Ultrafast and highly capture of U(VI) by hierarchical mesoporous carbon
-
Han Guo
Abstract
In this study, the hierarchical mesoporous carbon (HMC) was synthesized by the hydrothermal method. The batch adsorption experiments showed that HMC exhibited the ultrafast equilibrium fate (80 % U(VI) capture efficiency within 5 min), high UO22+ capture capacity (210 mg/g, pH = 4.5) and well recyclability. The investigations of XPS techniques indicated the oxygen-containing functional groups were responsible for high efficient UO22+ adsorption. The pH-dependent adsorption was simulated by three surface complexation modellings, revealing that UO22+ adsorption on HMC was excellently fitted by triple layer model using two inner-sphere complexes (i. e. SOUO2+ and SOUO2(CO3)35− species) compared to constant capacitance model and diffuse layer model. These findings are crucial for expanding actual applications of HMC towards the removal of radionuclides under environmental cleanup.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21822602
Funding statement: Financial support from National Natural Science Foundation of China (21822602) was acknowledged.
References
1. Lovley, D. R., Phillips, E. J. P., Gorby, Y. A., Landa, E. R.: Microbial reduction of uranium. Nature 350, 413 (1991).10.1038/350413a0Suche in Google Scholar
2. Cheng, T., Barnett, M. O., Roden, E. E., Zhuang, J.: Effects of phosphate on uranium(VI) adsorption to goethite-coated sand. Environ. Sci. Technol. 38, 6059 (2004).10.1021/es040388oSuche in Google Scholar PubMed
3. Wu, W. M., Carley, J., Gentry, T., Ginder-Vogel, M. A., Fienen, M., Mehlhorn, T., Yan, H., Caroll, S., Pace, M. N., Nyman, J., Luo, J., Gentile, M. E., Fields, M. W., Hickey, R. F., Gu, B., Watson, D., Cirpka, O. A., Zhou, J., Fendorf, S., Kitanidis, P. K., Jardine, P. M., Criddle, C. S.: Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ. Sci. Technol. 40, 3986 (2006).10.1021/es051960uSuche in Google Scholar PubMed
4. Sun, Y., Wang, X., Ai, Y., Yu, Z., Huang, W., Chen, C., Hayat, T., Alsaedi, A., Wang, X.: Interaction of sulfonated graphene oxide with U(VI) studied by spectroscopic analysis and theoretical calculations. Chem. Eng. J. 310, 292 (2017).10.1016/j.cej.2016.10.122Suche in Google Scholar
5. Ho, J.-C., Lee, C.-T. P., Kao, S.-F., Chen, R.-Y., Ieong, M. C. F., Chang, H.-L., Hsieh, W.-H., Tzeng, C.-C., Lu, C.-F., Lin, S.-L., Chang, P. W.: Perceived environmental and health risks of nuclear energy in taiwan after fukushima nuclear disaster. Environ. Int. 73, 295 (2014).10.1016/j.envint.2014.08.007Suche in Google Scholar PubMed
6. Burns, P. C., Ewing, R. C., Navrotsky, A.: Nuclear fuel in a reactor accident. Science 335, 1184 (2012).10.1126/science.1211285Suche in Google Scholar PubMed
7. Sun, Y. B., Yang, S. T., Sheng, G. D., Wang, Q., Guo, Z. Q., Wang, X. K.: Removal of U(VI) from aqueous solutions by the nano-iron oxyhydroxides. Radiochim. Acta 100, 779 (2012).10.1524/ract.2012.1942Suche in Google Scholar
8. Cai, Y. W., Wu, C. F., Liu, Z. Y., Zhang, L. J., Chen, L. H., Wang, J. Q., Wang, X. K., Yang, S. T., Wang, S.: Fabrication of a phosphorylated graphene oxide-chitosan composite for highly effective and selective capture of U(VI). Environ.-Sci. Nano 4, 1876 (2017).10.1039/C7EN00412ESuche in Google Scholar
9. Hornung, R. W.: Health effects in underground uranium miners. Occup. Med. 16, 331 (2001).Suche in Google Scholar
10. Yin, L., Wang, P., Wen, T., Yu, S., Wang, X., Hayat, T., Alsaedi, A., Wang, X.: Synthesis of layered titanate nanowires at low temperature and their application in efficient removal of U(VI). Environ. Pollut. 226, 125 (2017).10.1016/j.envpol.2017.03.078Suche in Google Scholar PubMed
11. Cheng, W. C., Ding, C. C., Wu, Q. Y., Wang, X. X., Sun, Y. B., Shi, W. Q., Hayat, T., Alsaedi, A., Chai, Z. F., Wang, X. K.: Mutual effect of U(VI) and Sr(II) on graphene oxides: evidence from EXAFS and theoretical calculations. Environ.-Sci. Nano 4, 1124 (2017).10.1039/C7EN00114BSuche in Google Scholar
12. Li, M., Sun, Y., Liu, H., Chen, T., Hayat, T., Alharbi, N. S., Chen, C.: Spectroscopic and modeling investigation of Eu(III) and U(VI) adsorption on nano-magnetite from aqueous solutions. ACS Sustain. Chem. Eng. 5, 5493 (2017).10.1021/acssuschemeng.7b00829Suche in Google Scholar
13. Li, Z.-J., Huang, Z.-W., Guo, W.-L., Wang, L., Zheng, L.-R., Chai, Z.-F., Shi, W.-Q.: Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ. Sci. Technol. 51, 5666 (2017).10.1021/acs.est.6b05313Suche in Google Scholar PubMed
14. Mellah, A., Chegrouche, S., Barkat, M.: The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J. Colloid Interface Sci. 296, 434 (2006).10.1016/j.jcis.2005.09.045Suche in Google Scholar PubMed
15. Brooks, S. C., Fredrickson, J. K., Carroll, S. L., Kennedy, D. W., Zachara, J. M., Plymale, A. E., Kelly, S. D., Kemner, K. M., Fendorf, S.: Inhibition of bacterial U (VI) reduction by calcium. Environ. Sci. Technol. 37, 1850 (2003).10.1021/es0210042Suche in Google Scholar PubMed
16. Gu, P. C., Zhang, S., Li, X., Wang, X. X., Wen, T., Jehan, R., Alsaedi, A., Hayat, T., Wang, X. K.: Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ. Pollut. 240, 493 (2018).10.1016/j.envpol.2018.04.136Suche in Google Scholar PubMed
17. Yao, W., Wang, X. X., Liang, Y., Yu, S. J., Gu, P. C., Sun, Y. B., Xu, C., Chen, J., Hayat, T., Alsaedi, A., Wang, X. K.: Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U (VI) and 241Am(III) efficient removal: batch and EXAFS studies. Chem. Eng. J. 332, 775 (2018).10.1016/j.cej.2017.09.011Suche in Google Scholar
18. Yin, L., Song, S., Wang, X., Niu, F., Ma, R., Yu, S., Wen, T., Chen, Y., Hayat, T., Alsaedi, A.: Rationally designed core-shell and yolk-shell magnetic titanate nanosheets for efficient U(VI) adsorption performance. Environ. Pollut. 238, 725 (2018).10.1016/j.envpol.2018.03.092Suche in Google Scholar PubMed
19. Zhang, C. L., Li, X., Chen, Z. S., Wen, T., Huang, S. Y., Hayat, T., Alsaedi, A., Wang, X. K.: Synthesis of ordered mesoporous carbonaceous materials and their highly efficient capture of uranium from solutions. Sci. Chin. Chem. 61, 1 (2018).10.1007/s11426-017-9132-7Suche in Google Scholar
20. Zhang, R., Chen, C., Li, J., Wang, X.: Preparation of montmorillonite@carbon composite and its application for U(VI) removal from aqueous solution. Appl. Surf. Sci. 349, 129 (2015).10.1016/j.apsusc.2015.04.222Suche in Google Scholar
21. Song, S., Yin, L., Wang, X., Liu, L., Huang, S., Zhang, R., Wen, T., Yu, S., Fu, D., Hayat, T., Wang, X.: Interaction of U(VI) with ternary layered double hydroxides by combined batch experiments and spectroscopy study. Chem. Eng. J. 338, 579 (2018).10.1016/j.cej.2018.01.055Suche in Google Scholar
22. Sun, Y., Yang, S., Chen, Y., Ding, C., Cheng, W., Wang, X.: Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ. Sci. Technol. 49, 4255 (2015).10.1021/es505590jSuche in Google Scholar PubMed
23. Sun, Y., Shao, D., Chen, C., Yang, S., Wang, X.: Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ. Sci. Technol. 47, 9904 (2013).10.1021/es401174nSuche in Google Scholar PubMed
24. Hu, Y. Z., Zhao, C. F., Yin, L., Wen, T., Yang, Y., Ai, Y. J., Wang, X. K.: Combining batch technique with theoretical calculation studies to analyze the highly efficient enrichment of U(VI) and Eu(III) on magnetic MnFe2O4 nanocubes. Chem. Eng. J. 349, 347 (2018).10.1016/j.cej.2018.05.070Suche in Google Scholar
25. Chen, H. J., Chen, Z., Zhao, G. X., Zhang, Z. B., Xu, C., Liu, Y. H., Chen, J., Zhuang, L., Haya, T., Wang, X. K.: Enhanced enhanced adsorption of U(VI) and Am-241(III) from wastewater using Ca/Al layered double hydroxide@carbon nanotube composites. J. Hazard. Mater. 347, 67 (2018).10.1016/j.jhazmat.2017.12.062Suche in Google Scholar PubMed
26. Duan, S. X., Xu, X. T., Liu, X., Wang, Y. N., Hayat, T., Alsaedi, A., Meng, Y. D., Li, J. X.: Highly enhanced adsorption performance of U(VI) by non-thermal plasma modified magnetic Fe3O4 nanoparticles. J. Colloid Interface Sci. 513, 92 (2018).10.1016/j.jcis.2017.11.008Suche in Google Scholar PubMed
27. Liu, H., Li, M., Chen, T., Chen, C., Alharb, N. S., Hayat, T., Chen, D., Zhang, Q., Sun, Y.: New synthesis of nZVI/C composites as an efficient adsorbent for the uptake of U(VI) from aqueous solutions. Environ. Sci. Technol. 51, 9227 (2017).10.1021/acs.est.7b02431Suche in Google Scholar PubMed
28. Patino, Y., Diaz, E., Ordonez, S.: Performance of different carbonaceous materials for emerging pollutants adsorption. Chemosphere 119, S124 (2015).10.1016/j.chemosphere.2014.05.025Suche in Google Scholar PubMed
29. Sun, Y., Wu, Z. Y., Wang, X., Ding, C., Cheng, W., Yu, S. H., Wang, X.: Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on bacterium-derived carbon nanofibers. Environ. Sci. Technol. 50, 4459 (2016).10.1021/acs.est.6b00058Suche in Google Scholar PubMed
30. Cuervo, M. R., Asedegbeganieto, E., Díaz, E., Vega, A., Ordóñez, S., Castillejoslópez, E., Rodríguezramos, I., Rodríguezramos, I.: Effect of carbon nanofiber functionalization on the adsorption properties of volatile organic compounds. J. Chromatogr. A 1188, 264 (2008).10.1016/j.chroma.2008.02.061Suche in Google Scholar PubMed
31. Naushad, M., Ahamad, T., Al-Maswari, B. M., Alqadami, A. A., Alshehri, S. M.: Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem. Eng. J. 330, 1351 (2017).10.1016/j.cej.2017.08.079Suche in Google Scholar
32. Zhang, P. F., Zhang, J. S., Dai, S.: Mesoporous carbon materials with functional compositions. Chem. Eur. J. 23, 1986 (2017).10.1002/chem.201602199Suche in Google Scholar
33. Zeng, H., Singh, A., Basak, S., Ulrich, K. U., Sahu, M., Biswas, P., Catalano, J. G., Giammar, D. E.: Nanoscale size effects on uranium(VI) adsorption to hematite. Environ. Sci. Technol. 43, 1373 (2009).10.1021/es802334eSuche in Google Scholar
34. Zhuang, X., Wan, Y., Feng, C., Shen, Y., Zhao, D.: Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons. Chem. Mater. 21, 706 (2009).10.1021/cm8028577Suche in Google Scholar
35. Sun, Y., Li, J., Wang, X.: The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim. Cosmochim. Acta 140, 621 (2014).10.1016/j.gca.2014.06.001Suche in Google Scholar
36. Hu, T., Ding, S., Deng, H.: Application of three surface complexation models on U(VI) adsorption onto graphene oxide. Chem. Eng. J. 289, 270 (2016).10.1016/j.cej.2015.12.030Suche in Google Scholar
37. Guo, H., Wang, H. H., Zhang, N., Li, J. X., Liu, J., Alsaedi, A., Hayat, T., Li, Y., Sun, Y. B.: Modeling and EXAFS investigation of U(VI) sequestration on Fe3O4/PCMs composites. Chem. Eng. J. 369, 736 (2019).10.1016/j.cej.2019.03.087Suche in Google Scholar
38. Koilraj, P., Sasaki, K.: Selective removal of phosphate using la-porous carbon composites from aqueous solutions: batch and column studies. Chem. Eng. J. 317, 1059 (2017).10.1016/j.cej.2017.02.075Suche in Google Scholar
39. Schmeide, K., Sachs, S., Bubner, M., Reich, T., Heise, K. H., Bernhard, G.: Interaction of uranium(VI) with various modified and unmodified natural and synthetic humic substances studied by EXAFS and FTIR spectroscopy. Inorg. Chim. Acta 351, 133 (2003).10.1016/S0020-1693(03)00184-1Suche in Google Scholar
40. Gu, Z. X., Wang, Y., Tang, J., Yang, J. J., Liao, J. L., Yang, Y. Y., Liu, N.: The removal of uranium(VI) from aqueous solution by graphene oxide-carbon nanotubes hybrid aerogels. J. Radioanal. Nucl. Chem. 303, 1835 (2015).10.1007/s10967-014-3795-5Suche in Google Scholar
41. Zhu, W. K., Li, Y., Dai, L. C., Li, J. W., Li, X. Y., Li, W., Duan, T., Lei, J., Chen, T.: Bioassembly of fungal hyphae/carbon nanotubes composite as a versatile adsorbent for water pollution control. Chem. Eng. J. 339, 214 (2018).10.1016/j.cej.2018.01.134Suche in Google Scholar
42. Yu, S., Wang, X., Chen, Z., Wang, J., Wang, S., Hayat, T., Wang, X.: Layered double hydroxide intercalated with aromatic acid anions for the efficient capture of aniline from aqueous solution. J. Hazard. Mater. 321, 111 (2017).10.1016/j.jhazmat.2016.09.009Suche in Google Scholar PubMed
43. Scheckel, K. G., Sparks, D. L.: Temperature effects on nickel sorption kinetics at the mineral–water interface. Soil Sci. Soc. Am. J. 65, 719 (2001).10.2136/sssaj2001.653719xSuche in Google Scholar
44. Sprynskyy, M., Kovalchuk, I., Buszewski, B.: The separation of uranium ions by natural and modified diatomite from aqueous solution. J. Hazard. Mater. 181, 700 (2010).10.1016/j.jhazmat.2010.05.069Suche in Google Scholar PubMed
45. Lim, S.-F., Zheng, Y.-M., Zou, S.-W., Chen, J. P.: Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS and mathematical modeling study. Environ. Sci. Technol. 42, 2551 (2008).10.1021/es7021889Suche in Google Scholar PubMed
46. Sun, Y., Ding, C., Cheng, W., Wang, X.: Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J. Hazard. Mater. 280, 399 (2014).10.1016/j.jhazmat.2014.08.023Suche in Google Scholar PubMed
47. Wang, Z., Lee, S.-W., Catalano, J. G., Lezama-Pacheco, J. S., Bargar, J. R., Tebo, B. M., Giammar, D. E.: Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling. Environ. Sci. Technol. 47, 850 (2013).10.1021/es304454gSuche in Google Scholar PubMed
48. Grenthe, I., Fuger, J., Konings, R. J. M., Lemire, R. J., Muller, A. B., Trung, C. N., Wanner, H.: Chemical thermodynamics 1: chemical thermodynamics of uranium. Chem. Int. 35, 1 (1992).Suche in Google Scholar
49. Ding, C. C., Cheng, W. C., Sun, Y. B., Wang, X. K.: Effects of bacillus subtilis on the reduction of U(VI) by nano-Fe-0. Geochim. Cosmochim. Acta 165, 86 (2015).10.1016/j.gca.2015.05.036Suche in Google Scholar
50. Zhang, R., Chen, C. L., Li, J., Wang, X. K.: Investigation of interaction between U(VI) and carbonaceous nanofibers by batch experiments and modeling study. J. Colloid Interface Sci. 460, 237 (2015).10.1016/j.jcis.2015.08.073Suche in Google Scholar PubMed
51. Hu, B., Hu, Q., Xu, D., Chen, C.: The adsorption of U(VI) on carbonaceous nanofibers: A combined batch, EXAFS and modeling techniques. Sep. Purif. Technol. 175, 140 (2017).10.1016/j.seppur.2016.11.025Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2019-3233).
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Measurement of 14.54 MeV neutron induced reaction cross sections of Cr and Mn with covariance analysis
- Simultaneous separation of Am and Cm from Nd and Sm by multi-step extraction using the TODGA-DTPA-BA-HNO3 system
- Influence of plutonyl ion on electrochemical characterization of zirconium in plutonium nitrate solutions
- Neptunium extraction by N,N-dialkylamides
- Ultrafast and highly capture of U(VI) by hierarchical mesoporous carbon
- Modification of perlite to prepare low cost zeolite as adsorbent material for removal of 144Ce and 152+154Eu from aqueous solution
- Production of Cf-252 and other transplutonium isotopes at Oak Ridge National Laboratory
- Rapid Communication
- Accurate determination of production data of the non-standard positron emitter 86Y via the 86Sr(p,n)-reaction
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Measurement of 14.54 MeV neutron induced reaction cross sections of Cr and Mn with covariance analysis
- Simultaneous separation of Am and Cm from Nd and Sm by multi-step extraction using the TODGA-DTPA-BA-HNO3 system
- Influence of plutonyl ion on electrochemical characterization of zirconium in plutonium nitrate solutions
- Neptunium extraction by N,N-dialkylamides
- Ultrafast and highly capture of U(VI) by hierarchical mesoporous carbon
- Modification of perlite to prepare low cost zeolite as adsorbent material for removal of 144Ce and 152+154Eu from aqueous solution
- Production of Cf-252 and other transplutonium isotopes at Oak Ridge National Laboratory
- Rapid Communication
- Accurate determination of production data of the non-standard positron emitter 86Y via the 86Sr(p,n)-reaction