Abstract
Bentonite is the candidate buffer and backfill material in the deep geological repositories. Montmorillonite (Mt) is the major clay minerals of bentonite. Over a long period of time, the interaction of corrosion products from overpack and/or cansister with clay minerals is expected to result in formation of Fe(III)-Mt, a plausible alterated product. In this context, it is important to understand the properties of Fe-Mt in comparison with original clay mineral, Na-Mt. In the present study, sorption behavior of Cs(I), long lived fission product (135Cs, t1/2 = 2.3 × 106 years; 137Cs, t1/2 = 30.1 years) with high fission yield, on Fe(III)-Mt is investigated. Batch sorption studies are conducted at varying pH (3–9), ionic strength (0.001–1 M) and Cs(I) concentration (10−10 to 0.05 M). The distribution coefficient (Kd) of Cs(I) on Fe(III)-Mt was found to be independent of pH except at low pH, indicating ion exchange mechanism as dominant interaction mode for Cs(I). It was further verified by ionic strength variation which depicted decrease in Cs(I) sorption with increasing ionic strength. Adsorption isotherm of Cs(I) was found to be linear over the concentration range of 10−10 to 10−3 M Cs(I). The Fe released from Fe(III)-Mt during the Cs(I) sorption was found to be not more than 0.2 ppm. However, on lowering the pH and increasing the ionic strength, the Fe release increased. Furthermore, the apparent diffusion coefficient for Cs(I) in Fe(III)-Mt has been determined.
Acknowledgments
Authors are thankful to funding agencies, BRNS/DAE [37(2)/14/20/2015/BRNS] and DST-FIST, Ministry of Science and Technology [SR/FST/CSI-273/2016], Govt. of India.
References
1. Pusch, R.: Waste disposal in rock developments in geotechnical engineering, Vol. 76. Elsevier, New York (1994).Search in Google Scholar
2. Fernandez, A. M., Villar, M. V.: Geochemical behavior of a bentonite barrier in the laboratory after up to 8 years of heating and hydration. Appl. Geochem. 25, 809 (2010).10.1016/j.apgeochem.2010.03.001Search in Google Scholar
3. Karnland, O., Olsson, S., Nilsson, U.: Mineralogy and sealing properties of various bentonites and smectite-rich clay materials. In: SKB TR-06-30. Swedish Nuclear Fuel and Waste Management Co, Stockholm, Sweden (2006).Search in Google Scholar
4. Komine, H.: Simplified evaluation for swelling characteristics of bentonites. Eng. Geol. 71, 265 (2004).10.1016/S0013-7952(03)00140-6Search in Google Scholar
5. Kozai, N., Ohnuki, T., Matsumoto, J., Banba, T., Ito, Y.: A study of specific sorption of neptunium (V) on smectite in low pH solution. Radiochim. Acta 75, 149 (1996).10.1524/ract.1996.75.3.149Search in Google Scholar
6. Patel, M. A., Kar, A. S., Kumar, S., Tomar, B. S.: Effect of phosphate on sorption of Eu(III) by montmorillonite. J. Radioanal. Nucl. Chem. 313, 537 (2017).10.1007/s10967-017-5304-0Search in Google Scholar
7. Kasar, S., Kumar, S., Saha, A., Bajpai, R. K., Tomar, B. S.: Mechanistic and thermodynamic aspects of Cs(I) and Sr(II) interactions with smectite-rich natural clay. Environ. Earth Sci. 76, 274 (2017).10.1007/s12665-017-6595-8Search in Google Scholar
8. Kasar, S., Kumar, S., Kar, A. S., Bajpai, R. K., Kaushik, C. P., Tomar, B. S.: Retention behaviour of Cs(I), Sr(II), Tc(VII) and Np(V) on smectite rich clay. J. Radioanal. Nucl. Chem. 300, 71 (2014).10.1007/s10967-014-2943-2Search in Google Scholar
9. Kozaki, T., Fujishima, A., Sato, S., Ohashi, H.: Self-diffusion of sodium ions in compacted sodium montmorillonite. Nucl. Technol. 121, 63 (1998).10.13182/NT98-A2819Search in Google Scholar
10. Kasar, S., Kumar, S., Bajpai, R. K., Tomar, B. S.: Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay. J. Environ. Radioact. 151, 218 (2016).10.1016/j.jenvrad.2015.10.012Search in Google Scholar PubMed
11. Filipska, P., Zeman, J., Vsiansky, D., Honty, M., Skoda, R.: Key processes of long-term bentonite-water interaction at 90°C: mineralogical and chemical transformations. Appl. Clay Sci. 150, 234 (2017).10.1016/j.clay.2017.09.036Search in Google Scholar
12. Wilson, J., Cressey, G., Cressey, B., Cuadros, J., Ragnarsdottir, K. V., Savage, D., Shibata, M.: The effect of iron on montmorillonite stability: (II) experimental investigation. Geochim. Cosmochim. Acta 70, 323 (2006).10.1016/j.gca.2005.09.023Search in Google Scholar
13. Kozai, N., Adachi, Y., Kawamura, S., Inada, K., Kozaki, T., Sato, S., Ohashi, H., Ohnuki, T., Banba, T.: Characterization of Fe(III)-montmorillonite: a simulant of buffer materials accommodating overpack corrosion product. J. Nucl. Sci. Technol. 38, 1141 (2001).10.1080/18811248.2001.9715149Search in Google Scholar
14. Manjanna, J., Kozaki, T., Kozai, N., Sato, S.: A new method for Fe(II)-montmorillonite preparation using Fe(II)-nitrilotriacetate complex. J. Nucl. Sci. Technol. 44(7), 929 (2007).10.1080/18811248.2007.9711331Search in Google Scholar
15. Guillaume, D., Neaman, A., Cathelineau, M., Mosser-Ruck, R., Peiffert, C., Abdelmoula, M., Dubessy, J., Villieras, F., Michau, N.: Experimental study of the transformation of smectite at 80 and 300°C in the presence of Fe oxides. Clays Clay Miner. 39, 17 (2004).10.1180/0009855043910117Search in Google Scholar
16. Cathelineau, M., Guillaume, D., Mosser-Ruck, R., Dubessy, J., Charpentier, D., Villieras, F., Michau, N.: Dissolution-crystallization processes affecting di-octahedral smectite in presence of iron metal: implication on mineral distribution in clay barriers. Int. meeting on clays in natural and engineered barriers for radioactive waste confinement, Tours, France, p. 35 (2005).Search in Google Scholar
17. Perronnet, M., Jullien, M., Villieras, F., Raynal, J., Bonnin, D., Bruno, G.: Evidence of a critical content in Fe(0) on FoCa7 bentonite reactivity at 80°C. Appl. Clay Sci. 38, 187 (2008).10.1016/j.clay.2007.03.002Search in Google Scholar
18. Pignatelli, I., Bourdelle, F., Bartier, D., Mosser-Ruck, R., Truche, L., Mugnaioli, E., Michau, N.: Iron–clay interactions detailed study of the mineralogical transformation of clay stone with emphasis on the formation of iron-rich T–O phyllosilicates in a step by step cooling experiment from 90°C to 40°C. Chem. Geol. 387, 1 (2014).10.1016/j.chemgeo.2014.08.010Search in Google Scholar
19. Bourdelle, F., Truche, L., Pignatelli, I., Mosser-Ruck, R., Lorgeoux, C., Roszypal, C., Michau, N.: Iron–clay interactions under hydrothermal conditions: impact of specific surface area of metallic iron on reaction pathway. Chem. Geol. 381, 194 (2014).10.1016/j.chemgeo.2014.05.013Search in Google Scholar
20. Nguyen-Thanh, L., Hoang-Minh, T., Kasbohm, J., Herbert, H.-J., Thuy, D.-N., Thi, L.-L.: Characterization of Fe-smectites and their alteration potential in relation to engineered barriers for HLW repositories: the Nui Nua clay, ThanhHoa Province, Vietnam. Appl. Clay Sci. 101, 168 (2014).10.1016/j.clay.2014.07.032Search in Google Scholar
21. Manjanna, J., Kozaki, T., Sato, S.: Fe(III)-montmorillonite: basic properties and diffusion of tracers relevant to alteration of bentonite in deep geological disposal. Appl. Clay Sci. 43, 208 (2009).10.1016/j.clay.2008.09.007Search in Google Scholar
22. Ito, H., Miyasaki, N., Kozaki, T., Sato, S.: A study on hydraulic properties of compacted Fe(III)-montmorillonite. J. Nucl. Sci. Technol. 47, 1005 (2010).10.1080/18811248.2010.9711665Search in Google Scholar
23. Jaisi, D. P., Liu, C., Dong, H., Blake, R. E., Fein, J. B.: Fe2+ sorption onto nontronite (NAu-2). Geochim. Cosmochim. Acta 72, 5361 (2008).10.1016/j.gca.2008.08.022Search in Google Scholar
24. Wu, L., Liao, L., Lv, G., Qin, F.: Stability and pH-independence of nano-zero-valent iron intercalated montmorillonite and its application on Cr(VI) removal. J. Contam. Hydrol. 179, 1 (2015).10.1016/j.jconhyd.2015.05.001Search in Google Scholar PubMed
25. Chakraborty, S., Bovin, F., Bannerjee, D., Scheinost, A., Mullet, M., Ehrardt, J. J., Brendle, J., Vidal, L., Charlet, L.: Uranium(VI) sorption and reduction by Fe(II) sorbed on montmorillonite. Environ. Sci. Technol. 44, 3779 (2010).10.1021/es903493nSearch in Google Scholar PubMed
26. Lu, S., Tan, X., Yu, S., Ren, X., Chen, C.: Characterization of Fe(III)-saturated montmorillonite and evaluation its sorption behavior for U(VI). Radiochim. Acta 104(7), 481 (2016).10.1515/ract-2015-2569Search in Google Scholar
27. Lieser, K. H., Steinkopff, T.: Chemistry of radioactive cesium in the hydrosphere and in the geosphere. Radiochim. Acta 46, 39 (1989).10.1524/ract.1989.46.1.39Search in Google Scholar
28. Cornell, R.: Adsorption of cesium on minerals: a review. J. Radioanal. Nucl. Chem. 171, 483 (1993).10.1007/BF02219872Search in Google Scholar
29. Hird, A. B., Rimmer, D. L., Livens, F. R.: Factors affecting the sorption and fixation of caesium in acid organic soil. Eur. J. Soil Sci. 47, 97 (1996).10.1111/j.1365-2389.1996.tb01376.xSearch in Google Scholar
30. Galambos, M., Paucova, V., Kufcakova, J., Rosskopfova, O., Rajec, P., Adamcova, R.: Cesium sorption on bentonites and montmorillonite K10. J. Radioanal. Nucl. Chem. 284, 55 (2010).10.1007/s10967-010-0480-1Search in Google Scholar
31. Missana, T., Garcia-Gutierrez, M., Alonso, U.: Kinetics and irreversibility of cesium and uranium sorption onto bentonite colloids in a deep granitic environment. Appl. Clay Sci. 26, 137 (2004).10.1016/j.clay.2003.09.008Search in Google Scholar
32. Bostick, B. C., Vairavamurthy, M. A., Karthikeyan, K. G., Chorover, J.: Cesium adsorption on clay minerals: an EXAFS spectroscopic investigation. Environ. Sci. Technol. 36, 2670 (2002).10.1021/es0156892Search in Google Scholar PubMed
33. Chikkamath, S., Patel, M. A., Kar, A. S., Raut, V., Tomar, B. S., Manjanna, J.: Sorption of Eu(III) on Fe-montmorillonite relevant to geological disposal of HLW. Radiochim. Acta 106(12), 971 (2018).10.1515/ract-2018-2947Search in Google Scholar
34. Fukushi, K., Sakai, H., Itono,T., Tamura, A., Arai, S.: Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption. Environ. Sci. Technol. 48(18), 10743 (2014).10.1021/es502758sSearch in Google Scholar PubMed
35. Sasaki, T., Ueda, K., Saito, T., Aoyagi, N., Kobayashi, T., Takagi, I., Kimura, T., Tachi, Y.: Sorption of Eu3+ on Na-montmorillonite studied by time-resolved laser fluorescence spectroscopy and surface complexation modeling. J. Nucl. Sci. Technol. 53(4), 592 (2016).10.1080/00223131.2015.1066719Search in Google Scholar
36. Raut, V. V., Mishra, V. G., Das, M. K., Jeyakumar, S., Sawant, R. M., Ramakumar, K. L: Simultaneous determination of Fe and Ni in uranium matrices by ion interaction chromatography without employing matrix separation. Proceedings of NUCAR-2011 Symposium, GITAM Institute of Science, Vishakhapatnam, February 22–26, Paper No. E-37 (2011).Search in Google Scholar
37. Ho, Y. S., Mckay, G.: A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. Prot. 76, 332 (1998).10.1205/095758298529696Search in Google Scholar
38. Ho, Y. S.: Review of second-order models for adsorption systems. J. Hazard. Mater. B 136, 681 (2006).10.1016/j.jhazmat.2005.12.043Search in Google Scholar
39. Sen Gupta, S., Bhattacharyya, K.-G.: Kinetics of adsorption of metal ions on inorganic materials: a review. Adv. Colloid Interface Sci. 162, 39 (2011).10.1016/j.cis.2010.12.004Search in Google Scholar PubMed
40. Yıldız, B., Erten, H., Kış M.: The sorption behavior of Cs+ ion on clay minerals and zeolite in radioactive waste management: sorption kinetics and thermodynamics. J. Radioanal. Nucl. Chem. 288, 475 (2011).10.1007/s10967-011-0990-5Search in Google Scholar
41. Abd El-Rahman, K. M., El-Sourougy, M. R., Abdel-Monem, N. M., Ismail I. M.: Modeling the sorption kinetics of cesium and strontium ions on zeolite A. J. Nucl. Radiochem. Sci. 7, 21 (2006).10.14494/jnrs2000.7.2_21Search in Google Scholar
42. Bradbury, M. H., Baeyens. B.: Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation. Geochim. Cosmochim. Acta 66, 2325 (2002).10.1016/S0016-7037(02)00841-4Search in Google Scholar
43. Fuller, A. J., Shaw, S., Peacock, C. L., Trivedi, D., Small, J. S., AbrahamsenIan, L. G., Burke, I. T.: Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment. Appl. Geochem. 40, 32 (2014).10.1016/j.apgeochem.2013.10.017Search in Google Scholar
44. Staunton, S., Roubaud, M.: Adsorption of 137Cs on montmorillonite and illite effect of charge compensating cation, ionic strength, concentration of Cs, K and fulvic acid. Clays Clay Miner. 45, 251 (1997).10.1346/CCMN.1997.0450213Search in Google Scholar
45. Durrant, C. B., Begg, J. D., Kersting, A. B., Zavarin, M.: Cesium sorption reversibility and kinetics on illite, montmorillonite, and kaolinite. Sci. Total Environ. 610–611, 511 (2018).10.1016/j.scitotenv.2017.08.122Search in Google Scholar PubMed
46. Tertre, E., Berger, G., Castet, S., Loubet, M., Giffaut, E.: Experimental sorption of Ni2+, Cs+ and Ln3+ onto a montmorillonite up to 150°C. Geochim. Cosmochim. Acta 69(21), 4937 (2005).10.1016/j.gca.2005.04.024Search in Google Scholar
47. Tachi, Y., Yotsuji, K.: Diffusion and sorption of Cs+, Na+, I− and HTO in compacted sodium montmorillonite as a function of pore water salinity: integrated sorption and diffusion model. Geochim. Cosmochim. Acta 132, 75 (2014).10.1016/j.gca.2014.02.004Search in Google Scholar
48. Miyahara, K., Ashida, T., Kohara, Y., Yusa, Y., Sasaki, N.: Effect of bulk density on diffusion for cesium in compacted sodium bentonite. Radiochim. Acta 52–53, 293 (1991).10.1524/ract.1991.5253.2.293Search in Google Scholar
49. Missana, T., Benedicto, A., Garcia-Gutierrez, M., Alonso, U.: Modeling cesium retention onto Na-, K- and Ca-smectite: effects of ionic strength, exchange and competing cations on the determination of selectivity coefficients. Geochim. Cosmochim. Acta 128, 266 (2014).10.1016/j.gca.2013.10.007Search in Google Scholar
50. Campbell, L. S., Davies, B. E.: Soil sorption of caesium modelled by the Langmuir and Freundlich isotherm equations. Appl. Geochem. 10, 715 (1995).10.1016/0883-2927(95)00056-9Search in Google Scholar
51. Wanner, H., Albinsson, Y., Wieland, E.: A thermodynamic surface model for caesium sorption on bentonite. Fresenius J. Anal. Chem. 352, 763 (1996).10.1007/s0021663540763Search in Google Scholar PubMed
52. Rozalen, M., Brady, P. V., Huertas, F. J.: Surface chemistry of K-montmorillonite: ionic strength, temperature dependence and dissolution kinetics. J. Colloid Interface Sci. 333, 474 (2009).10.1016/j.jcis.2009.01.059Search in Google Scholar PubMed
53. Rozalen, M., Huertas, F. J., Brady, P. V.: Experimental study of the effect of pH and temperature on the kinetics of montmorillonite dissolution. Geochim. Cosmochim. Acta 73, 3752 (2009).10.1016/j.gca.2009.03.026Search in Google Scholar
54. Sidhu, P. S, Gilkes, R. J., Cornell, R. M., Posner, A. M., Quirk, J. P.: Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids. Clays Clay Miner. 29, 269 (1981).10.1346/CCMN.1981.0290404Search in Google Scholar
55. Schwertmann, U.: Solubility and dissolution of iron oxides. Plant Soil 130, 1 (1991).10.1007/BF00011851Search in Google Scholar
56. Crank, J.: The mathematics of diffusion. 2nd ed. Clarendon Press, Oxford (1975).Search in Google Scholar
57. Sato, H., Ashida, T., Kohara, Y., Yui, M., Sasaki, N.: Effect of dry density on diffusion of some radionuclides in compacted sodium bentonite. J. Nucl. Sci. Technol. 29(9), 873 (1992).10.1080/18811248.1992.9731607Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Separation of neptunium from actinides by monoamides: a solvent extraction study
- Adsorption of Th(IV) on the modified multi-walled carbon nanotubes using central composite design
- Sorption of Cs(I) on Fe-montmorillonite relevant to geological disposal of HLW
- Sorption behavior of Co-radionuclides from radioactive waste solution on graphene enhanced by immobilized sugarcane and carboxy methyl cellulose
- Preparation of chitosan functionalized polyamidoamine for the separation of trivalent lanthanides from acidic waste solution
- Understanding the recovery of Ruthenium from acidic feeds by oxidative solvent extraction studies
- Radiochemical evidence for the contribution of iron (using 59Fe) remobilization efficiency towards nitrogen (N) and Fe deficiency tolerance in wheat
- Studies on the radiolytic degradation of N,N-dioctyl-2-hydroxyacetamide using dynamic light scattering and ATR-FTIR spectroscopy
Articles in the same Issue
- Frontmatter
- Separation of neptunium from actinides by monoamides: a solvent extraction study
- Adsorption of Th(IV) on the modified multi-walled carbon nanotubes using central composite design
- Sorption of Cs(I) on Fe-montmorillonite relevant to geological disposal of HLW
- Sorption behavior of Co-radionuclides from radioactive waste solution on graphene enhanced by immobilized sugarcane and carboxy methyl cellulose
- Preparation of chitosan functionalized polyamidoamine for the separation of trivalent lanthanides from acidic waste solution
- Understanding the recovery of Ruthenium from acidic feeds by oxidative solvent extraction studies
- Radiochemical evidence for the contribution of iron (using 59Fe) remobilization efficiency towards nitrogen (N) and Fe deficiency tolerance in wheat
- Studies on the radiolytic degradation of N,N-dioctyl-2-hydroxyacetamide using dynamic light scattering and ATR-FTIR spectroscopy