Abstract
A simple and fast radiochemical method for the separation of protactinium (231Pa) from siliceous cake for its determination by gamma ray spectrometry is described. The method involves (a) a novel approach, the fusion of the siliceous cake with sodium peroxide, (b) the dissolution of the fused mass in nitric acid and (c) the co-precipitation of 231Pa with manganese dioxide formed in-situ by the addition of solid manganous sulfate and potassium permanganate to the solution. The fusion, effected in a single step, is simpler and highly effective in comparison to methods reported hitherto in literature. The radiochemical yield of 231Pa, determined using 311.9 keV gamma ray of 233Pa radiotracer is quantitative (~90%). The decontamination factors calculated using gamma ray spectrometry and energy dispersive X-ray fluorescence measurements show that the separation from the interfering radionuclides is high whereas separation from major and minor elements is good. Separation by ion-exchange method in hydrochloric acid, hydrofluoric acid and oxalic acid media have comparatively much lower yields. The concentration of 231Pa in the siliceous cake measured using interference-free 283.6 keV gamma ray was found to be (6.4±0.33) μg kg−1. The measured concentration of 231Pa was well above the limit of quantitation whereas the coefficient of variation was ~5%. The improvement in the limit of detection was due to the reduction in spectral background. Systematic evaluation of various uncertainty parameters showed that the major contributors to the combined uncertainty were efficiency of the high purity germanium detector and the counting statistics. The present sample decomposition and separation methods are robust, simple to perform and can be effectively used for the determination and hence source prospecting of protactinium.
Acknowledgements
The authors thank Ms. Remya Devi P. S. and Ms. Trupti Chavan for their help during EDXRF measurements. The authors also thank Dr. Kallola Swain for his help during gamma spectrometric measurements.
References
1. Katzin, L. I., Van Winkle, Q., Sedlet, J.: Analysis of ore residues for ionium and protactinium. J. Amer. Chem. Soc. 72(10), 4815 (1950).10.2172/4402147Search in Google Scholar
2. Burnett, W., Yeh, C. C.: Separation of protactinium from geochemical materials via extraction chromatography. Radioact. and Radiochem. 6(4), 22 (1995).Search in Google Scholar
3. Sill, C. W.: Radiochemical determination of protactinium-231 in environmental and biological materials. Anal. Chem. 50, 1559 (1978).10.1021/ac50033a042Search in Google Scholar
4. Maddock, A. G., Miles, G. L.: The separation of protoactinium. J. Chem. Soc. S253 (1949).10.1039/jr949000s253Search in Google Scholar
5. Salutsky, M. L., Shaver, K., Elmlinger, A., Curtis, M. L.: Separation of protactinium from uranium residues. J. Inorg. Nucl. Chem. 3, 289 (1956).10.1016/0022-1902(56)80038-9Search in Google Scholar
6. Elson, R. E., Mason, G. W., Peppard, D. F., Sellers P. A., Studier M.: Isolation of Protactinium from a new source. J. Amer. Chem. Soc. 73, 4974 (1951).10.1021/ja01154a510Search in Google Scholar
7. Golden, J., Maddock, A. G.: Protactinium-I analytical separations. J. Inorg. Nucl. Chem. 2, 46 (1956).10.1016/0022-1902(56)80103-6Search in Google Scholar
8. Collins, D. A., Hillary, J. J., Nairn, J. S., Phillips, G. M.: The development and application of a process for the recovery of over 100 g of protactinum-231 from a uranium refinery waste material. J. Inorg. Nucl. Chem. 24, 441 (1962).10.1016/0022-1902(62)80040-2Search in Google Scholar
9. Golden, J., Maddock, A. G.: Protactinium extraction studies, Part-I S.E.R.L Technical Report M1, 1954.Search in Google Scholar
10. Elson, R. E.: The chemistry of protactinium, Chap. 5. In: G. T. Seaborg, J. J. Katz (Eds.) The actinide elements, National nuclear energy series, Division IV, plutonium project record, vol. 14A. (1954), McGraw Hill Book Co., New York, p. 103.Search in Google Scholar
11. Hyde, E. K.: Radiochemical separation methods for the actinide elements, Proceedings of International Conference on peaceful uses of Atomic Energy, Geneva, 7, 281–303 (1955).Search in Google Scholar
12. Salutsky, M. L., Curtis, M. L., Shaver, K., Elmlinger, A., Miller, R. A.: Determination of protactinium by gamma spectrometry. Anal. Chem. 29(3), 373 (1957).10.1021/ac60123a013Search in Google Scholar
13. Grosse, A., Agruss, M.: Technical extraction of protoactinium. Indust. Engg. Chem. 27, 422 (1935).10.1021/ie50304a017Search in Google Scholar
14. Anupama, P., Gantayet, L. M., Verma, R., Parthasarathy, R., Anilkumar, S., Dingankar, M. V., Ghosh, S. K., Patra, R. N.: Prospecting of natural 231Pa in India, BARC Report, BARC/2001/E/020.Search in Google Scholar
15. Katzin, L. I., Stoughton, R. W.: A manganese-dioxide procedure for isolation and concentration of protactinium from irradiated thorium compounds. J. Inorg. Nucl. Chem. 3, 229 (1956).10.1016/0022-1902(56)80023-7Search in Google Scholar
16. Suzuki, S., Inoue, Y.: The chemistry of protactinium. I. The preparation of protactinium-233 and the purification of protactinium-231. Bull. Chem. Soc. Japan 39, 490 (1966).10.1246/bcsj.39.490Search in Google Scholar
17. Parthasarathy, R., Kayasth, S., Verma, R., Mathur, P. K., Anupama, P., AnilKumar, S.: Determination of 231Pa in monazite and other streams of the thorium production cycle. J. Radioanal. Nucl. Chem. 246(1), 239 (2000).10.1023/A:1006796324755Search in Google Scholar
18. Raje, N., Swain, K. K., Kumar, S. A., Kayasth, S. R., Parathasarathy, R., Mathur, P. K.: Preconcentration of natural protactinium (231Pa) from monazite on Dowex 1X8 and subsequent determination by gamma-spectrometry. J. Radioanal. Nucl. Chem. 247(1), 115 (2001).10.1023/A:1006723316742Search in Google Scholar
19. Pal’shin, E. S., Myasoedov, B. F., Davydov, A. V.: Analytical chemistry of protactinium, Ann Arbor, London (1970), Ann Arbor-Humphrey Science Publishers, p. 65.Search in Google Scholar
20. IAEA-NDS-161, Documentation series of IAEA Nuclear Data Section, 1995.Search in Google Scholar
21. Dolezal, J., Povondra, P., Sulcek, Z.: Decomposition Techniques in Inorganic Analysis, New York (1968), American Elsevier Publishing Co. Inc., p. 111.Search in Google Scholar
22. Kolthoff, I. M., Elving, P. J.: Treatise on analytical chemistry, New York, USA (1964), Interscience Publishers, Part-II, vol. 6, p. 562.Search in Google Scholar
23. Heydorn, K.: Aspects of Precision and Accuracy in Neutron Activation Analysis, Denmark (1980), Riso National Laboratory, vol. 69, p. 87.Search in Google Scholar
24. Greenberg, R. R.: Pushing the limits of NAA: accuracy, uncertainty and detection limits. J. Radioanal. Nucl. Chem. 278(2), 231 (2008).10.1007/s10967-008-9101-7Search in Google Scholar
25. Kucera, J., Zeisler, R.: Do we need radiochemical separation in activation analysis? J. Radioanal. Nucl. Chem 262(1), 255 (2004).10.1023/B:JRNC.0000040883.15153.dbSearch in Google Scholar
26. Jackworth, E., Mizuike, A., Zolotov, Y. A., Berndt, H., Hohn, R., Kuzmin, N. M.: Separation and preconcentration of trace substances. I – Preconcentration for inorganic trace analysis. Pure and Appl. Chem. 51, 1195 (1979).10.1351/pac197951051195Search in Google Scholar
27. Das, H. A.: Preconcentration and decontamination in radioalalysis. Pure and Appl. Chem. 54(4), 755 (1982).10.1351/pac198254040755Search in Google Scholar
28. Sandell, E. B., Onishi, H.: Photometric Determination of Traces of Metals, 4th edn., New York (1978), John Wiley and sons, p. 829.Search in Google Scholar
29. Spitsyn, V. S., D’Yachkova, R. A.: Concentration of 231Pafrom uranium process waste. At. Energ. 16, 134 (1964).10.1007/BF01116148Search in Google Scholar
30. Townshend, A., Jackwerth, E.: Precipitation of major constituents for trace preconcentration: potential and problems. Pure and Appl. Chem. 61, 1643 (1989).10.1351/pac198961091643Search in Google Scholar
31. Girardi, F., Pietra, R., Sabbioni, E.: Radiochemical separations by retention on ionic precipitate adsorption tests on 11 materials. J. Radioanal. Nucl. Chem. 5, 141 (1970).10.1007/BF02513708Search in Google Scholar
32. Brown, D., Easey, J. F.: Octafluoroprotactinates (V). Nature 205, 589 (1965).10.1038/205589a0Search in Google Scholar
33. Miranda, C. F., Muxart, R.: Spectres d’absorption de solutions fluorhydriques de protactinium pentavalent. Bull. Soc. Chim. Fr. 387 (1964).Search in Google Scholar
34. Bukhsh, M. N., Flegenheimer, J., Hall, F. M., Maddock, A. G., Miranda, C. F.: The chemistry of protactinium-VII The fluoro-complexes. J. Inorg. Nucl. Chem. 28, 421 (1966).10.1016/0022-1902(66)80321-4Search in Google Scholar
35. Goble, A. G., Maddock, A. G.: Protactinium-III solvent extraction from halide solutions. J. Inorg. Nucl. Chem. 7, 94 (1958).10.1016/0022-1902(58)80032-9Search in Google Scholar
36. Guillamont, R., Muxart, R., Bouissieres, G., Haissinsky, M.: Spectres D’ absorption du protactinium en solution aqueuse. J. de Chemie Physique 57, 1019 (1960).10.1051/jcp/1960571019Search in Google Scholar
37. Venkateshwarlu, K. S., Subramanyan, V.: Paper electrophoresis of protactinium in sulphuric acid medium. Radiochim. Acta. 5, 174 (1966).10.1524/ract.1966.5.3.174Search in Google Scholar
38. Chetham-storde, A., Keller, O. L.: Physico-Chimie du Protactinium. Centre Nat. de la Rech. Scient. Pub. No. 154, Paris, 189 (1966).Search in Google Scholar
39. Krauss, K. A., Moore, G. E.: Adsorption of protactinium from hydrochloric acid solutions by anion exchange resins. J. Amer. Chem. Soc. 72, 4293 (1950).10.1021/ja01165a525Search in Google Scholar
40. Mendes, M., Aupiais, J., Jutier, C., Pointurier, F.: Determination of weight distribution ratios of Pa(V) and Np(V) with some extraction chromatography resins and the AG1-X8 resin. Analytica. Chimica. Acta. 780, 110 (2013).10.1016/j.aca.2013.04.019Search in Google Scholar PubMed
41. Mendes, M., Hamadi, S., Naour, C., Roques, J., Jeanson, A., Auwer, C., Moisy, P., Topin, S., Aupiais, J., Hennig C., Giandomenico, M.: Thermodynamical and structural study of protactinium(V) oxalate complexes in solution. Inorg. Chem. 49, 9962 (2010).10.1021/ic101189wSearch in Google Scholar PubMed
42. IAEA TECDOC 1215, Use of Research Reactors for Neutron Activation Analysis (2001), IAEA, Vienna.Search in Google Scholar
43. Ellison, S. L. R., Williams, A.: Quantifying Uncertainty in Analytical Measurements (2012), Eurachem/CITAC Guide CG 4, QUAM, 3rd Edn.Search in Google Scholar
44. Harvey, D.: Modern Analytical Chemistry, Boston (2000), McGraw-Hill, p. 39.Search in Google Scholar
45. IUPAC.: Spectrochim. Nomenclature, symbols, units and their usage in spectrochemical analysis—II. Data interpretation analytical chemistry division. Spectrochim. Acta, Part B 33(6), 8, 241 (1978).10.1016/0584-8547(78)80044-5Search in Google Scholar
46. MacDougall, D., Crummett, W. B.: Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal. Chem. 52(14), 2242 (1980).10.1021/ac50064a004Search in Google Scholar
47. Remya Devi, P. S., Dalvi, A. A., Swain, K. K., Verma, R.: Comparison and statistical evaluation of neutron activation methodologies for the determination of gold in copper concentrate. Anal. Methods 7, 3833 (2015).10.1039/C4AY03054KSearch in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Activation cross section and isomeric cross-section ratio for the (n,2n) reaction on 132,134Ba
- Measurement of photo-neutron cross sections and isomeric yield ratios in the 89Y(γ,xn)89−x Y reactions at the bremsstrahlung end-point energies of 65, 70 and 75 MeV
- Production, separation and target preparation of 171Tm and 147Pm for neutron cross section measurements
- Solid phase extraction of uranium from phosphoric acid: kinetic and thermodynamic study
- Natural silica sand modified by calcium oxide as a new adsorbent for uranyl ions removal from aqueous solutions
- Radiochemical separation of 231Pa from siliceous cake prior to its determination by gamma ray spectrometry
- Investigation of selenium compounds as targets for 76,77Br production using protons of energies up to 34 MeV
- Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV
- Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation
Articles in the same Issue
- Frontmatter
- Activation cross section and isomeric cross-section ratio for the (n,2n) reaction on 132,134Ba
- Measurement of photo-neutron cross sections and isomeric yield ratios in the 89Y(γ,xn)89−x Y reactions at the bremsstrahlung end-point energies of 65, 70 and 75 MeV
- Production, separation and target preparation of 171Tm and 147Pm for neutron cross section measurements
- Solid phase extraction of uranium from phosphoric acid: kinetic and thermodynamic study
- Natural silica sand modified by calcium oxide as a new adsorbent for uranyl ions removal from aqueous solutions
- Radiochemical separation of 231Pa from siliceous cake prior to its determination by gamma ray spectrometry
- Investigation of selenium compounds as targets for 76,77Br production using protons of energies up to 34 MeV
- Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV
- Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation