Abstract
The present work provides a thorough description of the preparation of two cellulose anion exchange resins. In addition, the application of the prepared resins for treatment the uranium-contaminated wastewater. In the preparation, the first resin was cellulose reacted with 0.3 M HNO3 to produce Activated Cellulose (AC), while the second was AC treated with sodium metasilicate and phosphoric acid to yield Silica Grafted Cellulose (SGC). The efficiency of the two prepared resins for uranium adsorption from aqueous solution was testifying on a batch scale. In solutions of pH ranging from 4 to 7, results showed a high exchange rate and uptaking capacity up to 105 mg/g. However, the addition of NO3−, Fe3+ and Th4+ ions to the target media has an adverse impact on the uranium sorption for AC adsorbent. Otherwise, the addition of uranyl sulfate complexes could ameliorate Fe3+ and Th4+ adsorbed into the SGC.
References
1. Haque, N., Norgate, T.: The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in australia. J. Clean. Prod. 84, 382 (2014).10.1016/j.jclepro.2013.09.033Search in Google Scholar
2. Liu, B., Peng, T., Sun, H., Yue, H.: Release behavior of uranium in uranium mill tailings under environmental conditions. J. Environ. Radioactiv. 171, 160 (2017).10.1016/j.jenvrad.2017.02.016Search in Google Scholar PubMed
3. Hore-Lacy, I.: Uranium for Nuclear Power Resources, Mining and Transformation to Fuel. World Nuclear Association, London, United Kingdom (2016).10.1016/B978-0-08-100307-7.00001-6Search in Google Scholar
4. Attallah, M. F., Metwally, S. S., Moussa, S. I., Soliman, M. A.: Environmental impact assessment of phosphate fertilizers and phosphogypsum waste: elemental and radiological effects. Microchem. J. 146, 789 (2019).10.1016/j.microc.2019.02.001Search in Google Scholar
5. Letman, M. M., Drage, J., Ryan, A., Lake, C., Jamieson, R.: Development of a leaching procedure to assess the risk of uranium leaching due to construction and demolition waste disposal. Waste Manag. 78, 144 (2018).10.1016/j.wasman.2018.05.038Search in Google Scholar PubMed
6. Kogel, J. E., Trivedi, N. C., Barker, J. M., Krukowski, S. T.: Industrial Minerals & Rocks: Commodities, Markets, and Uses, 7th edition (2006), Society for Mining, Metallurgy, and Exploration Inc. (SME), Littleton, CO, USA.Search in Google Scholar
7. Ismagilov, Z. R., Kuntsevich, S. V., Kuznetsov, V. V., Shikina, N. V., Kerzhentsev, M. A., Rogov, V. A., Ushakov, V. A.: Characterization of new catalysts based on uranium oxides. Kinet. Catal. 48, 511 (2007).10.1134/S0023158407040076Search in Google Scholar
8. Ali, A. H., Eliwa, A. A., Hagag, M. S.: Upgrading of the crude yellowcake to a highly purified form using tris(2-ethylhexyl) phosphate in presence of EDTA or CDTA. J. Environ. Chem. Eng. 6(1), 119 (2018).10.1016/j.jece.2017.11.072Search in Google Scholar
9. Oh, J., Warwick, P. E., Croudace, I. W., Lee, S.: Evaluation of three electrodeposition procedures for uranium, plutonium and americium. Appl. Radiat. Isotopes 87, 233 (2014).10.1016/j.apradiso.2013.11.048Search in Google Scholar PubMed
10. Cheng, Y., He, P., Dong, F., Nie, X., Ding, C., Wang, S., Zhang, Y., Liu, H., Zhou, S.: Polyamine and amidoxime groups modified bifunctional polyacrylonitrile- based ion exchange fibers for highly efficient extraction of U(VI) from real uranium mine water. Chem. Eng. J. 367, 198 (2019).10.1016/j.cej.2019.02.149Search in Google Scholar
11. Youssef, W. M., Hagag, M. S., Ali, A. H.: Synthesis, characterization and application of composite derived from rice husk ash with aluminium oxide for sorption of uranium. Adsorpt. Sci. Technol. 36(5–6), 1274 (2018).10.1177/0263617418768920Search in Google Scholar
12. KaynarEmail, U. H., Çınar, S., Kaynar, S. C., Ayvacıklı, M., Aydemir, T.: Modelling and optimization of uranium (VI) ions adsorption onto Nano-ZnO/chitosan bio-composite beads with Response Surface Methodology (RSM). J. Polym. Environ. 26, 2300 (2018).10.1007/s10924-017-1125-zSearch in Google Scholar
13. Sahoo, J. K., Kumar, A., Rout, L., Rath, J., Dash, P., Sahoo, H.: An investigation of heavy metal adsorption by hexa-dentate ligand-modified magnetic nanocomposites. Sep. Sci. Technol. 53(6), 863 (2018).10.1080/01496395.2017.1406950Search in Google Scholar
14. Simsek, E. B., Duranoglu, D., Beker, U.: Heavy metal adsorption by magnetic hybrid-sorbent: an experimental and theoretical approach. Sep. Sci. Technol. 47(9), 1334 (2012).10.1080/01496395.2012.672845Search in Google Scholar
15. Lo, K. S. L., Yang, W. F., Lin, Y. C.: Effects of organic matter on the specific adsorption of heavy metals by soil. Toxicol. Environ. Chem. 34(3–4), 139 (1992).10.1080/02772249209357787Search in Google Scholar
16. Li, Z., Yu, B., Cong, H., Zhang, X., Peng, Q.: EDTA-modified DR/SiO2 adsorbent: preparation, characterization, and application in heavy metal adsorption. Integr. Ferroelectr. 169(1), 1 (2016).10.1080/10584587.2016.1162127Search in Google Scholar
17. Hoang, A. T., Bui, X. L., Pham, X. D.: A novel investigation of oil and heavy metal adsorption capacity from as-fabricated adsorbent based on agricultural by-product and porous polymer. Energ. Source Part A 40(8), 929 (2018).10.1080/15567036.2018.1466008Search in Google Scholar
18. Chen, Y., Tang, G., Jimmy Yu, Q. J., Zhang, T., Chen, Y., Gu, T.: Biosorption properties of hexavalent chromium on to biomass of tobacco-leaf residues. Environ. Technol. 30, 1003 (2009).10.1080/09593330903019268Search in Google Scholar
19. Yang, J., Volesky, B.: Biosorption of uranium on sargassum biomass. Water Res. 33(15), 3357 (1999).10.1016/S0043-1354(99)00043-3Search in Google Scholar
20. Saini, A. S., Melo, J. S.: Biosorption of uranium by melanin: kinetic, equilibrium and thermodynamic studies. Bioresour. Technol. 149, 155 (2013).10.1016/j.biortech.2013.09.034Search in Google Scholar PubMed
21. Gok, C., Aytas, S.: Chapter 16: Biosorption of uranium and thorium by biopolymers. In: M. Fanun (Ed.), The Role of Colloidal Systems in Environmental Protection (2014), Elsevier, Amsterdam, The Netherlands, p. 363.10.1016/B978-0-444-63283-8.00016-8Search in Google Scholar
22. Erkaya, I. A., Arica, M. Y., Akbulut, A., Bayramoglu, G.: Biosorption of uranium(VI) by free and entrapped chlamydomonas reinhardtii: kinetic, equilibrium and thermodynamic studies. J. Radioanal. Nucl. Chem. 229(3), 1993 (2014).10.1007/s10967-014-2964-xSearch in Google Scholar
23. Yousef, L. A., Morsy, A. M. A., Hagag, M. S.: Uranium ions adsorption from acid leach liquor using acid cured phosphate rock: kinetic, equilibrium, and thermodynamic studies. Sep. Sci. Technol. under press (2019), https://doi.org/10.1080/01496395.2019.1574305.10.1080/01496395.2019.1574305Search in Google Scholar
24. Wu, L., Lin, X., Zhou, X., Luo, X.: Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum. Appl. Surf. Sci. 384, 466 (2016).10.1016/j.apsusc.2016.05.056Search in Google Scholar
25. Li, Q., Liu, Y., Cao, X., Pang, C., Wang, Y., Zhang, Z., Liu, Y., Hua, M.: Biosorption characteristics of uranium(VI) from aqueous solution by pummelo peel. J. Radioanal. Nucl. Chem. 293(1), 67 (2012).10.1007/s10967-012-1720-3Search in Google Scholar
26. Zoui, W., Zhao, L., Zhu, L.: Adsorption of uranium(VI) by grapefruit peel in a fixed-bed column: experiments and prediction of breakthrough curves. J. Radioanal. Nucl. Chem. 295(1), 717 (2013).10.1007/s10967-012-1950-4Search in Google Scholar
27. Xie, Y., Chen, C., Ren, X., Wang, X., Wang, H., Wang, X.: Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog. Mater. Sci. 103, 180 (2019).10.1016/j.pmatsci.2019.01.005Search in Google Scholar
28. Ilangovan, M., Guna, V., Olivera, S., Ravi, A., Muralidhara, H. B., Santosh, M. S., Reddy, N.: Highly porous carbon from a natural cellulose fiber as high efficiency sorbent for lead in waste water. Bioresour. Technol. 245A, 296 (2017).10.1016/j.biortech.2017.08.141Search in Google Scholar PubMed
29. Voronova, M. I., Kuznetsov, D. A., Zakharov, A. G.: Sorption of phenol on cellulose from binary aqueous-organic mixtures. Russ. J. Appl. Chem. 81(11), 1924 (2008).10.1134/S1070427208110104Search in Google Scholar
30. Marczenko, Z.: Spectrophotometric Determination of Elements. Ellis Horwood Ltd., Halsted Press, New York (1976), p. 580.Search in Google Scholar
31. Xin Guo, X., Yiqiang Wu, Y.: Characterizing molecular structure of water adsorbed by cellulose nanofiber film using in situ micro-FTIR spectroscopy. J. Wood Chem. Technol. 37(5), 383 (2017).10.1080/02773813.2017.1306078Search in Google Scholar
32. Čejka, J.: Infrared spectroscopy and thermal analysis of the uranyl minerals (Chapter 12). In: P. C. Burns, R. Finch (Eds.), Uranium: Mineralogy, Geochemistry, and the Environment (1999), Vol. 38, The Mineralogical Society of America, Washington DC, p. 561.10.1515/9781501509193-017Search in Google Scholar
33. Kouraim, M. N., Farag, N. M., Sadeak, S. A., Gado, M. A.: Extraction of uranium using impregnated hydrophobic water hyacinth roots. Int. J. Chem. Stud. 2(4), 10 (2014).Search in Google Scholar
34. Simonin, J.: On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 300, 254 (2016).10.1016/j.cej.2016.04.079Search in Google Scholar
35. Hokkanen, S., Bhatnagar, A., Sillanpaa, A.: A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 91, 156 (2016).10.1016/j.watres.2016.01.008Search in Google Scholar PubMed
36. Ali, M. M., Husseina, A. E. M., Youseif, W. M.: Application of solvent-in-pulp technique for uranium extraction from mineralization granite. Arab J. Nucl. Sci. Appl. 50(3), 217 (2017).Search in Google Scholar
37. Gawad, E. A.: Uranium removal from nitrate solution by cation exchange resin (Amberlite IR 120), adsorption and kinetic characteristics. Nuc. Sci. Sci. J. 8, 213 (2019).10.21608/nssj.2019.30142Search in Google Scholar
38. Red, A. T., Zhang, D., Lu, X.: Rapid and selective uranium adsorption by glycine functionalized europium hydroxide. Colloids Surf. A 556, 299 (2018).10.1016/j.colsurfa.2018.08.039Search in Google Scholar
39. Mertz, J. L., Fard, Z. H., Malliakas, C. D., Manos, M. J., Kanatzidis, M. G.: Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3−xS6 (x=0.5−1) (KMS-2) relevant to nuclear waste remediation. Chem. Mater. 25, 2116 (2013).10.1021/cm400699rSearch in Google Scholar
40. Kouraim, M. N., Sheta, M. E., Abd Elaal, M. M.: Investigation of uranium sorption from acidic sulfate solution using organosilicate compound and Amberlite IRA 402. Eur. J. Chem. 5(3), 446 (2014).10.5155/eurjchem.5.3.446-450.1026Search in Google Scholar
41. Sadeek, S. A., Farag, N. M., Kouraim, M. N., Gado, M. A.: Chemical studies on uranium biosorption by using non-living water hyacinth roots. Int. J. Adv. Res. 2(3), 409 (2014).Search in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Effect of ionic liquid on the extraction of uranium with pillar[5]arene-based phosphine oxide from nitric acid solutions
- Topological analysis of the layered uranyl compounds bearing slabs with UO2:TO4 ratio of 2:3
- Adsorption of uranium from its aqueous solutions using activated cellulose and silica grafted cellulose
- Uranium biosorption by immobilized active yeast cells entrapped in calcium-alginate-PVA- GO-crosslinked gel beads
- Sorption of cesium on Tamusu clay in synthetic groundwater with high ionic strength
- Optimization of 14C LSC measurement using CO2 absorption technique
- Targeting 5α-reductase with 99mTc labeled dutasteride derivatives for prostate imaging
- Changes in structural and optical properties due to γ-irradiation of MgO nanoparticles
- Radiation-induced free radicals from different milk powders and its possible use as radiation dosimeters
Articles in the same Issue
- Frontmatter
- Effect of ionic liquid on the extraction of uranium with pillar[5]arene-based phosphine oxide from nitric acid solutions
- Topological analysis of the layered uranyl compounds bearing slabs with UO2:TO4 ratio of 2:3
- Adsorption of uranium from its aqueous solutions using activated cellulose and silica grafted cellulose
- Uranium biosorption by immobilized active yeast cells entrapped in calcium-alginate-PVA- GO-crosslinked gel beads
- Sorption of cesium on Tamusu clay in synthetic groundwater with high ionic strength
- Optimization of 14C LSC measurement using CO2 absorption technique
- Targeting 5α-reductase with 99mTc labeled dutasteride derivatives for prostate imaging
- Changes in structural and optical properties due to γ-irradiation of MgO nanoparticles
- Radiation-induced free radicals from different milk powders and its possible use as radiation dosimeters