Abstract
There is a high interest to develop suitable solid phase extractants for uranium separation from aqueous solutions in order to reduce cost and enhance the efficiency. This paper describes solid phase extraction of uranium(VI) from aqueous phosphoric acid solution using MCM-41 based D2HEPA-TOPO organophosphorous extractants. The mixture of D2HEPA (di-2-ethyl-hexylphosphoric acid) and TOPO (tri-n-octylphosphine oxide) was impregnated into the pores of MCM-41 and the synthesized sorbent was fully characterized. The influences of different factors such as synergistic mixture ratio, phosphoric acid concentration, mixing time and temperature were investigated. The results showed that 90% of uranium(VI) extraction can be achieved within 5 min, using D2HEPA-TOPO@MCM-41 (mass ratio 2:1 w/w) from 1 M phosphoric acid containing 64 ppm of uranium at room temperature. High adsorption capacity of uranium(VI) have been achieved at the mentioned conditions. The rate constant for the chemical adsorption of uranium(VI) was 0.988 g mg‒1 min‒1 calculated by the pseudo-second order rate equation. The obtained thermodynamics parameters showed that uranium(VI) adsorption from H3PO4 is an exothermic and spontaneous process.
References
1. Bai, J., Yin, X., Zhu, Y., Fan, F., Wu, X., Tian, W., Tan, C., Zhang, X., Wang, Y., Cao, S., Fan, F., Qin, Z., Guo, J.: Selective uranium sorption from salt lake brines by amidoximated Saccharomyces cerevisiae. Chem. Eng. J. 283, 889 (2016).10.1016/j.cej.2015.08.011Search in Google Scholar
2. Singh, D. K., Mondal, S., Chakravartty, J. K.: Recovery of uranium from phosphoric acid: a review. Solvent Extraction and Ion Exchange. 34, 201 (2016).10.1080/07366299.2016.1169142Search in Google Scholar
3. Beltrami, D., Cote, G., Mokhtari, H., Courtaud, B., Moyer, B. A., Chagnes, A.: Recovery of uranium from wet phosphoric acid by solvent extraction processes. Chem. Rev. 114, 12002 (2014).10.1021/cr5001546Search in Google Scholar PubMed
4. Abdel-Khalek, A.A., Ali, M. M., Ashour, R. M., Abdel-Magied, A. F.: Chemical studies on uranium extraction from concentrated phosphoric acid by using PC88A and DBBP mixture, J. Radioanal. Nucl. Chem. 290, 353 (2011).10.1007/s10967-011-1372-8Search in Google Scholar
5. Abdel-Khalek, A. A., Ali, M. M., Hussein, A. E. M., Abdel-Magied, A. F.: Liquid-liquid extraction of uranium from Egyptian phosphoric acid using a synergistic D2EHPA-DBBP mixture. J. Radioanal. Nucl. Chem. 288, 1 (2011).10.1007/s10967-010-0964-zSearch in Google Scholar
6. Abdel-Magied, A. F., Amin, M. I.: Uranium(VI) extraction from concentrated Egyptian wet-process phosphoric acid using a synergistic organophosphorous solvent mixture. Int. J. Ind. Chem. 7, 21 (2016).10.1007/s40090-015-0056-6Search in Google Scholar
7. Kabay, N., Demircioǧlu, M., Yaylı, S., Günay, E., Yüksel, M., Saǧlam, M., Streat, M.: Recovery of uranium from phosphoric acid solutions using chelating ion-exchange resins. Ind. Eng. Chem. Res. 37, 1983 (1998).10.1021/ie970518kSearch in Google Scholar
8. Alexandratos, S. D.: Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Ind. Eng. Chem. Res. 48, 388 (2009).10.1021/ie801242vSearch in Google Scholar
9. Kulkarni, P. S., Mukhopadhyay, S., Bellary, M. P., Ghosh, S. K.: Studies on membrane stability and recovery of uranium (VI) from aqueous solutions using a liquid emulsion membrane process. Hydrometallurgy 64, 49 (2002).10.1016/S0304-386X(02)00006-3Search in Google Scholar
10. Mahdavi, H. R., Arzani, M., Peydayesh, M., Mohammadi, T.: Pertraction of l-lysine by supported liquid membrane using D2EHPA/M2EHPA. Chem. Eng. Proc. 106, 50 (2016).10.1016/j.cep.2016.05.004Search in Google Scholar
11. Das, D., Juvekar, V. A., Bhattacharya, R.: Efficacy of extraction of U(VI) by liquid emulsion membrane (LEM) using TOPO, D2EHPA and TOA. J. Radioanal. Nucl. Chem. 304, 1261 (2015).10.1007/s10967-015-3946-3Search in Google Scholar
12. Weterings, K., Janssen, J.: Recovery of uranium, vanadium, yttrium and rare earths from phosphoric acid by a precipitation method. Hydrometallurgy 15, 173 (1985).10.1016/0304-386X(85)90052-0Search in Google Scholar
13. AbowSlama, E. H. Y., Ebraheem, E., Sam, A. K.: Precipitation and purification of uranium from rock phosphate. J. Radioanal. Nucl. Chem. 299, 815 (2014).10.1007/s10967-013-2703-8Search in Google Scholar
14. Hurst, F.: Recovery of uranium from phosphates: current status and trends. Report of an advisory group meeting organized by the IAEA, Vienna, IAEA-TECDOC-53, 9–15, 1989.Search in Google Scholar
15. Ali, H., Ali, M., Taha, M., Abdel-Magied, A. F.: Uranium extraction mechanism from analytical grade phosphoric acid using D2EHPA and synergistic D2EHPA-TOPO mixture. Int. J. Nucl. Energy Sci. Eng. 2, 57 (2012).Search in Google Scholar
16. Sert, Ş., Eral, M.: Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2–MCM-41) using statistical design method. J. Nucl. Mat. 406, 285 (2010).10.1016/j.jnucmat.2010.08.024Search in Google Scholar
17. Song, Q., Ma, L., Liu, J., Bai, C., Geng, J., Wang, H., Li, B., Wang, L., Li, S.: Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J. Colloid Interf. Sci. 386, 291 (2012).10.1016/j.jcis.2012.07.070Search in Google Scholar PubMed
18. Mayyas, M., Al-Harahsheh, M., Wei, X.-Y.: Solid phase extractive preconcentration of Uranium from Jordanian phosphoric acid using 2-hydroxy-4-aminotriazine-anchored activated carbon. Hydrometallurgy 149, 41 (2014).10.1016/j.hydromet.2014.07.005Search in Google Scholar
19. Khayambashi, A., Wang, X., Wei, Y.: Solid phase extraction of uranium (VI) from phosphoric acid medium using macroporous silica-based D2EHPA-TOPO impregnated polymeric adsorbent. Hydrometallurgy 164, 90 (2016).10.1016/j.hydromet.2016.05.013Search in Google Scholar
20. Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., Cerdà, V.: Solid-phase extraction of organic compounds: a critical review (Part I). TrAC Trends Analyt. Chem. 80, 641 (2016).10.1016/j.trac.2015.08.015Search in Google Scholar
21. Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., Cerdà, V.: Solid-phase extraction of organic compounds: a critical review. part ii. TrAC Trends Analyt. Chem. 80, 655 (2016).10.1016/j.trac.2015.08.014Search in Google Scholar
22. Camacho, L. M., Deng, S., Parra, R. R.: Uranium removal from groundwater by natural clinoptilolite zeolite: effects of pH and initial feed concentration. J. Hazard. Mat. 175, 393 (2010).10.1016/j.jhazmat.2009.10.017Search in Google Scholar PubMed
23. Ashour, R. M., Abdel-Magied, A. F., Abdel-khalek, A. A., Helaly, O. S., Ali, M. M.: Preparation and characterization of magnetic iron oxide nanoparticles functionalized by l-cysteine: adsorption and desorption behavior for rare earth metal ions. J. Environ. Chem. Eng. 4, 3114 (2016).10.1016/j.jece.2016.06.022Search in Google Scholar
24. Rahmati, A., Ghaemi, A., Samadfam, M.: Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin. Ann. Nucl. Energy. 39, 42 (2012).10.1016/j.anucene.2011.09.006Search in Google Scholar
25. Bianchin, J. N., Martendal, E., Mior, R., Alves, V. N., Araújo, C. S. T., Coelho, N. M. M., Carasek, E.: Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry. Talanta 78, 333 (2009).10.1016/j.talanta.2008.11.012Search in Google Scholar PubMed
26. El-Asmy A. A., Serag, H. M., Mahdy, M. A., Amin, M. I.: Purification of phosphoric acid by minimizing iron, copper, cadmium and fluoride. Sep. Purif. Technol. 61, 287 (2008).10.1016/j.seppur.2007.11.004Search in Google Scholar
27. Amin, M. I., Kamal, H. M., Gouda, M. M.: Decreasing iron content from Egyptian wet process phosphoric acid using organic solvent extraction. Int. J. Adv. Res. 2, 1019 (2014).Search in Google Scholar
28. Marczenko, Z.: Separation and spectrophotometric determination of elements, John Wiley & Sons, (1986).Search in Google Scholar
29. Heidari, A., Younesi, H., Mehraban, Z.: Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chem. Eng. J. 153, 70 (2009).10.1016/j.cej.2009.06.016Search in Google Scholar
30. Mondal, S., Singh, D. K., Anitha, M., Sharma, J. N., Hubli, R. C., Singh, H.: New synergistic solvent mixture of DNPPA and bidentate octyl (phenyl) CMPO for enhanced extraction of uranium (VI) from phosphoric acid medium. Hydrometallurgy 147–148, 95 (2014).10.1016/j.hydromet.2014.04.023Search in Google Scholar
31. Cheng, T., Barnett, M. O., Roden, E. E., Zhuang, J.: Effects of phosphate on uranium(VI) adsorption to Goethite-Coated sand. Environ. Sci. Technol. 38, 6059 (2004).10.1021/es040388oSearch in Google Scholar PubMed
32. Nazari, K., Ghannadi Maragheh, M., Jabbari Rad, A.: Studies on extraction of uranium from phosphoric acid using PN-1200 extractant. Hydrometallurgy 71, 371 (2004).10.1016/S0304-386X(03)00088-4Search in Google Scholar
33. Azizian, S.: Kinetic models of sorption: a theoretical analysis. J. Colloid Interface Sci. 276, 47 (2004).10.1016/j.jcis.2004.03.048Search in Google Scholar PubMed
34. Ho, Y. S., McKay, G.: Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70, 115 (1998).10.1016/S0923-0467(98)00076-1Search in Google Scholar
35. Ho, Y. S., McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34, 451 (1999).10.1016/S0032-9592(98)00112-5Search in Google Scholar
36. Boparai, H. K., Joseph, M., O’Carroll, D. M.: Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mat. 186, 458 (2011).10.1016/j.jhazmat.2010.11.029Search in Google Scholar
37. Eastoe, J., Dalton, J. S.: Dynamic surface tension and adsorption mechanisms of surfactants at the air–water interface. Adv. Colloid Interf. Sci. 85, 103 (2000).10.1016/S0001-8686(99)00017-2Search in Google Scholar
38. Saltalı, K., Sarı, A., Aydın, M.: Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality. J. Hazard. Mat. 141, 258 (2007).10.1016/j.jhazmat.2006.06.124Search in Google Scholar PubMed
39. Yang, C.-H.: Statistical mechanical study on the Freundlich isotherm equation. J. Colloid Interf. Sci. 208, 379 (1998).10.1006/jcis.1998.5843Search in Google Scholar PubMed
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Activation cross section and isomeric cross-section ratio for the (n,2n) reaction on 132,134Ba
- Measurement of photo-neutron cross sections and isomeric yield ratios in the 89Y(γ,xn)89−x Y reactions at the bremsstrahlung end-point energies of 65, 70 and 75 MeV
- Production, separation and target preparation of 171Tm and 147Pm for neutron cross section measurements
- Solid phase extraction of uranium from phosphoric acid: kinetic and thermodynamic study
- Natural silica sand modified by calcium oxide as a new adsorbent for uranyl ions removal from aqueous solutions
- Radiochemical separation of 231Pa from siliceous cake prior to its determination by gamma ray spectrometry
- Investigation of selenium compounds as targets for 76,77Br production using protons of energies up to 34 MeV
- Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV
- Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation
Articles in the same Issue
- Frontmatter
- Activation cross section and isomeric cross-section ratio for the (n,2n) reaction on 132,134Ba
- Measurement of photo-neutron cross sections and isomeric yield ratios in the 89Y(γ,xn)89−x Y reactions at the bremsstrahlung end-point energies of 65, 70 and 75 MeV
- Production, separation and target preparation of 171Tm and 147Pm for neutron cross section measurements
- Solid phase extraction of uranium from phosphoric acid: kinetic and thermodynamic study
- Natural silica sand modified by calcium oxide as a new adsorbent for uranyl ions removal from aqueous solutions
- Radiochemical separation of 231Pa from siliceous cake prior to its determination by gamma ray spectrometry
- Investigation of selenium compounds as targets for 76,77Br production using protons of energies up to 34 MeV
- Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV
- Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation