Abstract
An extraction of Th(IV) was performed using 1- methylimidazole (1-MIM) or 2-methylimidazole (2-MIM) as the extractant in imidazolium type ionic liquids (ILs) or n-pentanol. The extractability for Th4+ in ILs was by far higher than that obtained in n-pentanol. The extraction mechanism was determined by slope analysis and ESI-MS. The transfer of Th4+ with MIM into ILs proceeded through both a cationic exchange and a neutral solvation mechanism, whereas the partitioning of Th4+ with MIM into n-pentanol only underwent a neutral solvation mechanism. The thermodynamic parameters values (ΔH, ΔS and ΔG) for extraction of Th4+ with 1-MIM in IL were calculated and the results indicated the extraction reaction was spontaneous and went through endothermic process. Separation of Th4+ from the solution of lanthanides (III) and uranium was also carried out by 1-MIM in ILs and n-pentanol.
Acknowledgement
This research was supported by the Natural Science Foundation of Gansu Province, China (1506RJZA217) and National Natural Science Foundation of China (J1210001).
References
1. T. Rao, P. Metilda, J. Gladis, Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determinationan overview, Talanta 68, 1047 (2006).10.1016/j.talanta.2005.07.021Suche in Google Scholar PubMed
2. T. Kiliari, I. Pashalidis, Alpha spectroscopic analysis of actinides (Th, U and Pu) after separation from aqueous solutions by cation-exchange and liquid extraction, Journal of Radioanalytical and Nuclear Chemistry 284, 547 (2010).10.1007/s10967-010-0527-3Suche in Google Scholar
3. T. Vander Hoogerstraete, S. Wellens, K. Verachtert, K. Binnemans, Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling, Green Chemistry 15, 919 (2013).10.1039/c3gc40198gSuche in Google Scholar
4. S. Biswas, K. N. Hareendran, D. K. Singh, J. N. Sharma, S. B. Roy, Extraction of U(VI) and Th(IV) from nitric acid medium using tri(butoxyethyl) phosphate (TBEP) in n-paraffin, Journal of Radioanalytical and Nuclear Chemistry 283, 665 (2010).10.1007/s10967-010-0453-4Suche in Google Scholar
5. A. Suresh, T. G. Srinivasan, P. R. Vasudeva Rao, C. V. Rajagopalan, S. B. Koganti, U/Th separation by counter-current liquid–liquid extraction with trisecbutyl phosphate by using an ejector mixer–settler, Separation Science and Technology 39, 2477 (2005).10.1081/SS-120039316Suche in Google Scholar
6. S. Biswas, V. H. Rupawate, K. N. Hareendran, S. B. Roy, Counter-current extraction and separation of U(VI) from a mixture of U(VI)–Th(IV)–Y(III) using tris-2-ethyl hexyl phosphate (TEHP), Journal of Radioanalytical and Nuclear Chemistry 295, 2243 (2012).10.1007/s10967-012-2292-ySuche in Google Scholar
7. R. K. Jha, K. K. Gupta, P. G. Kulkarni, P. B. Gurba, P. Janardan, R. D. Changarani, P. K. Dey, P. N. Pathak, V. K. Manchanda, Third phase formation studies in the extraction of Th(IV) and U(VI) by N,N-dialkyl aliphatic amides, Desalination 232, 225 (2008).10.1016/j.desal.2007.11.054Suche in Google Scholar
8. J. N. Sharma, R. Ruhela, K. N. Harindaran, S. L. Mishra, S. K.Tangri, A. K. Suri, Separation studies of uranium and thorium using tetra(2-ethylhexyl) diglycolamide (TEHDGA) as an extractant, Journal of Radioanalytical and Nuclear Chemistry 278, 173 (2008).10.1007/s10967-007-7238-4Suche in Google Scholar
9. Y. Sasaki, G. R. Choppin, Extraction and mutual separation of actinide(III), (IV), (V) and (VI) ions by N,N′-dimethyl- N,N′- dihexyl-3-oxapentanediamide and thenoyltrifluoroacetone, Journal of Radioanalytical and nuclear Chemistry 246, 267 (2000).10.1023/A:1006797718820Suche in Google Scholar
10. E. A. Mowafy, The effect of previous gamma-irradiation on the extraction of U(VI), Th(IV), Zr(IV), Eu(III) and Am(III) by various amides, Journal of Radioanalytical and Nuclear Chemistry 260, 179 (2004).10.1023/B:JRNC.0000027078.93004.a6Suche in Google Scholar
11. S.n. Yu, L. Ma, B.r. Bao, Synergistic effect of HBMPPT with PSO, DOSO and TBP on the extraction of U(VI) and on the separation of U(VI) and Th(IV), Journal of Radioanalytical and Nuclear Chemistry 241, 349 (1999).10.1007/BF02347473Suche in Google Scholar
12. R. B. Kadam, G. G. Mali, B. S. Mohite, Analytical application of poly [dibenzo-18-crown-6] for chromatographic separation of thorium(IV) from uranium(VI) and other elements in glycine medium, Journal of Radioanalytical and Nuclear Chemistry 295, 501 (2012).10.1007/s10967-012-1859-ySuche in Google Scholar
13. S. R. Sabale, D. V. Jadhav, B. S. Mohite, Sorption study of U(VI), Th(IV) and Ce(III) on poly[dibenzo-18-crown-6] in larginine to develop sequential column chromatographic separation method, Journal of Radioanalytical and Nuclear Chemistry 284, 273 (2010).10.1007/s10967-010-0520-xSuche in Google Scholar
14. S. Ghag, S. Pawar, Extraction and separation of U(VI) and Th(IV) from hydrobromic acid media using Cyanex-923 extractant, Journal of the Serbian Chemical Society 75, 1549 (2010).10.2298/JSC090617118GSuche in Google Scholar
15. C. S. Kedari, S. S. Pandit, P. M. Gandhi, Separation by competitive transport of uranium(VI) and thorium(IV) nitrates across supported renewable liquid membrane containing trioctylphosphine oxide as metal carrier, Journal of Membrane Science 430, 188 (2013).10.1016/j.memsci.2012.12.017Suche in Google Scholar
16. K. V. Hecke, G. Modolo, Separation of actinides from Low Level Liquid Wastes (LLLW) by extraction chromatography using novel DMDOHEMA and TODGA impregnated resins, Journal of Radioanalytical and Nuclear Chemistry 261, 269 (2004).10.1023/B:JRNC.0000034858.26483.aeSuche in Google Scholar
17. A. B. Patil, P. Pathak, V. S. Shinde, S. V. Godbole, P. K. Mohapatra, Efficient solvent system containing malonamides in room temperature ionic liquids: actinide extraction, fluorescence and radiolytic degradation studies, Dalton Transactions 42, 1519 (2013).10.1039/C2DT32186FSuche in Google Scholar PubMed
18. C. M. Wai, Y. J. Liao, W. Liao, G. Tian, R. S. Addleman, D. Quach, S. P. Pasilis, Uranium dioxide in ionic liquid with a tri-nbutylphosphate- HNO3 complex-dissolution and coordination environment, Dalton Transactions 40, 5039 (2011).10.1039/c0dt01518kSuche in Google Scholar PubMed
19. A. Arce, M. J. Earle, H. Rodríguez, K. R. SeDon, A. Soto, Bis{(trifluoromethyl)sulfonyl} amide ionic liquids as solvents for the extraction of aromatic hydrocarbons from their mixtures with alkanes: effect of the nature of the cation, Green Chemistry 11, 365 (2009).10.1039/B814189DSuche in Google Scholar
20. C. S. Santos, S. Baldelli, Gas-liquid interface of room-temperature ionic liquids, Chemical Society Reviews 39, 2136 (2010).10.1039/b921580hSuche in Google Scholar PubMed
21. S. Dai, Y. H. Ju, C. E. Barnes, Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids, Dalton Transactions 8, 1201 (1999).10.1039/a809672dSuche in Google Scholar
22. A. Rout, J. Kotlarska, W. Dehaen, K. Binnemans, Liquid–liquid extraction of neodymium(iii) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation, Physical Chemistry Chemical Physics 15, 16533 (2013).10.1039/c3cp52218kSuche in Google Scholar PubMed
23. A. Sengupta, P. K. Mohapatra, M. Iqbal, J. Huskens, W. Verboom, A highly efficient solvent system containing functionalized diglycolamides and an ionic liquid for americium recovery from radioactive wastes, Dalton Transactions 41, 6970 (2012).10.1039/c2dt12364aSuche in Google Scholar PubMed
24. A. Sengupta, P. K. Mohapatra, M. Iqbal,W. Verboom, J. Huskens, S. V. Godbole, Extraction of Am(III) using novel solvent systems containing a tripodal diglycolamide ligand in room temperature ionic liquids: a ‘green’ approach for radioactive waste processing, RSC Advances 2, 7492 (2012).10.1039/c2ra20577gSuche in Google Scholar
25. C. Xu, L. Yuan, X. Shen, M. Zhai, Efficient removal of caesium ions from aqueous solution using a calix crown ether in ionic liquids: mechanism and radiation effect, Dalton Transactions 39, 3897 (2010).10.1039/b925594jSuche in Google Scholar PubMed
26. C. Gaillard, V. Mazan, S. Georg, O. Klimchuk, M. Sypula, I. Billard, R. Schurhammer, G. Wipff, Acid extraction to a hydrophobic ionic liquid: the role of added tributylphosphate investigated by experiments and simulations, Physical Chemistry Chemical Physics 14, 5187 (2012).10.1039/c2cp40129kSuche in Google Scholar PubMed
27. M. Srncik, D. Kogelnig, A. Stojanovic, W. Körner, R. Krachler, G. Wallner, Uranium extraction from aqueous solutions by ionic liquids, Applied Radiation and Isotopes 67, 2146 (2009).10.1016/j.apradiso.2009.04.011Suche in Google Scholar PubMed
28. D. Tsaoulidis, V. Dore, P. Angeli, N. V. Plechkova, K. R. SeDon, Dioxouranium(VI) extraction in microchannels using ionic liquids, Chemical Engineering Journal 227, 151 (2013).10.1016/j.cej.2012.08.064Suche in Google Scholar
29. Y. Shen, S. Wang, L. Zhu, J. Wang, W. Wu, Extraction of Th(IV) from an HNO3 solution by diglycolamide in ionic liquids, Ind. Eng. Chem. Res 50, 13990 (2011).10.1021/ie102512mSuche in Google Scholar
30. S. Gao, T. Sun, Q. Chen, X. Shen, Improvement of the cloud point extraction of uranyl ions by the addition of ionic liquids, Journal of Hazardous Materials 263, 562 (2013).10.1016/j.jhazmat.2013.10.014Suche in Google Scholar PubMed
31. A. Rout, K. A. Venkatesan, T. G. Srinivasan, P. R. Vasudeva Rao, Liquid–liquid extraction of Pu(IV), U(VI) and Am(III) using malonamide in room temperature ionic liquid as diluent, Journal of Hazardous Materials 221–222, 62 (2012).10.1016/j.jhazmat.2012.04.007Suche in Google Scholar PubMed
32. P. S. Barber, S. P. Kelley, R. D. Rogers, Highly selective extraction of the uranyl ion with hydrophobic amidoxime-functionalized ionic liquids via η2 coordination, RSC Advances 2, 8526 (2012).10.1039/c2ra21344cSuche in Google Scholar
33. J. Fu, Q. Chen, T. Sun, X. Shen, Extraction of Th(IV) from aqueous solution by room-temperature ionic liquids and coupled with supercritical carbon dioxide stripping, Separation and Purification Technology 119, 66 (2013).10.1016/j.seppur.2013.09.004Suche in Google Scholar
34. Y. Zuo, J. Chen, D. Li, Reversed micellar solubilization extraction and separation of thorium(IV) from rare earth(III) by primary amine N1923 in ionic liquid, Separation and Purification Technology 63, 684 (2008).10.1016/j.seppur.2008.07.014Suche in Google Scholar
35. M. L. Dietz, J. A. Dzielawa, Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: implications for the ‘greenness’ of ionic liquids as diluents in liquid–liquid extraction, Chemical Communications 2124 (2001).10.1039/b104349hSuche in Google Scholar PubMed
36. M. McCann, R. Curran, M. Ben-Shoshan, V. McKee, A. A. Tahir, M. Devereux, K. Kavanagh, B. S. Creaven, A. Kellett, Silver(I) complexes of 9-anthracenecarboxylic acid and imidazoles: synthesis, structure and antimicrobial activity, Dalton Transactions 41, 6516 (2012).10.1039/c2dt12166bSuche in Google Scholar PubMed
37. W. J. Eilbeck, F. Holmes, A. E. Underhill, Cobalt(II), nickel(II), and copper(II) complexes of lmidazole and thiazole, Inorg. Phys. Theor. 757 (1967).10.1039/j19670000757Suche in Google Scholar
38. A. Lagutschenkov, U. J. Lorenz, O. Dopfer, IR spectroscopy of isolated metal-organic complexes of biocatalytic interest: evidence for coordination number four for Zn2+(imidazole)4, International Journal of Mass Spectrometry 308, 316 (2011).10.1016/j.ijms.2011.08.019Suche in Google Scholar
39. Y. Shen, W. Li, J. Wu, S. Li, H. Luo, S. Dai, W. Wu, Solvent extraction of lanthanides and yttrium from aqueous solution with methylimidazole in an ionic liquid, Dalton Transactions 43, 10023 (2014).10.1039/C4DT00747FSuche in Google Scholar PubMed
40. C. L. Chen, X. K. Wang, Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium(IV) onto γ-Al2O3, Applied Geochemistry 22, 436 (2007).10.1016/j.apgeochem.2006.11.010Suche in Google Scholar
41. J. R. Turkington, P. J. Bailey, J. B. Love, A. M. Wilson, P. A. Tasker, Exploiting outer-sphere interactions to enhance metal recovery by solvent extraction, Chemical Communications 49, 1891 (2013).10.1039/c2cc37874dSuche in Google Scholar PubMed
42. K. R. Barnard, G. L. Nealon, M. I. Ogden, B. W. Skelton, Crystallographic determination of three Ni-α-hydroxyoxime-carboxylic acid synergist complexes, Solvent Extraction and Ion Exchange 28, 778 (2010).10.1080/07366299.2010.515169Suche in Google Scholar
43. J. N. Mathur, M. S. Murali, K. L. Nash, Actinide partitioning – a review, Solvent Extraction and Ion Exchange 19, 357 (2001).10.1081/SEI-100103276Suche in Google Scholar
44. M. Nilsson, K. L. Nash, Review article: A review of the development and operational characteristics of the TALSPEAK process, Solvent Extraction and Ion Exchange 25, 665 (2007).10.1080/07366290701634636Suche in Google Scholar
45. P. Giridhar, K. A. Venkatesan, T. G. Srinivasan, P. R. V. Rao, Extraction of uranium(VI) from nitric acid medium by 1.1M tri-n-butylphosphate in ionic liquid diluent, Journal of Radioanalytical and Nuclear Chemistry 265, 31 (2004).10.1007/s10967-005-0785-7Suche in Google Scholar
46. N. Y. Rahim, S. Mohamad, Y. Alias, N. M. Sarih, Extraction behavior of Cu(II) ion from chloride medium to the hydrophobic ionic liquids using 1,10-phenanthroline, Separation Science and Technology10.1080/01496395.2011.620584Suche in Google Scholar
47. A. E. Visser, M. P. Jensen, I. Laszak, K. L. Nash, G. R. Choppin, R. D. Rogers, Uranyl coordination environment in hydrophobic ionic liquids: an in-situ investigation, Inorg. Chem. 42, 2197 (2003).10.1021/ic026302eSuche in Google Scholar PubMed
48. M. P. Jensen, J. A. Dzielawa, P. Rickert, M. L. Dietz, EXAFS investigation of the mechanism of facilitated ion transfer into a room temperature ionic liquid, J. Am. Chem. Soc. 124, 10664 (2002).10.1021/ja027476ySuche in Google Scholar PubMed
49. M. P. Jensen, J. Neuefeind, J. V. Beitz, S. Skanthakumar, L. Soderholm, Mechanisms of metal ion transfer into roomtemperature ionic liquids: the role of anion exchange, J. Am. Chem. Soc. 125, 15466 (2003).10.1021/ja037577bSuche in Google Scholar PubMed
50. A. E. Visser, R. P. Swatloski, S. T. Griffin, D. H. Hartman, R. D. Rogers, Liquid-liquid extraction of metal ions in roomtemperature ionic liquids, Separation Science And Technology 36, 785 (2001).10.1081/SS-100103620Suche in Google Scholar
51. S. Seisel, C. Börensen, R. Vogt, R. Zellner, The heterogeneous reaction of HNO3 on mineral dust and γ-alumina surfaces: a combined Knudsen cell and DRIFTS study, Physical Chemistry Chemical Physics 6, 5498 (2004).10.1039/B410793DSuche in Google Scholar
52. E. S. Stoyanov, I. V. Stoyanova, C. A. Reed, The unique nature of H+ in water, Chemical Science 2, 462 (2011).10.1039/C0SC00415DSuche in Google Scholar
53. K. Baranowska, N. Piwowarska, A. Herman, A. Dołęga, Imidazolium silanethiolates relevant to the active site of cysteine proteases. A cooperative effect in a chain of NH+…S− hydrogen bonds, New Journal of Chemistry 36, 1574 (2012).10.1039/c2nj40114bSuche in Google Scholar
54. W. G. Jia, Y. B. Huang, Y. J. Lin, G. X. Jin, Syntheses and structures of half-sandwich iridium(III) and rhodium(III) complexes with organochalcogen (S, Se) ligands bearing N- methylimidazole and their use as catalysts for norbornene polymerization, Dalton Transactions, 5612 (2008).10.1039/b801862fSuche in Google Scholar PubMed
55. U. Thanganathan, Effects of imidazole on the thermal and conductivity properties of hybrid membrane based on poly(vinyl alcohol)/SiO2, Journal of Materials Chemistry 22, 9684 (2012).10.1039/c2jm30975kSuche in Google Scholar
56. A. Xu, J. Wang, H. Wang, Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3- methylimidazolium-based ionic liquid solvent systems, Green Chemistry 12, 268 (2010).10.1039/B916882FSuche in Google Scholar
57. X. Gao, M. Pan, G. Fang, W. Jing, S. He, S. Wang, An ionic liquid modified dummy molecularly imprinted polymer as a solidphase extraction material for the simultaneous determination of nine organochlorine pesticides in environmental and food samples, Analytical Methods 5, 6128 (2013).10.1039/c3ay41083hSuche in Google Scholar
58. F. Kong, J. l. Liao, S. d. Ding, Y. y. Yang, H. Huang, J. j. Yang, J. Tang, N. Liu, Extraction and thermodynamic behavior of U(VI) and Th(IV) from nitric acid solution with tri-isoamyl phosphate, Journal of Radioanalytical and Nuclear Chemistry 298, 651 (2013).10.1007/s10967-013-2482-2Suche in Google Scholar
Supplementary material
Supplementary material: The online version of this article (DOI: 10.1515/ract-2015-2450) provides supplementary material for authorized users.
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Solvent extraction of Th(IV) from aqueous solution with methylimidazole in ionic liquid
- Multiparametric study of thorium oxide dissolution in aqueous media
- Evaluation of consequence due to higher hydrazine content in partitioning stream of PUREX process
- Optimization of the electrochemical pre-concentration of trivalent lanthanum from aqueous media
- Synthesis, characterization, and in vitro evaluation of a radio-metal organic framework composed of in vivo generator 166Dy/166Ho and DOTMP as a novel agent for bone marrow ablation
- Development and biological evaluation of 90Y-BPAMD as a novel bone seeking therapeutic Agent
- Determination of distribution coefficients (Kd) of various radionuclides on UTEVA resin
- IonLab – a remote-controlled experiment for academic and vocational education and training on extraction chromatography and ion exchange
Artikel in diesem Heft
- Frontmatter
- Solvent extraction of Th(IV) from aqueous solution with methylimidazole in ionic liquid
- Multiparametric study of thorium oxide dissolution in aqueous media
- Evaluation of consequence due to higher hydrazine content in partitioning stream of PUREX process
- Optimization of the electrochemical pre-concentration of trivalent lanthanum from aqueous media
- Synthesis, characterization, and in vitro evaluation of a radio-metal organic framework composed of in vivo generator 166Dy/166Ho and DOTMP as a novel agent for bone marrow ablation
- Development and biological evaluation of 90Y-BPAMD as a novel bone seeking therapeutic Agent
- Determination of distribution coefficients (Kd) of various radionuclides on UTEVA resin
- IonLab – a remote-controlled experiment for academic and vocational education and training on extraction chromatography and ion exchange