Home Photoreduction of Pu(V,VI) by TiO2
Article
Licensed
Unlicensed Requires Authentication

Photoreduction of Pu(V,VI) by TiO2

  • Anna Yu. Romanchuk , Stepan N. Kalmykov EMAIL logo , Alexander V. Egorov , Yan V. Zubavichus , Andrei A. Shiryaev , Eugene A. Smirnov and Alexey V. Garshev
Published/Copyright: August 25, 2016

Abstract

In this study, the effect of light on the kinetics and speciation of plutonium at its interaction with particles of TiO2 under different light conditions is shown for the first time. It was found that sorption was followed by reduction of the plutonium to Pu(IV). In this, the reduction reaction and sorption in conditions of the presence of light proceed significantly more rapidly due to the photocatalytic activity of titanium dioxide, providing a source of electrons for the reaction. Spectral methods (XAFS and TEM) showed that plutonium forms nanoclusters with the structure of PuO2, which decorate the surface of the solid phase.

Award Identifier / Grant number: 14-13-01279

Funding statement: This work was supported by the Russian Science Foundation (project 14-13-01279). We also acknowledge the “Nanochemistry and nanomaterials” user facility of the Department of Chemistry of MSU for providing the HRTEM measurements.

Acknowledgments

This work was supported by the Russian Science Foundation (project 14-13-01279). We also acknowledge the “Nanochemistry and nanomaterials” user facility of the Department of Chemistry of MSU for providing the HRTEM measurements.

References

1. Geckeis, H., Rabung, T.: Actinide geochemistry: From the molecular level to the real system. J. Contam. Hydrol. 102, 187 (2008).10.1016/j.jconhyd.2008.09.011Search in Google Scholar PubMed

2. Clark, D. L., Hecker, S. S., Jarvinen, G. D., Neu, M. P.: Plutonium. In: L. R. Morss, N. M. Edelstein, J. Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements, (2006) Springer, Dordrecht, The Netherlands.10.1007/1-4020-3598-5_7Search in Google Scholar

3. Hixon, A. E., Arai, Y., Powell, B. A.: Examination of the effect of alpha radiolysis on plutonium(V) sorption to quartz using multiple plutonium isotopes. J. Colloid Interf. Sci. 403, 105 (2013).10.1016/j.jcis.2013.04.007Search in Google Scholar PubMed

4. Powell, B. A., Fjeld, R. A., Kaplan, D. I., Coates, J. T., Serkiz, S. M.: Pu(V)O2+ adsorption and reduction by synthetic hematite and goethite. Environ. Sci. Technol. 39, 2107 (2005).10.1021/es0487168Search in Google Scholar PubMed

5. Romanchuk, A. Yu., Kalmykov, S. N., Aliev, R. A.: Plutonium sorption onto hematite colloids onto femto- and nanomolar concentrations. Radiochim. Acta 99, 137 (2011).10.1524/ract.2011.1808Search in Google Scholar

6. Romanchuk, A. Yu., Kalmykov, S. N., Egorov, A. V., Zubavichus, Y. V., Shiryaev, A. A., Batuk, O. N., Conradson, S. D., Pankratov, D. A., Presnyakov, I. A.: Formation of crystalline PuO2+x·nH2O nanoparticles upon sorption of Pu(V,VI) onto hematite. Geochim. Cosmochim. Acta 121, 29 (2013).10.1016/j.gca.2013.07.016Search in Google Scholar

7. Zavarin, M., Powell, B. A., Bourbin, M., Zhao, P., Kersting, A. B.: Np(V) and Pu(V) ion exchange and surface-mediated reduction mechanisms on montmorillonite. Environ. Sci. Technol. 46, 2692 (2012).10.1021/es203505gSearch in Google Scholar PubMed

8. Novikov, A. P., Kalmykov, S. N., Utsunomiya, S., Ewing, R. C., Horreard, F., Merkulov, A., Clark, S. B., Tkachev, V. V., Myasoedov, B. F.: Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314, 638 (2006).10.1126/science.1131307Search in Google Scholar PubMed

9. Payne, T. E., Davis, J. A., Lumpkin, G., Chisari, R., Waite, T. D.: Surface complexation model of uranyl sorption on Georgia kaolinite. Appl. Clay Sci. 64, 151 (2004).10.1016/j.clay.2003.08.013Search in Google Scholar

10. Wold, A.: Photocatalytic properties of titanium dioxide (TiO2). Chem. Mater. 5, 280 (1993).10.1021/cm00027a008Search in Google Scholar

11. Yu, J., Low, J., Xiao, W., Zhou, P., Jaroniec, M.: Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 136, 8839 (2014).10.1021/ja5044787Search in Google Scholar PubMed

12. Eliet, V., Bidoglio, G.: Kinetics of the laser-induced photoreduction of U(VI) in aqueous suspensions of TiO2 particles. Environ. Sci. Technol. 32, 3155 (1998).10.1021/es970929sSearch in Google Scholar

13. Gracheva, N. N., Romanchuk, A. Y., Smirnov, E. A., Meledina, M. A., Garshev, A. V., Shirshin, E. A., Fadeev, V. V., Kalmykov, S. N.: Am(III) sorption onto TiO2 samples with different crystallinity and varying pore size distributions. Appl. Geochem. 42, 69 (2014).10.1016/j.apgeochem.2014.01.006Search in Google Scholar

14. Roof, R. B.: X-ray diffraction data for plutonium compounds. Los Alamos National LAboratory, Report LA-11619 (1989).10.2172/7257520Search in Google Scholar

15. Neck, V., Altmaier, M., Fanghanel, T.: Solubility of plutonium hydroxides/hydrous oxides under reducing conditions and in the presence of oxygen. C. R. Chim. 10, 959 (2007).10.1016/j.crci.2007.02.011Search in Google Scholar


Supplemental Material:

The online version of this article (DOI: 10.1515/ract-2015-2494) offers supplementary material, available to authorized users.


Received: 2015-8-2
Accepted: 2016-6-25
Published Online: 2016-8-25
Published in Print: 2016-12-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2015-2494/html
Scroll to top button