilization and on-line detection of products from heavy ion reactions. Nucl. Instrum. Methods Phys. Res., Sect. A 2002, 479, 631–639.10.1016/S0168-9002(01)00898-1Search in Google Scholar

33. Zvára, I. Simulation of thermochromatographic processes by the monte carlo method. Radiochim. Acta 1985, 38, 95–101.10.1524/ract.1985.38.2.95Search in Google Scholar

34. Elschenbroich, C. Organometallchemie; B.G. Teubner Verlag GWV Fachverlage GmbH: Wiesbaden, 2008; p. 764.Search in Google Scholar

35. Wang, Y., Qin, Z., Fan, F., Haba, H., Komori, Y., Cao, S., Wu, X., Tan, C. Gas-phase chemistry of technetium carbonyl complexes. Phys. Chem. Chem. Phys. 2015, 17, 13228–13234; https://doi.org/10.1039/c5cp00979k.Search in Google Scholar PubMed

36. Even, J. Developments for Transactinide Chemistry Experiments Behind the Gas-Filled Separator TASCA. Ph.D. Thesis, Johannes Gutenberg University Mainz, Germany, 2011.Search in Google Scholar

37. Usoltsev, I. Methodical Developments for Future Chemical Investigations of Superheavy Elements. Ph.D. Thesis, Departement für Chemie und Biochemie der Universität Bern, Switzerland, 2014.Search in Google Scholar

Received: 2021-03-07
Accepted: 2021-11-27
Published Online: 2021-12-22
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1028/html
Scroll to top button