Startseite Adsorption from liquid metals: an approach for recovery of radionuclides from irradiated targets
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Adsorption from liquid metals: an approach for recovery of radionuclides from irradiated targets

  • Boris Zhuikov EMAIL logo und Stanislav Ermolaev
Veröffentlicht/Copyright: 19. November 2020

Abstract

Adsorption of radionuclides in no-carrier-added (NCA) amounts from liquid metals оf Rb, Pb, and Ag was investigated. 82Sr may be recovered from metallic irradiated Rb-target via adsorption onto various surfaces. A high chemical yield is achieved at Sr-sorption from molten Rb of big mass directly onto the inner surface of the target shell at about 300 °C. The investigation showed that the formation and dissolution of oxide sol particles of rubidium oxide, where 82Sr is initially adsorbed in SrO form, play an important role in the mechanism of adsorption. The approach is prospective for different modes in “off-line” and “on-line” 82Sr production. Direct sorption of different NCA radionuclides from molten Pb and Ag was also investigated. Chemical nature of the surface (Ta, Ni, Ti, Mo, Al, or quartz) is very critical for sorption of 188,189Ir, 188Pt,198Au,97Ru,185Os,182mRe,99Mo and 99mTc from molten Pb, and for sorption of 100Pd,101mRh,97Ru, 96Tc from molten Ag.


Corresponding author: Boris Zhuikov, Institute for Nuclear Research of RAS, 60th October Anniversary Prospect, 7A, Moscow, Russia, E-mail:

Acknowledgments

The authors are thankful to V.M. Kokhanyuk, Yu.G. Gabrielyants (INR RAS) and J. Vincent (TRIUMF, Canada) for their important help in the experiments, A. Skasyrskaya for assistance in ANSYS calculations, F. Haddad and other colleagues from GIP ARRONAX (France) and Los Alamos National Laboratory (USA) for fruitful discussions and support.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. McGuire, J. C. Radionuclide trap. US Patent 4,088,533, 1978.Suche in Google Scholar

2. Romanenko, O. G., Allen, K. J., Wachs, D. M., Planchon, H. P., Wells, P. B., Michelbacher, J. A., Nazarenko, P., Dumchev, I., Maev, V., Zemtzev, B., et al. Cleaning cesium radionuclides from BN-350 primary sodium. Nucl. Technol. 2005, 150, 79. https://doi.org/10.13182/nt05-a3607.Suche in Google Scholar

3. Olson, W. H., Ruther, W. E. Controlling cesium in the coolant of the experimental breeder reactor II. Nucl. Technol. 1979, 46, 318. https://doi.org/10.13182/nt79-a32333.Suche in Google Scholar

4. Veretenkin, E. N., Gavrin, V. N., Yanovich, E. F. Use of metallic lithium for detecting solar neutrinos. At. Energy 1985, 58, 82. https://doi.org/10.1007/bf01123252.Suche in Google Scholar

5. Cackette, M. R. C., Ruth, T., Vincent, J. S. 82Sr Production from metallic Rb targets and development of an 82Rb generator system. Appl. Radiat. Isot. 1993, 44, 917. https://doi.org/10.1016/0969-8043(93)90045-c.Suche in Google Scholar

6. Phillips, D. R., Peterson, E. J., Taylor, W. A., Jamriska, D. J., Hamilton, V. T., Kitten, J. J., Valdez, F. O., Salazar, L. L., Pitt, L. R., Heaton, R. C., et al. Production of strontium-82 for the cardiogen PET generator: a project of the department of energy virtual isotope center. Radiochim. Acta 2000, 88, 149. https://doi.org/10.1524/ract.2000.88.3-4.149.Suche in Google Scholar

7. Alvarez-Diez, T. M., deKemp, R., Beanlands, R., Vincent, J. Manufacture of strontium-82/ rubidium-82 generators and quality control of rubidium-82 chloride for myocardial perfusion imaging in patients using positron emission tomography. Appl. Radiat. Isot. 1999, 50, 1015. https://doi.org/10.1016/s0969-8043(98)00170-5.Suche in Google Scholar

8. Chudakov, V. M., Zhuikov, B. L., Ermolaev, S. V., Kokhanyuk, V. M., Mostova, M. I., Zaitsev, V. V., Shatik, S. V., Kostenikov, N. A., Ryzhkova, D. V., Tyutin, L. A. Characterization of 82Rb generator for positron emission tomography. Radiochemistry 2014, 56, 535. https://doi.org/10.1134/s1066362214050142.Suche in Google Scholar

9. Kostenikov, N. A., Zhuikov, B. L., Chudakov, V. M., Iliuschenko, Yu. R., Shatik, S. V., Zaitsev, V. V., Sysoev, D. S., Stanzhevskiy, A. A. Application of 82Sr/82Rb generator in neurooncology. Brain Behav. 2019, 9, 316. https://doi.org/10.1002/brb3.1212.Suche in Google Scholar PubMed PubMed Central

10. Jochumsen, M. R., Tolbod, L. P., Pedersen, B. G., Nielsen, M. M., Hoyer, S., Frokiaer, J., Borre, M., Bouchelouche, K., Sorensen, J. Quantitative tumor perfusion imaging with 82Rb PET/CT in prostate cancer: analytic and clinical validation. J. Nucl. Med. 2019, 60, 1059. https://doi.org/10.2967/jnumed.118.219188.Suche in Google Scholar PubMed

11. Meulen, N. P., van der Walt, T. N., Steyn, G. F., Raubenheimer, H. G. The production of 82Sr using larger format RbCl targets. Appl. Radiat. Isot. 2013, 72, 96. https://doi.org/10.1016/j.apradiso.2012.09.017.Suche in Google Scholar PubMed

12. Zhuikov, B. L., Kokhanyuk, V. M, Gluschenko, V. N., Pilipenko, S. I., Kavkhuta, G. A., Vincent, J., Cackette, M. Preparation of strontium-82 from a metallic rubidium target using a 100 MeV proton beam. Radiochemistry 1994, 36, 494.Suche in Google Scholar

13. Qaim, S. M., Spahn, I., Spellerbrg, S., Coennen, H. H., Steyn, G. F., Van der Walt, T. N. Yield and purity of 82Sr produced via the natRb(p, xn)82Sr process. Appl. Radiat. Isot. 2007, 65, 247. https://doi.org/10.1016/j.apradiso.2006.08.001.Suche in Google Scholar

14. Zhuikov, B. L., Kokhanyk, V. M., Vincent, J. Process for production of radiostrontium. US patent 5875220, February 23, 1999. Russian patent 96111762, June 4, 1998.Suche in Google Scholar

15. Zhuikov, B. L., Kokhanyk, V. M., Vincent, J. S. Sorption of radiostrontium from liquid rubidium metal. Radiochemistry 2008, 50, 191. https://doi.org/10.1134/s1066362208020197.Suche in Google Scholar

16. Zhuikov, B. L., Ermolaev, S. V., Kokhanyuk, V. M. Method for producing radiostrontium. US patent 8929503, January 6, 2015; Russian patent 2356113 C1, March 27, 2008.Suche in Google Scholar

17. Zhuikov, B. L., Kokhanyuk, V. M., Konyakhin, N. A., Vincent, J. Target irradiation facility and targetry development at 160 MeV proton beam of Moscow linac. Nucl. Instrum. Methods Phys. Res. Sect. A 1999, 438, 173. https://doi.org/10.1016/S0168-9002(99)00672-5.Suche in Google Scholar

18. ANSYS Multiphysics (Academic license, Release 12.0); ANSYS, Inc., 2012. https://www.ansys.com.Suche in Google Scholar

19. Touzain, P., Caillet, M. Systemes metaux alcalins-oxygene, quatrieme partie: polymorphisme du monoxyde de rubidium Rb2O. Rev. Chim. Miner. 1971, 8, 277.Suche in Google Scholar

20. Sounalet, T., Haddad, F., Alliot, C., Montavon, G., Audouin, N., Barbet, J., Bonraisin, A. C., Milon, F., Mokili, M., Laize, J., et al. Strontium-82 and future germanium-68 production at the ARRONAX facility. Nucl. Data Sheets 2014, 119, 261. http://dx.doi.org/10.1016/j.nds.2014.08.072.10.1016/j.nds.2014.08.072Suche in Google Scholar

21. Vetter, J., Dobrev, D. Double metal replication of etched ion-track membranes. Nucl. Instrum. Methods Phys. Res. Sect. B 1999, 156, 177. https://doi.org/10.1016/S0168-583X(99)00268-2.Suche in Google Scholar

22. Matsushita, Y., Goto, K. The application of oxygen concentration cells with the solid electrolyte ZrO2∙CaO to thermodynamic research. Thermodynamics 1966, 1, 111.Suche in Google Scholar

23. Liquid Metal Coolants for Fast Reactors Cooled by Sodium, Lead, and Lead-Bismuth Eutectic; International Atomic Energy Agency: Vienna, 2012.Suche in Google Scholar

24. Mokhtari Oranj, L., Jung, N. S., Bakhtiari, M., Lee, A., Lee, H. S. Cross sections of proton-induced nuclear reactions on bismuth and lead up to 100 MeV. Phys. Rev. C 2017, 95, 044609. https://doi.org/10.1103/PhysRevC.95.044609.Suche in Google Scholar

25. Gloris, M., Michel, R., Herpers, U., Sudbrock, F., Filges, D. Production of residual nuclei from irradiation of thin Pb-targets with protons up to 1.6 GeV. Nucl. Instrum. Methods B 1996, 113, 429. https://doi.org/10.1016/0168-583X(95)01325-3.Suche in Google Scholar

26. Zhuikov, B. L. Gas chemical methods of separation of elements in radioisotope production and activation analysis. Radioanal. Nucl. Chem. 2005, 23, 65. https://doi.org/10.1007/s10967-005-0013-5.Suche in Google Scholar

27. Meschel, S. V., Kleppa, O. J. Thermochemistry of alloys of transition metals and lanthanide metals with some IIIB and IVB elements in the periodic table. J. Alloy Compd. 2001, 321, 183. https://doi.org/10.1016/S0925-8388(01)00966-5.Suche in Google Scholar

28. Fassbender, M., Nortier, F. M., Schroeder, I. W., van der Walt, T. N. The production of 103Pd via the natAg(p,x)103Pd nuclear process. Radiochim. Acta 1999, 87, 87. https://doi.org/10.1524/ract.1999.87.34.87.Suche in Google Scholar

29. Kolsky, K. L., Mausner, L. F., Zhuikov, B. L., Lapshina, E. V., Kokhanyuk, V. M., Kravchuk, V. L., Myasoedova, G. V., Vincent, J., Zyuzin, A. Y., Phillips, D. R., et al. Accelerator production of 103Pd from silver targets. In Proc. of the Int. Chemical Congress of Pacific Basin Societies, Honolulu, Hawaii, Dec. 14–19, 2000, 57.Suche in Google Scholar

30. Mausner, L. F., Kolsky, K. L., Avasthi, V., Srivastava, S.C. Production of 103Pd by proton irradiation of silver. J. Labelled Cpd. Radiopharm. 2001, 44(Suppl.), 775. https://doi.org/10.1002/jlcr.25804401273.Suche in Google Scholar

Received: 2020-06-02
Accepted: 2020-10-22
Published Online: 2020-11-19
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2020-0053/html
Button zum nach oben scrollen