Abstract
Thorium oxide is poorly soluble: unlike uranium oxide, concentrated nitric acid medium is not sufficient to get quantitative dissolution. Addition of small amounts of fluoride is required to achieve thorium oxide total dissolution. The effect of several parameters on thorium oxide dissolution in order to optimize the dissolution conditions is reported in this paper. Thus the influence of solid characteristics, dissolution method, temperature and composition of dissolution medium on ThO2 dissolution rate has been studied. No complexing agents tested other than fluoride allows total dissolution. Beyond a given HF concentration a decrease of the dissolution rate is observed due to the formation of a precipitate at the solid/solution interface. It was demonstrated by XPS measurements that this precipitate is constituted of thorium fluoride (ThF4) formed during the ThO2 dissolution. The low concentration of HF required to achieve a total dissolution and the activation energy value measured tends to show a catalytic effect of HF on the dissolution process.
Acknowledgments
The authors would like to thank AREVA and the CNRS for financial support.
References
1. Farrel, M. S., Isaacs, S. R.: Dissolution of Urania – Thoria fuel particles in nitric acid solutions. Australian Atomic Energy Commission Research Establishment Lucas Heights. AAEC/E143 (1965), Sydney.Suche in Google Scholar
2. Lung, M.: A present review of the thorium nuclear fuel cycles. nuclear science and technology. s.l.: Nuclear Science and Technology, European commission, EUR 17771 EN (1997), Luxembourg.Suche in Google Scholar
3. Lung, M., Gremm, O.: Perspectives of the thorium fuel cycle. Nucl. Eng. Des. 180, 133 (1998).10.1016/S0029-5493(97)00296-3Suche in Google Scholar
4. Gresky, A. T.: Solvent extraction separation of U233 and thorium from fission products by mean of TBP. Proceedings of the International Conference on the Peaceful Uses of Atomic Energy 9, 505 (1955).Suche in Google Scholar
5. Lyczko, K., Lyczko, M., Walo, M., Lipkowski, J.: Conversion of Th(IV) oxide into Th(IV) trifluoromethanesulfonate: crystal structure of Th(IV) trifluoromethanesulfonate dihydrate. Inorg. Chem. Com. 24, 234 (2012).10.1016/j.inoche.2012.07.024Suche in Google Scholar
6. Mirashi, N. N., Chaudhury, S., Aggarwal, S. K.: Dissolution of sintered thorium dioxide in phosphoric acid using autoclave and microwave methods with detection by gamma spectroscopy. Microchem. J. 94, 24 (2010).10.1016/j.microc.2009.08.002Suche in Google Scholar
7. Malav, R. K., Save, N. D., Prakash, A., Afzal, Md., Panakkal, J. P.: Use of indigenous microwave system for dissolution and treatment of waste nuclear materials. J. Radioanal. Nucl. Chem. 295, 425 (2013).10.1007/s10967-012-1790-2Suche in Google Scholar
8. Sato, N., Kirishima, A.: Sulfurization behavior of thorium dioxide with carbon disulfide. J. Nucl. Mater. 414, 324 (2011).10.1016/j.jnucmat.2011.04.060Suche in Google Scholar
9. Heisbourg, G., Hubert, S., Dacheux, N., Ritt, J.: The kinetics of dissolution of Th1–xUxO2 solid solutions in nitric media. J. Nucl. Mater. 321, 141 (2003).10.1016/S0022-3115(03)00213-7Suche in Google Scholar
10. Hingant, N., Clavier, N., Dacheux, N., Hubert, S., Barre, N., Podor, R.: Preparation of morphology controlled Th1–xUxO2 sintered pellets from low-temperature precursors. Powder Technol. 208, 454 (2011).10.1016/j.powtec.2010.08.042Suche in Google Scholar
11. Hubert, S., Barthelet, K., Fourest, B., Lagarde, G., Dacheux, N., Baglan, N.: Influence of the precursor and the calcination temperature on the dissolution of thorium dioxide. J. Nucl. Mater. 297, 206 (2001).10.1016/S0022-3115(01)00604-3Suche in Google Scholar
12. Claparede, L., Tocino, F., Szenknect, S., Mesbah, A., Clavier, N., Moisy, P., Dacheux, N.: Dissolution of Th1–xUxO2: effects of chemical composition and microstructure. J. Nucl. Mater. 457, 304 (2015).10.1016/j.jnucmat.2014.11.094Suche in Google Scholar
13. Martinez, J., Clavier, N., Ducasse, T., Mesbah, A., Audubert, F., Corso, B., Vigier, N., Dacheux, N.: From uranium(IV) oxalate to sintered UO2 : consequences of the powders’ thermal history on the microstructure. J. Europ. Ceram. Soc. 35, 4535 (2015).10.1016/j.jeurceramsoc.2015.07.010Suche in Google Scholar
14. Brunauer, S., Emmett, P. H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309 (1938).10.1021/ja01269a023Suche in Google Scholar
15. Pickett, J. B., Fowler, J. R., Clanton Mosley, W. Jr: Roasting and dissolution studies on non irradiated thorium dioxide/uranium dioxide pellets. DP-1590: E. I. du Pont de Nemours. & Co., Savannah River Laboratory, SC 29808 (1982), Aiken.10.2172/5296379Suche in Google Scholar
16. Takeuchi, T., Hanson, K. C., Wadsworth, M. E.: Kinetics and mechanism of the dissolution of thorium oxide in hydrofluoric acid and nitric acid mixtures. J. Inorg. Nucl. Chem. 33, 1089 (1971).10.1016/0022-1902(71)80178-1Suche in Google Scholar
17. Akabori, M., Shiratori, T.: Dissolution of ThO2-based oxides in nitric acid solutions at elevated temperatures. J. Nucl. Sci. Technol. 31, 539 (1993).10.1080/18811248.1994.9735188Suche in Google Scholar
18. Lomenech, C., Drot, R., Simoni, E.: Speciation of uranium(VI) at the solid/solution interface: sorption modelling on zirconium silicate and zirconium oxide. Radiochim. Acta 91, 453 (2003).10.1524/ract.91.8.453.20004Suche in Google Scholar
19. Haleem Khan, M., Ali, A., Niaz Khan, N.: Spectrophotometric determination of thorium with dissodium salt of arsenzao-III in perchloric acid. J. Radioanal. Nucl. Chem. 250(23), 353 (2001).10.1023/A:1017968217578Suche in Google Scholar
20. Claparède, L., Clavier, N., Dacheux, N., Mesbah, A., Martinez, J., Szenknect, S., Moisy, P.: Multiparametric dissolution of thorium-cerium dioxide solid solutions. Inorg. Chem. 50, 11702 (2011).10.1021/ic201699tSuche in Google Scholar
21. Oktay, E., Yayli, A.: Physical properties of thorium oxalate powders and their influence on the thermal decomposition. J. Nucl. Mater. 288, 76 (2001).10.1016/S0022-3115(00)00571-7Suche in Google Scholar
22. Clavier, N., du Fou de Kerdaniel, E., Dacheux, N., Le Coustumer, P., Drot, R., Ravaux, J., Simoni, E.: Behavior of thorium-uranium (IV) phosphate-diphosphate sintered samples during leaching tests. II- Saturation processes. J. Nucl. Mater. 349, 304 (2006).10.1016/j.jnucmat.2005.11.010Suche in Google Scholar
23. Cakir, P., Eloirdi, R., Huber, F., Konings, R. J. M., Gouder, T.: An XPS and UPS study on the electronic structure of ThOx (x ≤ 2) thin films. J. Phys. Chem. C. 118, 24497 (2014).10.1021/jp506750pSuche in Google Scholar
24. Teterin, A. Y., Ryzhkov, M. V., Teterin, Y. A., Vukcevic, L., Terekhov, V. A., Maslakov, K. I., Ivanov, K. E.: Nature of chemical bonding in ThF4. Radiochemistry 51(6), 551 (2009).10.1134/S1066362209060010Suche in Google Scholar
25. D’eye, R.: The thorium dioxide-thorium tetrafluoride system. J. Chem. Soc. 196 (1958).10.1039/JR9580000196Suche in Google Scholar
26. Rand, M., Fuger, J., Grenthe, I., Neck, V., Dhanpat, R.: Chemical thermodynamics of thorium. Chemical thermodynamics Vol. 11. OECD, 2007, Issy-Les-Moulineaux, France.Suche in Google Scholar
27. Davis, W., De Bruin, H. J.: New activity coefficients for 0–100 percent aqueous nitric acid. J. Inorg. Nucl. Chem. 26, 1069 (1964).10.1016/0022-1902(64)80268-2Suche in Google Scholar
28. Shying, M. E., Florence, T. M., Carswell, D. J.: Oxide dissolution mechanisms I. J. Inorg. Chem. 32, 3493 (1970).10.1016/0022-1902(70)80158-0Suche in Google Scholar
29. Glatz, J. P., Bokelund, H., Zierfuβ, S.: Analysis of the off-gas from dissolution of nuclear oxide- and carbide fuels in nitric acid. Radiochimica. Acta 51, 17 (1990).10.1524/ract.1990.51.1.17Suche in Google Scholar
30. Tocino, F., Szenknect, S., Mesbah, A., Clavier, N., Dacheux, N.: Dissolution of uranium mixed oxides: the role of oxygen vacancies vs the redox reactions. Prog. Nucl. Energy 72, 101 (2014).10.1016/j.pnucene.2013.09.014Suche in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Solvent extraction of Th(IV) from aqueous solution with methylimidazole in ionic liquid
- Multiparametric study of thorium oxide dissolution in aqueous media
- Evaluation of consequence due to higher hydrazine content in partitioning stream of PUREX process
- Optimization of the electrochemical pre-concentration of trivalent lanthanum from aqueous media
- Synthesis, characterization, and in vitro evaluation of a radio-metal organic framework composed of in vivo generator 166Dy/166Ho and DOTMP as a novel agent for bone marrow ablation
- Development and biological evaluation of 90Y-BPAMD as a novel bone seeking therapeutic Agent
- Determination of distribution coefficients (Kd) of various radionuclides on UTEVA resin
- IonLab – a remote-controlled experiment for academic and vocational education and training on extraction chromatography and ion exchange
Artikel in diesem Heft
- Frontmatter
- Solvent extraction of Th(IV) from aqueous solution with methylimidazole in ionic liquid
- Multiparametric study of thorium oxide dissolution in aqueous media
- Evaluation of consequence due to higher hydrazine content in partitioning stream of PUREX process
- Optimization of the electrochemical pre-concentration of trivalent lanthanum from aqueous media
- Synthesis, characterization, and in vitro evaluation of a radio-metal organic framework composed of in vivo generator 166Dy/166Ho and DOTMP as a novel agent for bone marrow ablation
- Development and biological evaluation of 90Y-BPAMD as a novel bone seeking therapeutic Agent
- Determination of distribution coefficients (Kd) of various radionuclides on UTEVA resin
- IonLab – a remote-controlled experiment for academic and vocational education and training on extraction chromatography and ion exchange