Home Silver-based getters for 129I removal from low-activity waste
Article
Licensed
Unlicensed Requires Authentication

Silver-based getters for 129I removal from low-activity waste

  • R. Matthew Asmussen EMAIL logo , James J. Neeway , Amanda R. Lawter , Andrew Wilson and Nikolla P. Qafoku
Published/Copyright: September 1, 2016

Abstract

A prominent radionuclide of concern in nuclear wastes, 129I, is present in low-activity wastes (LAW) at the Hanford site. Several Ag-containing materials were tested as immobilization agents, or “getters”, for I (as iodide, I) removal from deionized (DI) water and a liquid LAW simulant: Ag impregnated activate carbon (Ag–C), Ag exchanged zeolite (Ag–Z), and argentite. In anoxic batch experiments with DI water, the Ag–C and argentite were most effective, with maximum Kd values of 6.2 × 105 mL/g for the Ag–C and 3.7 × 105 mL/g for the argentite after 15 days. Surface area and Ag content were found to influence the performance of the getters in DI water. In the anoxic batch experiments with LAW simulant, Ag–Z vastly outperformed the other getters with Kd values of 2.2 × 104 mL/g at 2 h, which held steady until 15 days, compared with 1.8 × 103 mL/g reached at 15 days by the argentite. All getters were stable over long periods of time (i.e. 40 days) in DI water, while the Ag–Z and argentite were also stable in the LAW simulant. Ag–Z was found to have consistent I removal upon crushing to a smaller particle size and in the presence of O2, making it a strong candidate for the treatment of LAW containing I.

Acknowledgments

This work was completed as part of the Supplemental Immobilization of Hanford Low-Activity Waste project with Washington River Protection Solutions (WRPS). Support for this project came from the U.S. Department of Energy’s Office of Environment Management. The authors wish to thank David Swanberg of WRPS for continued support, the analytical staff in the Environmental Sciences Lab at PNNL and the staff at the Environmental Molecular Sciences Lab (EMSL) at PNNL. A. Wilson participated in this work as part of the U.S. D.O.E. Science Undergraduate Laboratory Internship (SULI) program.

References

1. Bird, G. A., Schwartz, W.: Distribution coefficients, Kds, for iodide in Canadian Shield Lake sediments under oxic and anoxic conditions. J. Environ. Radioactiv. 35, 261 (1997).10.1016/S0265-931X(96)00062-8Search in Google Scholar

2. Lefèvre, G., Bessière, J., Ehrhardt, J. -J., Walcarius, A.: Immobilization of iodide on copper(I) sulfide minerals. J. Environ. Radioact. 70, 73 (2003).10.1016/S0265-931X(03)00119-XSearch in Google Scholar

3. Madsen, F. T.: Clay mineralogical investigations related to nuclear waste disposal. Clay Miner. 33, 109 (1998).10.1180/000985598545318Search in Google Scholar

4. Kaplan, D. I., Roberts, K. A., Schwehr, K. A., Lilley, M. S., Brinkmeyer, R., Denham, M. E., DiPrete, D., Li, H. -P., Powell, B. A., Xu, C., Yeager, C. M., Zhang, S., Santschi, P. H.: Evaluation of a radioiodine plume increasing in concentration at the Savannah River Site. Environmen. Sci. Technol. 45, 489 (2011).10.1021/es103314nSearch in Google Scholar

5. Takata, H., Zheng, J., Tagami, K., Aono, T., Fujita, K., Yamasaki, S. -I., Tsuchiya, N., Uchida, S.: Distribution coefficients (K d) of stable iodine in estuarine and coastal regions, Japan, and their relationship to salinity and organic carbon in sediments. Environ. Monit. Assess. 185, 3645 (2013).10.1007/s10661-012-2816-5Search in Google Scholar

6. Szente, L., Fenyvesi, É., Szejtli, J.: Entrapment of iodine with cyclodextrins: potential application of cyclodextrins in nuclear waste management. Environ. Sci. Technol. 33, 4495 (1999).10.1021/es981287rSearch in Google Scholar

7. Grambow, B.: Mobile fission and activation products in nuclear waste disposal. J Contam. Hydrol. 102, 180 (2008).10.1016/j.jconhyd.2008.10.006Search in Google Scholar

8. Brown, C. F., Geiszler, K. N., Lindberg, M. J.: Analysis of 129I in groundwater samples: Direct and quantitative results below the drinking water standard. Appl. Geochem. 22, 648 (2007).10.1016/j.apgeochem.2006.12.010Search in Google Scholar

9. Lockrem, L. L.: Cast Stone Technology for Treatment and Disposal of Iodine-rich Caustic Waste Demonstration – Final Report RPP-RPT-26725 U.S. Department of Energy Office of River Protection, (2005).10.2172/842632Search in Google Scholar

10. CH2MHILL.: Hanford Site Groundwater Monitoring Report for 2013 DOE/RL-2014-32 U.S. Department of Energy, (2014).Search in Google Scholar

11. Brookins, D. G.: Radionuclide behavior at the Oklo nuclear reactor. Gabon Waste Manage. 10, 285 (1990).10.1016/0956-053X(90)90102-QSearch in Google Scholar

12. Polyakov, A. S., Borisov, G. B., Moiseenko, N. I., Osnovin, V. I., Dzekun, E. G., Medvedev, G. M., Bel’tyukov, V. A., Dubkov, S. A., Filippov, S. N.: Experience in operating the ÉP-500/1R ceramic melter for vitrification of liquid high-level wastes. Atom. Energy 76, 181 (1994).10.1007/BF02408188Search in Google Scholar

13. Jantzen, C., Crawford, C., Burket, P., Daniel, W., Cozzi, A., Bannochie, C.: Radioactive Demonstrations of Fluidized Bed Steam Reforming (FBSR) as a Supplementary Treatment for Hanford’s Low Activity Waste (LAW) and Secondary Wastes (SW)-# 11593 Proceedings of WM2011 Phoenix, AZ, (2011).Search in Google Scholar

14. Qafoku, N. P., Neeway, J. J., Lawter, A. R., Levitskaia, T. G., Serne, R. J., Westsik, J. H., Valenta Snyder, M. M.: Technetium and Iodine Getters to Improve Cast Stone Performance PNNL-23282 Pacific Northwest National Laboratory, (2014).10.2172/1148627Search in Google Scholar

15. Pierce, E. M., Mattigod, S. V., Serne, R. J., Icenhower, J. P., Scheele, R. D., Um, W., Qafoku, N., Westsik, J. H.: Review of Potential Candiate Stabilization Technologies for Liquid and Solid Secondary Waste Streams PNNL-19122 Pacific Northwest National Laboratory, Richland, Washington, (2010).10.2172/978974Search in Google Scholar

16. Ikeda, Y., Sazarashi, M., Tsuji, M., Seki, R., Yoshikawa, H.: Adsorption of I Ions on Cinnabar for 129-I Waste Manage. Radiochim. Acta 65, 195 (1994).10.1524/ract.1994.65.3.195Search in Google Scholar

17. Mattigod, S. V., Serne, R. J., Fryxell, G. E.: Selection and Testing of “Getters” for Adsorption of Iodine-129 and Technetium-99: A Review PNNL-14208 Pacific Northwest National Laboratory, Richland, Washington, (2003).10.2172/15004678Search in Google Scholar

18. Krumhansl, J. L., Pless, J. D., Chwirka, J. B., Holt, K. C.: Yucca Mountain Project Getter Program Results (Year 1) SAND2006-3869 Sandia National Laboratory, Albuquerque, New Mexico, (2006).Search in Google Scholar

19. Steinberg, S., Schmett, G., Kimble, G., Emerson, D., Turner, M., Rudin, M.: Immobilization of fission iodine by reaction with insoluble natural organic matter. J. Radioanal. Nucl. Chem. 277, 175 (2008).10.1007/s10967-008-0727-2Search in Google Scholar

20. Zhang, X., Stewart, S., Shoesmith, D. W., Wren, J. C.: Interaction of aqueous iodine species with Ag2O/Ag surfaces. J. Electrochem. Soc. 154, F70 (2007).10.1149/MA2006-02/14/767Search in Google Scholar

21. Zhang, H., Gao, X., Guo, T., Li, Q., Liu, H., Ye, X., Guo, M., Wu, Z.: Adsorption of iodide ions on a calcium alginate–silver chloride composite adsorbent. Colloid. Surface. A. 386, 166 (2011).10.1016/j.colsurfa.2011.07.014Search in Google Scholar

22. Mnasri, N., Charnay, C., de Ménorval, L.-C., Moussaoui, Y., Elaloui, E., Zajac, J.: Silver nanoparticle-containing submicron-in-size mesoporous silica-based systems for iodine entrapment and immobilization from gas phase. Micropor. Mesopor. Mat. 196, 305 (2014).10.1016/j.micromeso.2014.05.029Search in Google Scholar

23. Zenki, M., Iwadou, Y.: Repetitive determination of chloride using the circulation of the reagent solution in closed flow-through system Talanta 58, 1055 (2002).10.1016/S0039-9140(02)00419-8Search in Google Scholar

24. Russel, R. L., Westsik Jr, J., Swanberg, D. J., Eibling, R. E., Cozzi, A. D., Lindberg, M. J., Josephson, G. B., Rinehart, D. E.: Letter Report: LAW Simulant Development for Cast Stone Screening Tests PNNL-22352 Rev.0, Pacific Northwest National Laboratory, Richland, WA, (2013).10.2172/1096128Search in Google Scholar

25. Bell Jr, F. A.: Review of effects of silver impregnated carbon filters on microbial water quality. J. Am. Water Works Assoc. 83, 74 (1991).10.1002/j.1551-8833.1991.tb07203.xSearch in Google Scholar

26. Karanfil, T., Moro, E. C., Serkiz, S. M.: Development and testing of a silver chloride-impregnated activated carbon for aqueous removal and sequestration of iodide. Environ. Technol. 26, 1255 (2005).10.1080/09593332608618595Search in Google Scholar

27. Hoskins, J. S., Karanfil, T., Serkiz, S. M.: Removal and sequestration of iodide using silver-impregnated activated carbon. Environ. Sci Technol 36, 784 (2002).10.1021/es010972mSearch in Google Scholar

28. Ho, P. C., Kraus, K. A.: Adsorption on inorganic materials – VIII: adsorption of iodide on AgCl-filled carbon. J. Inorg. Nucl. Chem. 43, 583 (1981).10.1016/0022-1902(81)80507-6Search in Google Scholar

29. Sheppard, G. P., Hriljac, J. A., Maddrell, E. R., Hyatt, N. C.: Silver zeolites: iodide occlusion and conversion to sodalite – a potential 129I waste form? MRS Proceedings, Vol. 932, 36.1 (2006). doi: 10.1557/PROC-932-36.1.Search in Google Scholar

30. Faghihian, H., Ghannadi Maragheh, M., Malekpour, A.: Adsorption of radioactive iodide by natural zeolites. J. Radioanal. Nucl. Chem. 254, 545 (2002).10.1023/A:1021698207045Search in Google Scholar

31. Kikuchi, M., Kitamura, M., Yusa, H., Horiuchi, S.: Removal of radioactive methyl iodide by silver impregnated alumina and zeolite. Nucl. Eng. Des. 47, 283 (1978).10.1016/0029-5493(78)90071-7Search in Google Scholar

32. Chapman, K. W., Chupas, P. J., Nenoff, T. M.: Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation. J Am Chem Soc 132, 8897 (2010).10.1021/ja103110ySearch in Google Scholar PubMed

33. Jubin, R. T.: A Literature Survey of Methods to Remove Iodine from off Gas Streams using Solid Sorbents ORNL/TM-6607 Oak Ridge National Laboratory, (1979).Search in Google Scholar

34. Kaplan, D. I., Mattigod, S. V., Parker, K. E., Iversen, G.: Experimental Work in Support of the 129I Disposal Special Analysis WSRC-TR-2000-00283 Westinghouse Savannah River Company, Aiken, South Carolina, (2000).Search in Google Scholar

35. Westsik, J. H., Piepel, G. F., Lindberg, M. J., Heasler, P. G., Mercier, T. M., Russel, R. L., Cozzi, A. D., Daniel, W. E., Eibling, R. E., Hansen, E. K., Reigal, M. R., Swanberg, D. J.: Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests PNNL-22747, SRNL-STI-2013-00465 Rev. 0, Pacific Northwest National Laboratory, Richland, Washington and Savannah River National Laboratory, Aiken, South Carolina, (2013).10.2172/1126363Search in Google Scholar

36. Certa, P. J., Empey, P. A.: River Protection Project System Plan ORP-11242 Revision 6, Washington River Protection Solutions, LLC, Richland, Washington, (2011).Search in Google Scholar

37. Brunauer, S., Emmett, P. H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).10.1021/ja01269a023Search in Google Scholar

38. ASTM.: Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass ASTM D2216-98 ASTM Standards, USA, (2005).Search in Google Scholar

39. Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., Yaghi, O. M.: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. A. Sci. 103, 10186 (2006).10.1073/pnas.0602439103Search in Google Scholar PubMed PubMed Central

Received: 2016-3-1
Accepted: 2016-6-27
Published Online: 2016-9-1
Published in Print: 2016-12-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2016-2598/html
Scroll to top button