Article
Publicly Available
Frontmatter
Published/Copyright:
May 4, 2019
Published Online: 2019-05-04
Published in Print: 2019-05-27
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Separation of neptunium from actinides by monoamides: a solvent extraction study
- Adsorption of Th(IV) on the modified multi-walled carbon nanotubes using central composite design
- Sorption of Cs(I) on Fe-montmorillonite relevant to geological disposal of HLW
- Sorption behavior of Co-radionuclides from radioactive waste solution on graphene enhanced by immobilized sugarcane and carboxy methyl cellulose
- Preparation of chitosan functionalized polyamidoamine for the separation of trivalent lanthanides from acidic waste solution
- Understanding the recovery of Ruthenium from acidic feeds by oxidative solvent extraction studies
- Radiochemical evidence for the contribution of iron (using 59Fe) remobilization efficiency towards nitrogen (N) and Fe deficiency tolerance in wheat
- Studies on the radiolytic degradation of N,N-dioctyl-2-hydroxyacetamide using dynamic light scattering and ATR-FTIR spectroscopy
Articles in the same Issue
- Frontmatter
- Separation of neptunium from actinides by monoamides: a solvent extraction study
- Adsorption of Th(IV) on the modified multi-walled carbon nanotubes using central composite design
- Sorption of Cs(I) on Fe-montmorillonite relevant to geological disposal of HLW
- Sorption behavior of Co-radionuclides from radioactive waste solution on graphene enhanced by immobilized sugarcane and carboxy methyl cellulose
- Preparation of chitosan functionalized polyamidoamine for the separation of trivalent lanthanides from acidic waste solution
- Understanding the recovery of Ruthenium from acidic feeds by oxidative solvent extraction studies
- Radiochemical evidence for the contribution of iron (using 59Fe) remobilization efficiency towards nitrogen (N) and Fe deficiency tolerance in wheat
- Studies on the radiolytic degradation of N,N-dioctyl-2-hydroxyacetamide using dynamic light scattering and ATR-FTIR spectroscopy