Synthesis, characterization and biological evaluation of a well dispersed suspension of gallium-68-labeled magnetic nanosheets of graphene oxide for in vivo coincidence imaging
Abstract
Graphene oxide (GO) nanosheets were hybridized with Fe3O4 nanoparticles (NPs) to form magnetic GO (MGO) and were further labeled by [68Ga]GaCl3 as a potential drug delivery system. Paper chromatography, Fourier transform infra red (FTIR) spectroscopy, low-angle X-ray diffraction (XRD), CHN and atomic force microscopy (AFM) were utilized to characterize the trinary composite ([68Ga]@MGO). Biological evaluations of the prepared nanocomposite were performed in normal Sprague Dawley rats and it was found to be a possible host for theranostic radiopharmaceuticals. The results showed that the grafting of Fe3O4 NPs on nanocomposite reduced the unwanted liver and spleen uptakes and increased the ratio of kidney/liver uptake from 0.037 to 1.07, leading to the fast removal of radioactive agent and less imposed radiation to patients. The high level of hydrogen bonding caused by the presence of functional groups is responsible for this effect. Considering the accumulation of the tracer in vital organs of rat (especially brain), efficient iron oxide grafting, fast wash-out, the short half-life gallium-68 and less imposed radiation doses to patients, this nanocomposite could be a suitable candidate for positron emission tomography (PET) studies and imaging applications.
Acknowledgments
The authors would like to thank the Nuclear Science and Technology Research Institute (NSTRI) for the financial support of the work. They also wish to thank Dr. Khosro Aardneh for his kind help.
References
1. Li, D., Muller, M. B., Gilje, S., Kaner, R. B., Wallace, G. G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nano 3, 101 (2008).10.1038/nnano.2007.451Suche in Google Scholar PubMed
2. Lee, C., Wei, X., Kysar, J. W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).10.1126/science.1157996Suche in Google Scholar PubMed
3. Koh, Y. K., Bae, M.-H., Cahill, D. G., Pop, E.: Heat conduction across monolayer and few-layer graphenes. Nano Lett. 10, 4363 (2010).10.1021/nl101790kSuche in Google Scholar PubMed
4. Akhavan, O., Ghaderi, E.: Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 9, 3593 (2013).10.1002/smll.201203106Suche in Google Scholar PubMed
5. Zhang, L., Lu, Z., Zhao, Q., Huang, J., Shen, H., Zhang, Z.: Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7, 460 (2011).10.1002/smll.201001522Suche in Google Scholar PubMed
6. Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., Dai, H.: Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203 (2008).10.1007/s12274-008-8021-8Suche in Google Scholar PubMed PubMed Central
7. Kalbacova, M., Broz, A., Kong, J., Kalbac, M.: Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48, 4323 (2010).10.1016/j.carbon.2010.07.045Suche in Google Scholar
8. Nayak, T. R., Andersen, H., Makam, V. S., Khaw, C., Bae, S., Xu, X., Ee, P.-L. R., Ahn, J.-H., Hong, B. H., Pastorin, G., Özyilmaz, B.: Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5, 4670 (2011).10.1021/nn200500hSuche in Google Scholar PubMed
9. Lee, W. C., Lim, C. H. Y. X., Shi, H., Tang, L. A. L., Wang, Y., Lim, C. T., Loh, K. P.: Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5, 7334 (2011).10.1021/nn202190cSuche in Google Scholar PubMed
10. Zhang, L., Xia, J., Zhao, Q., Liu, L., Zhang, Z.: functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6, 537 (2010).10.1002/smll.200901680Suche in Google Scholar PubMed
11. Bao, H., Pan, Y., Li, L. I. N.: Recent advances in graphene-based nanomaterials for biomedical applications. Nano LIFE 02, 1230001 (2012).10.1142/S179398441100030XSuche in Google Scholar
12. Yang, K., Zhang, S., Zhang, G., Sun, X., Lee, S.-T., Liu, Z.: Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10, 3318 (2010).10.1021/nl100996uSuche in Google Scholar PubMed
13. Yang, K., Wan, J., Zhang, S., Tian, B., Zhang, Y., Liu, Z.: The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33, 2206 (2012).10.1016/j.biomaterials.2011.11.064Suche in Google Scholar PubMed
14. Hong, H., Zhang, Y., Engle, J. W., Nayak, T. R., Theuer, C. P., Nickles, R. J., Barnhart, T. E., Cai, W.: In vivo targeting and positron emission tomography imaging of tumor vasculature with 66Ga-labeled nano-graphene. Biomaterials 33, 4147 (2012).10.1016/j.biomaterials.2012.02.031Suche in Google Scholar PubMed PubMed Central
15. Fazaeli, Y., Akhavan, O., Rahighi, R., Aboudzadeh, M. R., Karimi, E., Afarideh, H.: In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater. Sci. Eng. C 45, 196 (2014).10.1016/j.msec.2014.09.019Suche in Google Scholar PubMed
16. Jiang, D.-w., Peng, C., Sun, Y.-H., Jia, L.-N., Li, J.-B., Zhang, L.: Study on technetium-99m labeling of graphene oxide nanosheets through click chemistry–99mTc labeling of graphene oxide nanosheets. Nucl. Sci. Tech. 26, 040301 (2015).Suche in Google Scholar
17. Cornelissen, B., Able, S., Kersemans, V., Waghorn, P. A., Myhra, S., Jurkshat, K., Crossley, A., Vallis, K. A.: Nanographene oxide-based radioimmunoconstructs for in vivo targeting and SPECT imaging of HER2-positive tumors. Biomaterials 34, 1146 (2013).10.1016/j.biomaterials.2012.10.054Suche in Google Scholar PubMed
18. Chiolerio, A., Chiodoni, A., Allia, P., Martino, P.: Handbook of nanomaterials properties. In: B. Bhushan, D. Luo, S. R. Schricker, W. Sigmund, S. Zauscher (Eds.), Springer Berlin Heidelberg (2014), chap. 34, p. 213.Suche in Google Scholar
19. Hummers Jr, W. S., Offeman, R. E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).10.1021/ja01539a017Suche in Google Scholar
20. Fazaeli, Y., Jalilian, A., Amini, M., Rahiminejad-kisomi, A., Rajabifar, S., Bolourinovin, F., Moradkhani, S.: Preparation and preliminary evaluation of [67Ga]-tetra phenyl porphyrin complexes as possible imaging agents. J. Radioanal. Nucl. Chem. 288, 17 (2011).10.1007/s10967-010-0962-1Suche in Google Scholar
21. Tayebi, M., Ramazani, S., Hamed Mosavian, M., Tayyebi, A.: LDPE/EVA/graphene nanocomposites with enhanced mechanical and gas permeability properties. Polymer. Adv. Techn. 26, 1083 (2015).10.1002/pat.3537Suche in Google Scholar
22. Moradi, S., Akhavan, O., Tayyebi, A., Rahighi, R., Mohammadzadeh, M., Rad, H. S.: Magnetite/dextran-functionalized graphene oxide nanosheets for in vivo positive contrast magnetic resonance imaging. RSC Adv. 5, 47529 (2015).10.1039/C5RA03331DSuche in Google Scholar
23. Cheng, Z., Liao, J., He, B., Zhang, F., Zhang, F., Huang, X., Zhou, L.: One-step fabrication of graphene oxide enhanced magnetic composite gel for highly efficient dye adsorption and catalysis. ACS Sustainable Chem. Eng. 3, 1677 (2015).10.1021/acssuschemeng.5b00383Suche in Google Scholar
24. Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud’homme, R. K., Aksay, I. A., Car, R.: Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36 (2007).10.1021/nl071822ySuche in Google Scholar PubMed
25. Koshino, M.: Orbital magnetism of graphenes. In S. Mikhailov (Ed.), Physics and Applications of Graphene – Theory, INTECH (2011).10.5772/15255Suche in Google Scholar
26. Mahmoudi, M., Simchi, A., Imani, M., Milani, A. S., Stroeve, P.: Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J. Phys. Chem. B 112, 14470 (2008).10.1021/jp803016nSuche in Google Scholar PubMed
27. Akhavan, O., Ghaderi, E.: Toxicity of graphene and graphene oxide nanowalls against bacteria. Acs Nano 4, 5731 (2010).10.1021/nn101390xSuche in Google Scholar PubMed
28. Akhavan, O., Kalaee, M., Alavi, Z., Ghiasi, S., Esfandiar, A.: Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 50, 3015 (2012).10.1016/j.carbon.2012.02.087Suche in Google Scholar
29. Tayyebi, A., Tavakoli, M. M., Outokesh, M., Shafiekhani, A., Simchi, A.: Supercritical synthesis and characterization of “graphene-PbS quantum dots” composite with enhanced photovoltaic properties. Ind. Eng. Chem. Res. 54, 7382 (2015).10.1021/acs.iecr.5b00008Suche in Google Scholar
30. Chakraborty, S., Sharma, K. S., Rajeswari, A., Vimalnath, K. V., Sarma, H. D., Pandey, U., Jagannath, Ningthoujam, R. S., Vatsa, R. K., Dash, A.: Radiolanthanide-loaded agglomerated Fe3O4 nanoparticles for possible use in the treatment of arthritis: formulation, characterization and evaluation in rats. J. Mater. Chem. B 3, 5455 (2015).10.1039/C5TB00677ESuche in Google Scholar PubMed
31. Yousefnia, H., Pouladian, M., Hosseini-Salekdeh, S., Jalilian, A., Shafaii, K., Mahmoudi, M.: Evaluation of radiogallium-labeled, folate-embedded superparamagnetic nanoparticles in fibrosarcoma-bearing mice. J. Cancer Res. Ther. 8, 204 (2012).10.4103/0973-1482.98971Suche in Google Scholar PubMed
32. Jalilian, A. R., Panahifar, A., Mahmoudi, M., Akhlaghi, M., Simchi A.: Preparation and biological evaluation of [67Ga]-labeled-superparamagnetic nanoparticles in normal rats. Radiochimica Acta. 97, 51 (2009).10.1524/ract.2009.1566Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Solubility and hydrolysis of Np(V) in dilute to concentrated alkaline NaCl solutions: formation of Na–Np(V)–OH solid phases at 22 °C
- Binuclear trivalent and tetravalent uranium halides and cyanides supported by cyclooctatetraene ligands
- Surface complexation modeling of U(VI) sorption on GMZ bentonite in the presence of fulvic acid
- Evaluation of CNTs/MnO2 composite for adsorption of 60Co(II), 65Zn(II) and Cd(II) ions from aqueous solutions
- An optimization study for radioiodination of a new synthesized benzamide derivative as an analogue tracer for malignant melanoma imaging
- Synthesis, characterization and biological evaluation of a well dispersed suspension of gallium-68-labeled magnetic nanosheets of graphene oxide for in vivo coincidence imaging
- Radio-iodide uptake by modified poly (glycidyl methacrylate) as anion exchange resin
Artikel in diesem Heft
- Frontmatter
- Solubility and hydrolysis of Np(V) in dilute to concentrated alkaline NaCl solutions: formation of Na–Np(V)–OH solid phases at 22 °C
- Binuclear trivalent and tetravalent uranium halides and cyanides supported by cyclooctatetraene ligands
- Surface complexation modeling of U(VI) sorption on GMZ bentonite in the presence of fulvic acid
- Evaluation of CNTs/MnO2 composite for adsorption of 60Co(II), 65Zn(II) and Cd(II) ions from aqueous solutions
- An optimization study for radioiodination of a new synthesized benzamide derivative as an analogue tracer for malignant melanoma imaging
- Synthesis, characterization and biological evaluation of a well dispersed suspension of gallium-68-labeled magnetic nanosheets of graphene oxide for in vivo coincidence imaging
- Radio-iodide uptake by modified poly (glycidyl methacrylate) as anion exchange resin