Startseite Dipeptidyl peptidase IV: a multifunctional enzyme with implications in several pathologies including cancer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dipeptidyl peptidase IV: a multifunctional enzyme with implications in several pathologies including cancer

  • Yarini Arrebola Sánchez , Fabiola Almeida García , Daniel Ojeda del Sol , Mario E. Valdés-Tresanco , Carlos David Ortiz , Belinda Sánchez Ramírez und Isel Pascual Alonso EMAIL logo
Veröffentlicht/Copyright: 11. Mai 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ectopeptidases are particularly interesting due to their potential to regulate/dysregulate the peptide mediated signaling cellular pathways because the active site located to the extracellular space. Dipeptidyl peptidase IV (DPP-IV, EC 3.4.14.5) is currently one of the ectopeptidases that has a great and complex influence on important physiological and pathological processes. Due to its influence on the immune system, type 2 diabetes mellitus, pulmonary pathologies, cardiovascular system, viral infections and cancer, DPP-IV is very attractive as a possible therapeutic target. However, its versatility makes such expectations very difficult. The aim of this work is to summarize relevant structural and functional aspects of DPP-IV and the role of this protein in several pathologies with special emphasis on cancer. DPP-IV role in cancer seems to depend on specific location, histologic type of tumour, tumour microenvironment, and presence/absence of molecules able to interact with DPP-IV. Because of DPP-IV controversial effects, generalizations are difficult and most of the time the role of DPP-IV must be analyzed case by case. However, new evidences in cell lines, animal models and clinical studies suggest that DPP-IV inhibitors open a promissory window through new therapeutic strategies against some cancers.


Corresponding author: Isel Pascual, Center for Protein Studies, Faculty of Biology, University of Havana, 25 # 455, between J and I, Plaza de la Revolución, Havana, CP 10 400, Cuba, E-mail:

Funding source: Oficina de Gestión de Fondos y Proyectos Internacionales del Ministerio de Ciencia, TecnologÃ-a y Medio Ambiente de la República de Cuba

Award Identifier / Grant number: PN223LH010-010 2021-2023

Funding source: Ministerio de Ciencia, Tecnología y Medio Ambiente

Award Identifier / Grant number: Unassigned

Acknowledgements

The authors would like to thank the editors for their guidance and review of this article before its publication.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Results of the group included in the review were partially supported by a University Laboratory in Nanotechnology and Cancer (NaNoCancer) project: “New inhibitors of aminopeptidases with potential applications in cancer” (2016-2022), and a grant from the “Oficina de Gestión de Fondos y Proyectos Internacionales del Ministerio de Ciencia, Tecnología y Medio Ambiente de la República de Cuba” (code PN223LH010-010 2021-2023).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bray, F, Soerjomataram, I. Chapter 01: global burden of cancer: current and future. In: Minghui, R, editor WHO report on cancer: setting priorities, investing wisely and providing care for all. Geneva, Switzerland: World Health Organization; 2020. pp. 23–37.Suche in Google Scholar

2. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov 2022;12:31–46.10.1158/2159-8290.CD-21-1059Suche in Google Scholar PubMed

3. Carl-McGrath, S, Lendeckel, U, Ebert, M, Rocken, C. Ectopeptidases in tumour biology: a review. Histol Histopathol 2006;21:1339–53.Suche in Google Scholar

4. Barnieh, FM, Loadman, PM, Falconer, RA. Is tumour-expressed aminopeptidase N (APN/CD13) structurally and functionally unique? Biochim Biophys Acta Rev Cancer 2021, 1876:188641.10.1016/j.bbcan.2021.188641Suche in Google Scholar PubMed

5. Drinkwater, N, Lee, J, Yang, W, Malcolm, TR, McGowan, S. M1 aminopeptidases as drug targets: broad applications or therapeutic niche? FEBS J 2017;284:1473–88.10.1111/febs.14009Suche in Google Scholar PubMed PubMed Central

6. Amin, M, Adhikari, N, Jha, T. Design of aminopeptidase N (APN) inhibitors as anticancer agents. J Med Chem 2018;61:6468–90. https://doi.org/10.1021/acs.jmedchem.7b00782.Suche in Google Scholar PubMed

7. Li, FJ, Hu, JH, Ren, X, Zhou, CM, Liu, Q, Zhang, YQ. Toad venom: a comprehensive review of chemical constituents, anticancer activities, and mechanisms. Arch Pharmazie 2021;354:2100060.10.1002/ardp.202100060Suche in Google Scholar PubMed

8. Turk, B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 2006;5:785–99.10.1038/nrd2092Suche in Google Scholar PubMed

9. Leung, D, Abbenante, G, Fairlie, DP. Protease inhibitors: current status and future prospects. J Med Chem 2000;43:305–41.10.1021/jm990412mSuche in Google Scholar PubMed

10. Abbenante, G, Fairlie, DP. Protease inhibitors in the clinic. Med Chem 2005;1:71–104.10.2174/1573406053402569Suche in Google Scholar PubMed

11. Pascual, I, Valiente, PA, García, G, Valdés, ME, Arrebola, Y, Díaz, L, et al.. Discovery of novel non-competitive inhibitors of mammalian neutral M1 aminopeptidase (APN). Biochimie 2017;142:216–25.10.1016/j.biochi.2017.09.015Suche in Google Scholar PubMed PubMed Central

12. Rawlings, ND, Barrett, JA, Thomas, PD, Huang, X. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 2018;46:624–32.10.1093/nar/gkx1134Suche in Google Scholar PubMed PubMed Central

13. Kameoka, J, Tanaka, T, Nojima, Y, Schlossman, SF, Morimoto, C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 1993;261:466–9.10.1126/science.8101391Suche in Google Scholar PubMed

14. Wagner, L, Klemann, C, Stephan, M, von Horsten, S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH)proteins. Clin Exp Imm 2016;184:265–83.10.1111/cei.12757Suche in Google Scholar PubMed PubMed Central

15. Klemann, C, Wagner, L, Stephan, M, von Horsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4′s (DPP4) entanglement in the immune system. Clin Exp Imm 2016;185:1–21.Suche in Google Scholar

16. Shao, S, Xu, Q, Yu, X, Pan, R, Chen, Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol Ther 2020;209:107503.10.1016/j.pharmthera.2020.107503Suche in Google Scholar PubMed PubMed Central

17. Arrebola, YM, Gómez, H, Valiente, PA, Chávez, MA, Pascual, I. Biotecnol Apl 2014;31:102–10.Suche in Google Scholar

18. Schuetz, CA, Ong, SH, Blüher, M. Clinical trial simulation methods for estimating the impact of DPP-4 inhibitors on cardiovascular disease. Clinicoecon Outcomes Res 2015;7:313–23.10.2147/CEOR.S75935Suche in Google Scholar PubMed PubMed Central

19. Klemann, C, Wagner, L, Stephan, M, von Hörsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin Exp Immunol 2016;185:1–21.Suche in Google Scholar

20. Florentin, M, Kostapanos, MS, Papazafiropoulou, AK. Role of dipeptidyl peptidase 4 inhibitors in the new era of antidiabetic treatment. World J Diabetes 2022;13:85–96.10.4239/wjd.v13.i2.85Suche in Google Scholar PubMed PubMed Central

21. Zhang, T, Tong, X, Zhang, S, Wang, D, Wang, L, Wang, Q, et al.. The roles of dipeptidyl peptidase 4 (DPP4) and DPP4 inhibitors in different lung diseases: new evidence. Front Pharmacol 2021;12:731453.10.3389/fphar.2021.731453Suche in Google Scholar PubMed PubMed Central

22. Green, BD, Flatt, PR, Bailey, CJ. Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diab Vasc. Dis Res 2006;3:159–65.10.3132/dvdr.2006.024Suche in Google Scholar PubMed

23. Wu, D, Li, L, Liu, C. Efficacy and safety of dipeptidyl peptidase-4 inhibitors and metformin as initial combination therapy and as monotherapy in patients with type 2 diabetes mellitus: a meta-analysis. Diabetes Obes Metab 2014;16:30–7.10.1111/dom.12174Suche in Google Scholar PubMed

24. Röhrborn, D, Wronkowitz, N, Eckel, J. DPP4 in diabetes. Front Immunol 2015;6:1–20.10.3389/fimmu.2015.00386Suche in Google Scholar PubMed PubMed Central

25. Shimizu, S, Hosooka, T, Matsuda, T, Asahara, S, Koyanagi-Kimura, M, Kanno, A, et al.. DPP4 inhibitor vildagliptin preserves-cell mass through amelioration of endoplasmic reticulum stress in C/EBPB transgenic mice. J Mol Endocrinol 2012;49:125–35.10.1530/JME-12-0039Suche in Google Scholar PubMed

26. De, S, Banerjee, S, Kumar, SK, Paira, P. Critical role of dipeptidyl peptidase IV: a therapeutic target for diabetes and cancer. Mini Rev Med Chem 2018;19:88–97.10.2174/1389557518666180423112154Suche in Google Scholar PubMed

27. Ahrén, B. DPP-4 inhibition and the path to clinical proof. Front Endocrinol 2019;10:1–18.10.3389/fendo.2019.00376Suche in Google Scholar PubMed PubMed Central

28. Arwert, EN, Mentink, RA, Driskell, RR, Hoste, E, Goldie, SJ, Quist, S. Upregulation of CD26 expression in epithelial cells and stromalcells during wound-induced skin tumour formation. Oncogene 2012;31:992–1000.Suche in Google Scholar

29. Yamamoto, S, Tokuhara, T, Nishikawa, M, Nishizawa, S, Nishioka, T, Nozawa, A, et al.. Spontaneous regression of hepatocellular carcinoma after improving diabetes mellitus: possibly responsible for immune system. Kanzo 2012;53:164–7.10.2957/kanzo.53.164Suche in Google Scholar

30. Abd Elhameed, AG, Helal, MG, Said, E, Salem, HA. Saxagliptin defers thioacetamide-induced hepatocarcinogenesis in rats: a novel suppressive impact on Wnt/Hedgehog/Notch1 signaling. Environ Toxicol Pharmacol 2021;86:103668.10.1016/j.etap.2021.103668Suche in Google Scholar PubMed

31. Qin, CJ, Zhao, LH, Zhou, X, Zhang, HL, Wen, W, Tang, L, et al.. Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2. Cancer Lett 2018;420:26–37.10.1016/j.canlet.2018.01.064Suche in Google Scholar PubMed

32. Jang, JH, Baerts, L, Waumans, Y, De Meester, I, Yamada, Y, Limani, P, et al.. Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice. Clin Exp Metastasis 2015;32:677–87.10.1007/s10585-015-9736-zSuche in Google Scholar PubMed

33. Nyborg, NC, Molck, AM, Madsen, LW, Knudsen, LB. The human GLP-1 analog liraglutide and the pancreas: evidence for the absence of structural pancreatic changes in three species. Diabetes 2012;61:1243–9.10.2337/db11-0936Suche in Google Scholar PubMed PubMed Central

34. Ligumsky, H, Wolf, I, Israeli, S, Haimsohn, M, Ferber, S, Karasik, A. The peptide-hormone glucagon-like peptide-1 activates cAMP and inhibits growth of breast cancer cells. Breast Cancer Res Treat 2012;132:449–61.10.1007/s10549-011-1585-0Suche in Google Scholar PubMed

35. Rivera, L, Arrebola, Y, Valdés-Tresanco, ME, Díaz-Guevara, L, Bergado, G, Sánchez, B, et al.. Bestatin and bacitracin inhibit porcine kidney cortex dipeptidyl peptidase IV activity and reduce human melanoma MeWo cell viability. Int J Biol Macromol 2020;164:2944–52.10.1016/j.ijbiomac.2020.08.157Suche in Google Scholar PubMed

36. Rathmann, W, Kostev, K. Association of dipeptidyl peptidase 4 inhibitors with risk of metastases in patients with type 2 diabetes and breast, prostate or digestive system cancer. J Diabetes Complicat 2017;31:687–92.10.1016/j.jdiacomp.2017.01.012Suche in Google Scholar PubMed

37. Noh, Y, Jeon, SM, Shin, S. Association between glucose-lowering treatment and cancer metastasis among patients with preexisting type 2 diabetes and incident malignancy. Int J Cancer 2019;144:1530–9.10.1002/ijc.31870Suche in Google Scholar PubMed

38. Matteucci, E, Giampietro, O. Dipeptidyl peptidase-4 (CD26): knowing the function before inhibiting the enzyme. Curr Med Chem 2009;16:2943–51.10.2174/092986709788803114Suche in Google Scholar PubMed

39. Klemann, C, Wagner, L, Stephan, M, von Hörsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin Exp Immunol 2016;185:1–21.Suche in Google Scholar

40. Hopsu-Havu, VK, Glenner, GG. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-β-naphthylamide. Histochemie 1966;7:197–201.10.1007/BF00577838Suche in Google Scholar PubMed

41. Yu, DM, Yao, TW, Chowdhury, S, Nadvi, NA, Osborne, B, Church, WB. The dipeptidyl peptidase IV family in cancer and cell biology. FEBS J 2010;277:1126–44.10.1111/j.1742-4658.2009.07526.xSuche in Google Scholar PubMed

42. Mulvihill, EE, Drucker, DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev 2014;35:992–1019.Suche in Google Scholar

43. Klemann, C, Wagner, L, Stephan, M, von Horsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin Exp Immunol 2016;185:1–21.10.1111/cei.12781Suche in Google Scholar PubMed PubMed Central

44. Gutheil, WG, Subramanyam, M, Flentke, GR, Sanford, DG, Munoz, E, Huber, BT, et al.. Human immunodeficiency virus 1 Tat binds to dipeptidyl aminopeptidase IV (CD26): a possible mechanism for Tat’s immunosuppressive activity. Proc Natl Acad Sci USA 1994;91:6594–8.10.1073/pnas.91.14.6594Suche in Google Scholar PubMed PubMed Central

45. Blanco, J, Valenzuela, A, Herrera, C, Lluis, C, Hovanessian, AG, Franco, R. The HIV-1 gp120 inhibits the binding of adenosine deaminase to CD26 by a mechanism modulated by CD4 and CXCR4 expression. FEBS Lett 2000;477:123–8.10.1016/S0014-5793(00)01751-8Suche in Google Scholar PubMed

46. Lu, G, Hu, Y, Wang, Q, Qi, J, Gao, F, Li, Y, et al.. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 2013;500:227–31.10.1038/nature12328Suche in Google Scholar PubMed PubMed Central

47. Bohm, SK, Gum, JR, Erickson, RH, Hicks, JW, Kim, YS. Human dipeptidyl peptidase IV gene promoter: tissue-specific regulation from a TATA-less GC-rich sequence characteristic of a housekeeping gene promoter. Biochem J 1995;311:835–43.10.1042/bj3110835Suche in Google Scholar PubMed PubMed Central

48. The Human Protein Atlas; 2003. Available from: http://www.proteinatlas.org/ENSG00000197635-DPP4/tissue [Accessed 11 Sep 2022].Suche in Google Scholar

49. NLH National Library of Medicine, National Center for Biotechnology Information; 2023. Available from: http://www.ncbi.nlm.hih.gov/protein/gene?Db=gene&Cmd=DetailsSearch&Term=1803 [Accessed 10 Feb 2023].Suche in Google Scholar

50. NLH National Library of Medicine, National Center for Biotechnology Information; 2023. Available from: http://www.ncbi.nlm.hih.gov/protein/NP_001366535.1 [Accessed 10 Feb 2023].Suche in Google Scholar

51. NLH National Library of Medicine, National Center for Biotechnology Information; 2023. Available from: http://www.ncbi.nlm.hih.gov/protein/NP_001926.2 [Accessed 10 Feb 2023].Suche in Google Scholar

52. NLH National Library of Medicine, National Center for Biotechnology Information; 2023. Available from: http://www.ncbi.nlm.hih.gov/protein/NP_001366533.1 [Accessed 10 Feb 2023].Suche in Google Scholar

53. NLH National Library of Medicine, National Center for Biotechnology Information; 2023. Available from: http://www.ncbi.nlm.hih.gov/protein/NP_001366534.1 [Accessed 10 Feb 2023].Suche in Google Scholar

54. NLH National Library of Medicine. National Center for Biotechnology Information; 2023. Available from: http://www.ncbi.nlm.hih.gov/protein/NP_001366535.1 [Accessed 10 Feb 2023].Suche in Google Scholar

55. Kahne, T, Kroning, H, Thiel, U, Ulmer, AJ, Flad, HD, Ansorge, S. Alterations in structure and cellular localization of molecular forms of DP IV/CD26 during T cell activation. Cell Immunol 1996;170:63–70.10.1006/cimm.1996.0134Suche in Google Scholar PubMed

56. The Human Protein Atlas; 2003. Available from: http://www.proteinatlas.org/ENSG00000197635-DPP4/mRNA [Accessed 10 Feb 2022].Suche in Google Scholar

57. Engel, M, Hoffmann, T, Wagner, L, Wermann, M, Heiser, U, Kiefersauer, R. The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci USA 2003;100:5063–8.10.1073/pnas.0230620100Suche in Google Scholar PubMed PubMed Central

58. Rasmussen, HB, Branner, S, Wiberg, FC, Wagtmann, N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat Struct Biol 2003;10:19–25.10.1038/nsb882Suche in Google Scholar PubMed

59. Duke-Cohan, JS, Morimoto, C, Rocker, JA, Schlossman, SF. Serum high molecular weight dipeptidyl peptidase IV (CD26) is similar to a novel antigen DPPT-L released from activated T cells. J Immunol 1996;156:1714–21.10.4049/jimmunol.156.5.1714Suche in Google Scholar

60. Pascual, I, Gomez, H, Pons, T, Chappe, M, Vargas, MA, Valdes, G. Effect of divalent cations on the porcine kidney cortex membrane-bound form of dipeptidyl peptidase IV. Int J Biochem Cell Biol 2011;43:363–71.Suche in Google Scholar

61. Gomez, H, Chappe, M, Valiente, PA, Pons, T, Chavez, ML, Charli, JL. Effect of zinc and calcium ions on the rat kidney membrane-bound form of dipeptidyl peptidase IV. J Biosci 2013;38:461–9.Suche in Google Scholar

62. Mentlein, R. Dipeptidyl-peptidase IV (CD26) Role in the inactivation of regulatory peptides. Regul Pept 1999;85:9–24.10.1016/S0167-0115(99)00089-0Suche in Google Scholar

63. Lee, KN, Jackson, KW, Christiansen, VJ, Chung, KH, McKee, PA. A novel plasma proteinase potentiates alpha2-antiplasmin inhibition of fibrin digestion. Blood 2004;103:3783–8.10.1182/blood-2003-12-4240Suche in Google Scholar PubMed

64. Ajami, K, Abbott, CA, McCaughan, GW, Gorrell, MD. Dipeptidyl peptidase 9 has two forms, a broad tissue distribution, cytoplasmic localization and DPIV-like peptidase activity. Biochim Biophys Acta 2004;1679:18–28.10.1016/j.bbaexp.2004.03.010Suche in Google Scholar PubMed

65. Delacour, D, Gouyer, V, Leteurtre, E, Ait-Slimane, T, Drobecq, H, Lenoir, C. 1-benzyl-2-acetamido-2-deoxy-alphaD-galactopyranoside blocks the apical biosynthetic pathway in polarized HT-29 cells. J Biol Chem 2003;278:37799–809.10.1074/jbc.M305755200Suche in Google Scholar PubMed

66. Thoma, R, Loffler, B, Stihle, M, Huber, W, Ruf, A, Hennig, M. Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure 2003;11:947–59.10.1016/S0969-2126(03)00160-6Suche in Google Scholar

67. Aertgeerts, K, Ye, S, Tennant, MG, Kraus, ML, Rogers, J, Sang, BC. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci 2004;13:412–21.10.1110/ps.03460604Suche in Google Scholar PubMed PubMed Central

68. Abbott, CA, McCaughan, GW, Gorrell, MD. Two highly conserved glutamic acid residues in the predicted beta propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Lett 1999;458:278–84.10.1016/S0014-5793(99)01166-7Suche in Google Scholar PubMed

69. Ajami, K, Abbott, CA, Obradovic, M, Gysbers, V, Kahne, T, McCaughan, GW. Structural requirements for catalysis, expression, and dimerization in the CD26/DPIV gene family. Biochemistry 2003;42:694–701.10.1021/bi026846sSuche in Google Scholar PubMed

70. Chien, CH, Huang, LH, Chou, CY, Chen, YS, Han, YS, Chang, GG. One site mutation disrupts dimer formation in human DPP-IV proteins. J Biol Chem 2004;279:52338–45.10.1074/jbc.M406185200Suche in Google Scholar PubMed

71. Varghese, JN, Laver, WG, Colman, PM. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 1983;303:35–40.10.1038/303035a0Suche in Google Scholar PubMed

72. Vellieux, FM, Huitema, F, Groendijk, H, Kalk, KH, Jzn, JF, Jongejan, JA. Structure of quinoprotein methylamine dehydrogenase at 2.25 A resolution. EMBO J 1989;8:2171–8.10.1002/j.1460-2075.1989.tb08339.xSuche in Google Scholar PubMed PubMed Central

73. Ito, N, Phillips, SE, Stevens, C, Ogel, ZB, McPherson, MJ, Keen, JN. Novel thioether bond revealed by a 1.7 A crystal structure of galactose oxidase. Nature 1983;350:87–90.10.1038/350087a0Suche in Google Scholar PubMed

74. Xia, ZX, Dai, WW, Xiong, JP, Hao, ZP, Davidson, VL, White, S. The three-dimensional structures of methanol dehydrogenase from two methylotrophic bacteria at 2.6-A resolution. J Biol Chem 1992;267:22289–97.10.1016/S0021-9258(18)41668-7Suche in Google Scholar

75. Murzin, AG. Structural principles for the propeller assembly of beta-sheets: the preference for seven-fold symmetry. Proteins 1992;14:191–201.10.1002/prot.340140206Suche in Google Scholar PubMed

76. Fülöp, V, Jones, DT. Beta propellers: structural rigidity and functional diversity. Curr Opin Struct Biol 1999;9:715–21.10.1016/S0959-440X(99)00035-4Suche in Google Scholar

77. Paoli, M. Protein folds propelled by diversity. Prog Biophys Mol Biol 2001;76:103–30.10.1016/S0079-6107(01)00007-4Suche in Google Scholar PubMed

78. Jawad, Z, Paoli, M. Novel sequences propel familiar folds. Structure 2002;10:447–54.10.1016/S0969-2126(02)00750-5Suche in Google Scholar PubMed

79. Adams, J, Kelso, R, Cooley, L. The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 2000;10:17–24.10.1016/S0962-8924(99)01673-6Suche in Google Scholar

80. Russell, RB, Sasieni, PD, Sternberg, MJ. Supersites within superfolds. Binding site similarity in the absence of homology. J Mol Biol 1998;282:903–18.10.1006/jmbi.1998.2043Suche in Google Scholar PubMed

81. Todd, AE, Orengo, CA, Thornton, JM. Evolution of function in protein superfamilies, from a structural perspective. J Mol Biol 2001;307:1113–43.10.1006/jmbi.2001.4513Suche in Google Scholar PubMed

82. Pons, T, Gomez, R, Chinea, G, Valencia, A. Beta-propellers: associated functions and their role in human diseases. Curr Med Chem 2003;10:505–24.10.2174/0929867033368204Suche in Google Scholar PubMed

83. Love, CA, Harlos, K, Mavaddat, N, Davis, SJ, Stuart, DI, Jones, EY. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat Struct Biol 2003;10:843–8.10.1038/nsb977Suche in Google Scholar PubMed

84. Xiong, JP, Stehle, T, Diefenbach, B, Zhang, R, Dunker, R, Scott, DL. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 2001;294:339–45.10.1126/science.1064535Suche in Google Scholar PubMed PubMed Central

85. Gorrell, MD, Wang, XM, Park, J, Ajami, K, Yu, DM, Knott, H. Structure and function in dipeptidyl peptidase IV and related proteins. Adv Exp Med Biol 2006;575:45–54.10.1007/0-387-32824-6_5Suche in Google Scholar PubMed

86. Gorrell, MD. Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin Sci (Lond) 2005;108:277–92.10.1042/CS20040302Suche in Google Scholar PubMed

87. Hiramatsu, H, Yamamoto, A, Kyono, K, Higashiyama, Y, Fukushima, C, Shima, H. The crystal structure of human dipeptidyl peptidase IV (DPPIV) complex with diprotin A. Biol Chem 2004;385:561–4.10.1515/BC.2004.068Suche in Google Scholar PubMed

88. Oefner, C, D’Arcy, A, Mac Sweeney, A, Pierau, S, Gardiner, R, Dale, GE. High-resolution structure of human apo dipeptidyl peptidase IV/CD26 and its complex with 1-[([2-[(5-iodopyridin-2-yl)amino]-ethyl]amino)-acetyl]-2-cyano-(S)-pyrrolidine. Acta Crystallogr D Biol Crystallogr 2003;59:1206–12.10.1107/S0907444903010059Suche in Google Scholar PubMed

89. Weihofen, WA, Liu, J, Reutter, W, Saenger, W, Fan, H. Crystal structure of CD26 dipeptidyl-peptidase IV in complex with adenosine deaminase reveals a highly amphiphilic interface. J Biol Chem 2004;279:43330–5.10.1074/jbc.M405001200Suche in Google Scholar PubMed

90. Abbott, CA, Gorrell, MD. The family of CD26/DPP-IV and related ectopeptidases. In: Langner, J, Ansorge, S, editors. Ectopeptidases. CD13/aminopeptidase N and CD26/dipeptidylpeptidase IV in medicine and biology. New York: Kluwer Academic/Plenum Publishers; 2002. pp. 171–95.10.1007/978-1-4615-0619-5_7Suche in Google Scholar

91. Yoshimoto, T, Tsuru, D. Proline-specifc dipeptidyl aminopeptidase from Flavobacterium meningosepticum. J. Biochem 1982;91:1899–906.10.1093/oxfordjournals.jbchem.a133884Suche in Google Scholar PubMed

92. Cox, SW, Eley, BM. Detection of cathepsin B- and L-, elastase-, tryptase-, trypsin-, and dipeptidyl peptidase IV-like activities in crevicular fuid from gingivitis and periodontitis patients with peptidyl derivatives of 7-amino-4-trifuoromethyl coumarin. J Periodontal Res 1989;24:353–61.10.1111/j.1600-0765.1989.tb00882.xSuche in Google Scholar PubMed

93. Mayo, B. Molecular cloning and sequence analysis of the X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 1991;57:38–44.10.1128/aem.57.1.38-44.1991Suche in Google Scholar PubMed PubMed Central

94. Kabashima, T, Ito, K, Yoshimoto, T. Dipeptidyl peptidase IV from Xanthomonas maltophilia: sequencing and expression of the enzyme gene and characterization of the expressed enzyme. J Biochem 1996;120:1111–7.10.1093/oxfordjournals.jbchem.a021529Suche in Google Scholar PubMed

95. Ogasawara, W, Ogawa, Y, Yano, K, Okada, H, Morikawa, Y. Dipeptidyl aminopeptidase IV from Pseudomonas sp. WO24. Biosci. Biotechnol. Biochem 1996;60:2032–7.10.1271/bbb.60.2032Suche in Google Scholar PubMed

96. Shibata, Y, Miwa, Y, Hirai, K, Fujimura, S. Purification and partial characterization of a dipeptidyl peptidase from Prevotella intermedia. Oral Microbiol Immunol 2003;18:196–8.10.1034/j.1399-302X.2003.00057.xSuche in Google Scholar

97. Kuwahara, T. Genomic analysis of Bacteroides fragilisreveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci USA 2004;101:14919–24.10.1073/pnas.0404172101Suche in Google Scholar PubMed PubMed Central

98. Monod, M. Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum. Microbiology 2005;151:145–55.10.1099/mic.0.27484-0Suche in Google Scholar PubMed

99. Ogasawara, W. Isoforms of dipeptidyl aminopeptidase IV from Pseudomonassp. WO24: role of the signal sequence and overexpression in Escherichia coli. Protein Expr Purif 2005;41:241–51.10.1016/j.pep.2004.10.027Suche in Google Scholar PubMed

100. Tachi, H, Ito, H, Ichishima, E. An X-prolyl dipeptidyl-aminopeptidase from Aspergillus oryzae. Phytochemistry 1992;31:3707–9.10.1016/S0031-9422(00)97513-7Suche in Google Scholar

101. Beauvais, A. Dipeptidylpeptidase IV secreted by Aspergillus fumigatus, a fungus pathogenic to humans. Infect Immun 1997;65:3042–7.10.1128/iai.65.8.3042-3047.1997Suche in Google Scholar PubMed PubMed Central

102. Oya, H, Nagatsu, I, Nagatsu, T. Purifcation and properties ofglycylprolyl-b-naphthylamidase in human submaxillary gland. Biochim Biophys Acta 1972;258:591–9.10.1016/0005-2744(72)90251-3Suche in Google Scholar PubMed

103. Barth, A, Schulz, H, Neubert, K. Studies on the purifcation and characterization of dipeptidyl aminopeptidase IV. Acta Biol Med Ger 1974;32:157–74.Suche in Google Scholar

104. Yoshimoto, T, Walter, R. Post-proline dipeptidyl aminopeptidase (dipeptidyl aminopeptidase IV) from lamb kidney. Biochim Biophys Acta 1977;485:391–401.10.1016/0005-2744(77)90174-7Suche in Google Scholar PubMed

105. Yoshimoto, T, Kita, T, Ichinose, M, Tsuru, D. Dipeptidyl aminopeptidase IV from porcine pancreas. J Biochem 1982;92:275–82.10.1093/oxfordjournals.jbchem.a133924Suche in Google Scholar PubMed

106. Wilson, MJ, Ruhland, AR, Pryor, JL. Prostate specific origin of dipeptidylpeptidase IV (CD26) in human malignant phenotype of melanocytic cells. J Exp Med 1998;190:311–22.10.1097/00005392-199811000-00081Suche in Google Scholar

107. The Human Protein Atlas; 2003. Available from: http://www.proteinatlas.org/ENSG00000197635-DPP4/tissue+cell+type [Accessed Sep 11 2022].Suche in Google Scholar

108. Savino, W, Villa-Verde, DM, Lannes-Vieira, J. Extracellular matrix proteins in intrathymic T-cell migration and differentiation? Immunol Today 1993;14:158–61.10.1016/0167-5699(93)90278-SSuche in Google Scholar PubMed

109. Zhong, J, Maiseyeu, A, Davis, SN, Rajagopalan, S. DPP4 in cardiometabolic disease: recent insights from the laboratory and clinical trials of DPP4 inhibition. Circ Res 2015;116:1491–504.Suche in Google Scholar

110. Gorrell, MD, Gysbers, V, McCaughan, GW. CD26: a multifunctional integral membrane and secreted protein glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes 2011;52:1147–54.Suche in Google Scholar

111. Girardi, ACC, Degray, BC, Nagy, T, Biemesderfer, D, Aronson, PS. Association of Na+-H+ exchanger isoform NHE3 and dipeptidyl peptidase IV in the renal proximal tubule. J Biol Chem 2001;276:46671–7.10.1074/jbc.M106897200Suche in Google Scholar PubMed

112. Cheng, HC, Abdel-Ghany, M, Pauli, BU. A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. J Biol Chem 2003;278:24600–7.10.1074/jbc.M303424200Suche in Google Scholar PubMed

113. Ohnuma, K, Yamochi, T, Uchiyama, M, Nishibashi, K, Yoshikawa, N, Shimizu, N, et al.. CD26 up-regulates expression of CD86 on antigenpresenting cells by means of caveolin-1. Proc Natl Acad Sci USA 2004;101:14186–91.10.1073/pnas.0405266101Suche in Google Scholar PubMed PubMed Central

114. Pascual, I, López, A, Gómez, H, Chappé, M, Saroyán, A, Gonzáles, Y. Screening of inhibitors of porcine dipeptidyl peptidase IV activity in aqueous extracts from marine organisms. Enzym Microb Technol 2007;40:414–9.Suche in Google Scholar

115. González, L, Sánchez, RE, Rojas, L, Pascual, I, García-Fernández, R, Chávez, MA, et al.. Screening of protease inhibitory activity in aqueous extracts of marine invertebrates from Cuban coast. Am J Anal Chem 2016;7:319–31.10.4236/ajac.2016.74030Suche in Google Scholar

116. Pascual, I, Arrebola, Y, Almeida, F, Valdés, ME, Rivera, L, Hernández, A, et al.. Marine and coastal organisms: a source of biomedically relevant dipeptidyl peptidase IV inhibitors. Rev. Cuba Cienc biol 2020;8:1–16.Suche in Google Scholar

117. Maslov, I, Zinevich, TV, Kirichenko, OG, Trukhan, MV, Shorshnev, SV, Tuaeva, NO, et al.. Synthesis and Biological Evaluation of Neogliptin, a Novel 2 Azabicyclo[2.2.1]heptane-Based Inhibitor of Dipeptidyl Peptidase-4 (DPP-4). Pharmaceuticals (Basel) 2022;15:273.10.3390/ph15030273Suche in Google Scholar PubMed PubMed Central

118. Itou, M, Kawaguchi, T, Taniguchi, E, Sata, M. Dipeptidyl peptidase-4: a key player in chronic liver disease. World J Gastroenterol 2013;19:2298–306.10.3748/wjg.v19.i15.2298Suche in Google Scholar PubMed PubMed Central

119. Anderluh, M, Kocic, G, Tomovic, K, Kocic, R, Deljanin-Ilic, M, Smelcerovic, A. Cross-talk between the dipeptidyl peptidase-4 and stromal CellDerived factor-1 in stem cell homing and myocardial repair: potential impact of dipeptidyl peptidase-4 inhibitors. Pharmacol Ther 2016;167:100–7.10.1016/j.pharmthera.2016.07.009Suche in Google Scholar PubMed

120. Beckers, PAJ, Gielis, JF, Van Schil, PE, Adriaensen, D. Lung ischemia reperfusion injury: the therapeutic role of dipeptidyl peptidase 4 inhibition. Ann Transl Med 2017;5:129.10.21037/atm.2017.01.41Suche in Google Scholar PubMed PubMed Central

121. Nausch, I, Mentlein, R, Heymann, E. The degradation of bioactive peptides and proteins by dipeptidil peptidase IV from human placenta. Biol Chem 1990;371:113–8.10.1515/bchm3.1990.371.2.1113Suche in Google Scholar PubMed

122. Ahrén, B, Hughes, T. IInhibition of dipeptidil peptidase-4 augments insulin secretion in response to exogenously administrated glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, PItuitary adenylate cyclase-activating polipeptide, and gastrin-releasing peptide in mice. Endocrinology 2004;146:2055–9.10.1210/en.2004-1174Suche in Google Scholar PubMed

123. Hu, CX, Huang, H, Zhang, L, Huang, Y, Shen, ZF, Cheng, KD. A new screening method based on yeast-expressed human dipeptidyl peptidase IV and discovery of novel inhibitors. Biotechnol Lett 2009;31:979–84.10.1007/s10529-009-9963-ySuche in Google Scholar PubMed

124. Durinx, C, Lambeir, AM, Bosmans, E, Falmagne, JB, Berghmans, R, Haemers, A. Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur J Biochem 2000;267:5608–13.10.1046/j.1432-1327.2000.01634.xSuche in Google Scholar PubMed

125. Bermpohl, F, Loster, K, Reutter, W, Baum, O. Rat dipeptidyl peptidase IV (DPP IV) exhibits endopeptidase activity with specificity for denatured fibrillar collagens. FEBS Lett 1998;428:152–6.10.1016/S0014-5793(98)00515-8Suche in Google Scholar

126. Lambeir, A, Paul, P, Durinx, C, Bal, G, Senten, K, Augustyns, K, et al.. Kinetic Investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J Biol Chem 2001;276:29839–45.10.1074/jbc.M103106200Suche in Google Scholar PubMed

127. Orskov, C, Bersanis, M, Johnsen, AH, Hajrupll, P, Holst, J. Complete sequences of glucagon-like peptide-1 from human and pig small intestine. J Biol Chem 1989;264:12826–9.10.1016/S0021-9258(18)51561-1Suche in Google Scholar

128. Pauly, R, Rosche, F, Wermann, M, McIntosh, CHS, Pederson, RA, Demuth, HU. Investigation of glucose-dependent insulinotropic polypeptide-(1– 42) and glucagon-like peptide-1-(7–36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. J Biol Chem 1996;271:23222–9.10.1074/jbc.271.38.23222Suche in Google Scholar PubMed

129. Hui, H, Farilla, L, Merkel, P, Perfetti, R. The short half-life of glucagón-like paptide-1 in plasma does not reflect its long-lasting beneficial effects. Eur J Endocrinol 2002;146:863–9.10.1530/eje.0.1460863Suche in Google Scholar PubMed

130. Zhu, L, Tamvakopoulos, C, Xie, D, Dragovic, J, Shen, X, Fenyk-Melody, JE, et al.. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides. J Biol Chem 2003;278:22418–23.10.1074/jbc.M212355200Suche in Google Scholar PubMed

131. Alters, S, McLaughlin, B, Spink, B, Lachiyan, T, Wang, C, Podust, V, et al.. Correction: GLP2-2G-XTEN: a pharmaceutical protein with improved serum half-life and efficacy in rats Crohn’s disease model. PLoS One 2013;8:1371.10.1371/annotation/5c7138bd-5602-466d-8daf-e75e0b7d7fdbSuche in Google Scholar PubMed PubMed Central

132. Irwin, N, Flatt, P. Chapter gastric inhibitory polipeptide. In: Williams Textbook of Endocrinology, 12th ed. Philadelphia, United States: Saunders; 2012. pp. 1697–716.Suche in Google Scholar

133. Birk, S, Sitarz, J, Petersen, K, Oturai, P, Kruuse, C, Fahrenkrug, J, et al.. The effect of interavenous PACAP38 on cerebral hemodynamics in healthy volunteers. Regul Pept 2007;140:185–91.10.1016/j.regpep.2006.12.010Suche in Google Scholar PubMed

134. Bourgault, S, Vaudry, D, Botia, B, Couvineau, A, Laburthe, M, Vaudry, H, et al.. Nobel stable PACAP analogs with potent activity towards the PAC1 receptor. Peptides 2008;29:919–32.10.1016/j.peptides.2008.01.022Suche in Google Scholar PubMed

135. Pocai, A. Action and therapeutic potential of oxytomodulin. Mol Metab 2013;3:241–51.10.1016/j.molmet.2013.12.001Suche in Google Scholar PubMed PubMed Central

136. Kolts, B, McGuian, J. Radioimmunoassay measurement of secretin half-life time in man. Gastroenterology 1977;72:55–70.10.1016/S0016-5085(77)80303-XSuche in Google Scholar

137. Boissard, C, Marie, J, Hejblum, G, Gespach, C, Rosselin, G. Vasoactive intestinal peptide receptor regulation and reversible desensibilization in human colonic carcinoma cells in culture. Cancer Res 1986;46:4406–13.Suche in Google Scholar

138. Frohman, L, Downs, T, Williams, T, Heimer, E, Pan, Y, Felix, A. Rapid enzymatic degradation of growth hormone-relasing hormone by plasma in vitro and in vivo to a biologically inactive, N-terminally cleaved product. J Clin Invest 1986;78:906–13.10.1172/JCI112679Suche in Google Scholar PubMed PubMed Central

139. Wojcik, E, Kulpa, J. Pro-gastrin-releasing peptide (ProGRP) as a biomarker in small-cell lung cancer diagnosis, monitoring and evaluation of treatment response. Lung Cancer 2017;8:231–40.10.2147/LCTT.S149516Suche in Google Scholar PubMed PubMed Central

140. Mashaghi, A, Marmalidou, A, Mohsen, T, Grace, P, Pothoulakis, C, Dana, R. Neuropeptide substance P and the immune response. Cell Mol Life Sci 2016;73:4249–64.10.1007/s00018-016-2293-zSuche in Google Scholar PubMed PubMed Central

141. Takemoto, K, Neuropeptide, Y. Complete amino acid sequence of the brain peptide. Proc Natl Acad Sci USA 1982;79:5485–9.10.1073/pnas.79.18.5485Suche in Google Scholar PubMed PubMed Central

142. Ahlborg, G, Weitzberg, E, Sollevi, A, Lundberg, J. Splanchnic and renal vasoconstrictor and metabolic responses to neuropeptide Y in resting and exercising man. Acta Physiol Scand 1992;145:139–49.10.1111/j.1748-1716.1992.tb09349.xSuche in Google Scholar PubMed

143. Takemoto, K. Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc Natl Acad Sci USA 1982;79:2514–8.10.1073/pnas.79.8.2514Suche in Google Scholar PubMed PubMed Central

144. Adrian, T, Sagor, G, Savage, A, Bacarese-Hamilton, A, Hall, G, Bloom, S. Peptide YY kinetics and effects on blood pressure and circulating pancreatic and gastrointestinal hormones and metabolites in man. J Clin Endocrinol Metab 1986;63:803–7.10.1210/jcem-63-4-803Suche in Google Scholar PubMed

145. Uniprot. The amino acid sequence of human chorionic gonadotropin the alpha subunit and the beta subunit; 2022. Available from: http://uniprot.org/citations/1150658 [Accessed 14 Oct 2022].Suche in Google Scholar

146. Tan, E, Hershman, J. Chapter hyperthyroidism and trophoblastic disease. In: Frederic, E, Radovick, S, editors. Clinical management of thyroid disease. Amsterdam, Netherlands: Elsevier B.V; 2009. pp. 407–23.10.1016/B978-1-4160-4745-2.00016-XSuche in Google Scholar

147. Genscript. Human pancreatic polipeptide; 2022. Available from: http://www.genscript.com/peptide/RP10398-Pancreatic_Polypeptide_human.html [Accessed 14 Oct 2022].Suche in Google Scholar

148. Cuenco, J, Minnion, J, Tan, T, Scott, R, Germain, N, Ling, Y, et al.. Degradation paradigm of the gut hormone, pancreatic polipetide, by hepatic and renal peptidases. Endocrinology 2017;158:1755–65.10.1210/en.2016-1827Suche in Google Scholar PubMed PubMed Central

149. Gianoulakis, C, Seidah, N, Routhier, R, Chrétien, M. Biosynthesis and characterization of adenocorticotropic hormone, alpha-melanocite-stimulating hormone, and NH2-terminal fragment of the adenocorticotropic hormone/beta-lipoprotein precursor from rats pars intermedia. J Biol Chem 1979;254:1903–6.10.1016/S0021-9258(19)86402-5Suche in Google Scholar

150. Veldhuis, J, Iranmanesh, A, Naftolowitz, D, Tathan, N, Cassidy, F, Carroll, B. Corticotropin secretory dynamics in humans under low glucocorticoid feedbac. J Clin Endocrinol Metab 2001;86:5554–63.10.1210/jcem.86.11.8046Suche in Google Scholar PubMed

151. Mentlein, R, Gallwits, B, Schmidt, WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagons-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993;213:829–35.10.1111/j.1432-1033.1993.tb17986.xSuche in Google Scholar PubMed

152. Kiefer, TJ, McIntosh, CH, Pederson, RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagons-like peptide 1 in vitroand in vivoby dipeptidyl peptidase IV. Endocrinology 1995;136:3585–96.10.1210/endo.136.8.7628397Suche in Google Scholar PubMed

153. Combettes, M. GLP-1 and type 2 diabetes: physiology and new clinical advances. Curr Opin Pharmacol 2006;6:598–605.10.1016/j.coph.2006.08.003Suche in Google Scholar PubMed

154. ChemSpider; 2022. Available from: http://chemispider.com/Chemical-Structure.sitagliptin.html [Accessed 14 Oct 2022].Suche in Google Scholar

155. Zhou, ST, Cui, W, Kong, L, Yang, X. Efficacy of sitagliptin on Nonalcoholic fatty liver disease in high-fat-diet-fed diabetic mice. Curr Med Sci 2022;42:513–9.10.1007/s11596-022-2573-9Suche in Google Scholar PubMed

156. Trocha, M, Fleszar, MG, Fortuna, P, Lewandowski, L, Gostomska-Pampuch, K, Sozanski, T, et al.. Sitagliptin modulates oxidative, nitrative and halogenative stress and inflammatory response in rat model of hepatic ischemia-reperfusion. Antioxidants 2021;10:1168.10.3390/antiox10081168Suche in Google Scholar PubMed PubMed Central

157. Prakash, S, Rai, U, Kosuru, R, Tiwari, V, Singh, S. Amelioration of diet-induced metabolic syndrome and fatty liver with sitagliptin via regulation of adipose tissue inflammation and hepatic Adiponectin/AMPK levels in mice. Biochimie 2020;168:198–209.10.1016/j.biochi.2019.11.005Suche in Google Scholar PubMed

158. ChemSpider; 2022. Available from: http://chemispider.com/Chemical-Structure.alogliptin.html [Accessed 14 Oct 2022].Suche in Google Scholar

159. White, JR. Alogliptin for the treatment of type 2 diabetes. Drugs Today 2011;47:99–107.10.1358/dot.2011.47.2.1583163Suche in Google Scholar PubMed

160. Agency, E.M.: summary of product characteristics; 2022. Available from: https://www.ema.europa.eu/en/documents/productinformation/vipidia-eparproductinformation.en.pdf [Accessed 10 Oct 2022].Suche in Google Scholar

161. El-Sahar, AE, Shiha, NA, El Sayed, NS, Ahmed, LA. Alogliptin attenuates lipopolysaccharide-induced neuroinflammation in mice through modulation of TLR4/MYD88/NF-kappaB and miRNA-155/SOCS-1 signaling pathways. Int J Neuropsychopharmacol 2021;24:158–69.10.1093/ijnp/pyaa078Suche in Google Scholar PubMed PubMed Central

162. Salama, RM, Nasr, MM, Abdelhakeem, JI, Roshdy, OK, ElGamal, MA. Alogliptin attenuates cyclophosphamide-induced nephrotoxicity: a novel therapeutic approach through modulating MAP3K/JNK/SMAD3 signaling cascade. Drug Chem Toxicol 2022;45:1254–63.10.1080/01480545.2020.1814319Suche in Google Scholar PubMed

163. ChemSpider; 2022. Available from: http://chemispider.com/Chemical-Structure.vildaliptin.html [Accessed 14 Oct 2022].Suche in Google Scholar

164. Agency, E.M.: summary of product characteristics; 2022. Available from: https://www.ema.europa.eu/en/documents/product-information/galvus-eparproduct-information_en.pdf [Accessed 10 Oct 2022].Suche in Google Scholar

165. Yang, M, Chen, X, Chen, X, Liu, H, Zhang, Z. Protective effect of vildagliptin on myocardial injury in septic rats by regulating TLR-4/NF-kappaB pathway. Minerva Med 2021;112:522–4.10.23736/S0026-4806.19.06242-6Suche in Google Scholar PubMed

166. Khalil, R, Shata, A, Abd El-Kader, EM, Sharaf, H, Abdo, WS, Amin, NA, et al.. Vildagliptin, a DPP-4 inhibitor, attenuates carbon tetrachloride-induced liver fibrosis by targeting ERK1/2, p38alpha, and NF-kappaB signaling. Toxicol Appl Pharmacol 2020;407:115246.10.1016/j.taap.2020.115246Suche in Google Scholar PubMed

167. Liu, Y, Qi, Y. Vildagliptin, a CD26/DPP4 inhibitor, ameliorates bleomycin-induced pulmonary fibrosis via regulating the extracellular matrix. Int Immunopharmacol 2020;87:106774.Suche in Google Scholar

168. ChemSpider; 2022. Available from: http://chemispider.com/Chemical-Structure.saxagliptin.html [Accessed 14 Oct 2022].Suche in Google Scholar

169. Mulvihill, EE, Drucker, DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev 2014;35:992–1019.10.1210/er.2014-1035Suche in Google Scholar PubMed PubMed Central

170. Chen, Z, Yu, J, Fu, M, Dong, R, Yang, Y, Luo, J, et al.. Dipeptidyl peptidase-4 inhibition improves endothelial senescence by activating AMPK/SIRT1/Nrf2 signaling pathway. Biochem Pharmacol 2020;177:113951.Suche in Google Scholar

171. ChemSpider; 2022. Available from: http://chemispider.com/Chemical-Structure.linagliptin.html [Accessed 14 Oct 2022].Suche in Google Scholar

172. Graefe-Mody, U, Retlich, S, Friedrich, C. Clinical pharmacokinetics and pharmacodynamics of linagliptin. Clin Pharmacokinet 2012;51:411–27.10.2165/11630900-000000000-00000Suche in Google Scholar PubMed

173. Baranov, O, Kahle, M, Deacon, CF, Holst, JJ, Nauck, MA. Feedback suppression of meal-induced glucagon-like peptide-1 (GLP-1) secretion mediated through elevations in intact GLP-1 caused by dipeptidyl peptidase-4 inhibition: a randomized, prospective comparison of sitagliptin and vildagliptin treatment. Diabetes Obes Metab 2016;18:1100–9.10.1111/dom.12706Suche in Google Scholar PubMed

174. Mayer, AL, Scheitacker, I, Ebert, N, Klein, T, Amann, K, Daniel, C. The dipeptidyl peptidase 4 inhibitor linagliptin ameliorates renal injury and accelerated resolution in a rat model of crescentic nephritis. Br J Pharmacol 2021;178:878–95.10.1111/bph.15320Suche in Google Scholar PubMed

175. Zhang, G, Kim, S, Gu, X, Yu, SP, Wei, L. DPP-4 inhibitor linagliptin is neuroprotective in hyperglycemic mice with stroke via the AKT/mTOR pathway and anti-apoptotic effects. Neurosci Bull 2020;36:407–18.10.1007/s12264-019-00446-wSuche in Google Scholar PubMed PubMed Central

176. Aboulmagd, YM, El-Bahy, AAZ, Menze, ET, Azab, SS, El-Demerdash, E. Role of linagliptin in preventing the pathological progression of hepatic fibrosis in high fat diet and streptozotocin-induced diabetic obese rats. Eur J Pharmacol 2020;881:173224.10.1016/j.ejphar.2020.173224Suche in Google Scholar PubMed

177. Schwehm, C, Li, J, Song, H, Hu, X, Kellam, B, Stocks, MJ. Synthesis of new DPP-4 inhibitors based on a novel tricyclic scaffold. ACS Med Chem Lett 2015;6:324–8.10.1021/ml500503nSuche in Google Scholar PubMed PubMed Central

178. Berger, JP, SinhaRoy, R, Pocai, A, Kelly, TM, Scapin, G, Gao, YD, et al.. A comparative study of the binding properties, dipeptidyl peptidase-4 (DPP-4) inhibitory activity and glucose-lowering efficacy of the DPP-4 inhibitors alogliptin, linagliptin, saxagliptin, sitagliptin and vildagliptin in mice. Endocrinol Diabetes Metab 2018;1:e00002.10.1002/edm2.2Suche in Google Scholar PubMed PubMed Central

179. Stano, J, Kovacs, P, Kakoniova, D, Kirilova, ND, Komov, VP. Activity of dipeptidyl peptidase IV in gingseng callus culture. Biologia 1994;49:353–7.Suche in Google Scholar

180. Pérez-Macedonio, CP, Flores-Alfaro, E, Alarcón-Romero, LC, Vences-Velázquez, A, Castro-Alarcón, N, MartínezMartínez, E, et al.. CD14 and CD26 from serum exosomes are associated with type 2 diabetes, exosomal Cystatin C and CD14 are associated with metabolic syndrome and atherogenic index of plasma. PeerJ 2022;10:e13656.10.7717/peerj.13656Suche in Google Scholar PubMed PubMed Central

181. Bo, L, Yan, R, Quian, Z, Shi, H, Yun, D, Jing, W, et al.. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, attenuates apoptosis of vascular smooth muscle cells and reduces atherosclerosis in diabetic apolipoprotein E-deficient mice. Vasc Pharmacol 2021;140:106854.10.1016/j.vph.2021.106854Suche in Google Scholar PubMed

182. Conarello, S, Li, Z, Ronan, J. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Natl Acad Sci USA 2003;100:6825–30.10.1073/pnas.0631828100Suche in Google Scholar PubMed PubMed Central

183. Tremblay, AJ, Lamarche, B, Deacon, CF, Weisnagel, SJ, Couture, P. Effect of sitagliptin therapy on postprandial lipoprotein levels in patients with type 2 diabetes. Diabetes Obes Metab 2011;13:366–73.10.1111/j.1463-1326.2011.01362.xSuche in Google Scholar PubMed

184. Rohmann, N, Schlicht, K, Geisler, C, Hollstein, T, Knappe, C, Krause, L. Circulating sDPP-4 is increased in obesity and insulin resistance but is not related to systemic metabolic inflammation. J Clin Endocrinol Metab 2021;106:e592–e601.10.1210/clinem/dgaa758Suche in Google Scholar PubMed

185. Barchetta, I, Ceccarelli, V, Cimini, FA, Barone, E, Sentinelli, F, Coluzzi, M. Circulating dipeptidyl peptidase-4 is independently associated with the presence and severity of NAFLD/NASH in individuals with and without obesity and metabolic disease. J Endocrinol Invest 2021;44:979–88.10.1007/s40618-020-01392-5Suche in Google Scholar PubMed PubMed Central

186. Christopherson, KW, Cooper, S, Broxmeyer, HE. Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood 2003;101:4680–6.10.1182/blood-2002-12-3893Suche in Google Scholar PubMed

187. Chistopherson, KW, Cooper, S, Hangoc, G, Broxmeyer, HE. CD26 isessential for normal G-CSF-induced progenitor cell mobilization as determined by CD26−/− mice. Exp Hematol 2003;31:1126–34.10.1016/S0301-472X(03)00256-XSuche in Google Scholar

188. Morimoto, C, Torimoto, Y, Levinson, G, Rudd, CE, Schrieber, M, Dang, NH, et al.. 1F7, a novel cell surface molecule, involved in helper function of CD4 cells. J Immunol 1989;143:3430–9.10.4049/jimmunol.143.11.3430Suche in Google Scholar

189. Waumans, Y, Baerts, L, Kehoe, K, Lambeir, AM, De Meester, I. The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Front Immunol 2015;6:387.10.3389/fimmu.2015.00387Suche in Google Scholar PubMed PubMed Central

190. Bengsch, B, Seigel, B, Flecken, T, Wolanski, J, Blum, HE, Thimme, R. Human Th17 cells express high levels of enzymatically active dipeptidylpeptidase IV (CD26). J Immunol 2012;188:5438–47.Suche in Google Scholar

191. Dang, NH, Hafler, DA, Schlossman, SF, Breitmeyer, JB. FcR-mediated crosslinking of Ta1 (CDw26) induces human T lymphocyte activation. Cell Immunol 1990;125:42–57.10.1016/0008-8749(90)90061-USuche in Google Scholar PubMed

192. Dang, NH, Torimoto, Y, Deusch, K, Schlossman, SF, Morimoto, C. Comitogenic effect of solid-phase immobilized anti-1F7 on human CD4 T cell activation via CD3 and CD2 pathways. J Immunol 1990;144:4092–100.10.4049/jimmunol.144.11.4092Suche in Google Scholar

193. Dang, NH, Torimoto, Y, Sugita, K, Daley, JF, Schow, P, Prado, C, et al.. Cell surface modulation of CD26 by anti-1F7 monclonal antibody: analysis of surface expression and human T cell activation. J Immunol 1990;145:3963–71.10.4049/jimmunol.145.12.3963Suche in Google Scholar

194. Torimoto, Y, Dang, NH, Tanaka, T, Prado, C, Schlossman, SF, Morimoto, C. Biochemical characterization of CD26 (dipeptidyl peptidase IV): functional comparison of distinct epitopes recognized by various anti-CD26 monoclonal antibodies. Mol Immunol 1992;29:183–92.10.1016/0161-5890(92)90099-JSuche in Google Scholar

195. Torimoto, Y, Dang, NH, Vivier, E, Tanaka, T, Schlossman, SF, Morimoto, C. Coassociation of CD26 (dipeptidyl peptidase IV) with CD45 on the surface of human T lymphocytes. J Immunol 1991;147:2514–7.10.4049/jimmunol.147.8.2514Suche in Google Scholar

196. Ishii, T, Ohnuma, K, Marakami, A, Takasawa, N, Kobayashi, S, Dang, NH, et al.. CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO. Proc Natl Acad Sci USA 2001;98:12138–43.10.1073/pnas.211439098Suche in Google Scholar PubMed PubMed Central

197. Kobayashi, S, Ohnuma, K, Uchiyama, M, Iino, K, Iwata, S, Dang, NH, et al.. Association of CD26 with CD45RA outside lipid rafts attenuates cord blood T-cell activation. Blood 2004;103:1002–10.10.1182/blood-2003-08-2691Suche in Google Scholar PubMed

198. Hatano, R, Ohnuma, K, Yamamoto, J, Dang, NH, Morimoto, C. CD26-mediated Co-stimulation in human CD8(+) T cells provokes effector function via pro-inflammatory cytokine production. Immunology 2013;138:165–72.10.1111/imm.12028Suche in Google Scholar PubMed PubMed Central

199. Green, H, Chan, T. Pyrimidine starvation induced by adenosine infibroblasts and lymphoid cells: role of adenosine deaminase. Science 1973;182:836–7.10.1126/science.182.4114.836Suche in Google Scholar PubMed

200. Brezinschek, RI, Lipsky, PE, Galea, P, Vita, R, Oppenheimer-Marks, N. Phenotypic characterization of CD4+ T cells that exhibit a transendothelial migratory capacity. J Immunol 1995;154:3062–77.10.4049/jimmunol.154.7.3062Suche in Google Scholar

201. Willheim, M, Ebner, C, Baier, K, Kern, W, Schrattbauer, K, Thien, R. Cell surface characterization of T lymphocytes and allergen-specific t cell clones: correlation of CD26 expression with T(H1) subsets. J Allergy Clin Immunol 1997;100:348–55.10.1016/S0091-6749(97)70248-3Suche in Google Scholar PubMed

202. Pacheco, R, Martinez-Navio, JM, Lejeune, M, Climent, N, Oliva, H, Gatell, JM, et al.. CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc Natl Acad Sci USA 2005;102:9583–8.10.1073/pnas.0501050102Suche in Google Scholar PubMed PubMed Central

203. Bengsch, B, Seigel, B, Flecken, T, Wolanski, J, Blum, HE, Thimme, R. Human Th17 cells express high levels of enzymatically active dipeptidylpeptidase IV (CD26). J Immunol 2012;188:5438–47.10.4049/jimmunol.1103801Suche in Google Scholar PubMed

204. Yamada, Y, Jang, JH, De Meester, I, Baerts, L, Vliegen, G, Inci, I, et al.. CD26 costimulatory blockade improves lung allograft rejection and is associated with enhanced interleukin-10 expression. J Heart Lung Transplant 2016;35:508–17.10.1016/j.healun.2015.11.002Suche in Google Scholar PubMed

205. Pinheiro, MM, Stoppa, CL, Valduga, CJ, Okuyama, CE, Gorjao, R, Pereira, RM, et al.. Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 differentiation in vitro. Eur J Pharmaceut Sci 2017;100:17–24.10.1016/j.ejps.2016.12.040Suche in Google Scholar PubMed

206. Ghorpade, DS, Ozcan, L, Zheng, Z, Nicoloro, SM, Shen, Y, Chen, E, et al.. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature 2018;555:673–7.10.1038/nature26138Suche in Google Scholar PubMed PubMed Central

207. Nieto-Fontarigo, JJ, González-Barcala, FJ, San José, E, Arias, P, Nogueira, M, Salgado, FJ. CD26 and asthma: a comprehensive review. Clin Rev Allergy Immunol 2019;56:139–60.10.1007/s12016-016-8578-zSuche in Google Scholar PubMed PubMed Central

208. Christopherson, KW, Hangoc, G, Mantel, CR, Broxmeyer, HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004;305:1000–3.10.1126/science.1097071Suche in Google Scholar PubMed

209. Lee, DS, Lee, ES, Alam, MM, Jang, JH, Lee, HS, Oh, H. Soluble DPP-4 up-regulates toll-like receptors and augments inflammatory reactions, which are ameliorated by vildagliptin or mannose-6-phosphate. Metabolism 2016;65:89–101.10.1016/j.metabol.2015.10.002Suche in Google Scholar PubMed

210. Wronkowitz, N, Görgens, SW, Romacho, T, Villalobos, LA, Sánchez-Ferrer, CF, Peiró, C. Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2. Biochim Biophys Acta 2014;1842:1613–21.10.1016/j.bbadis.2014.06.004Suche in Google Scholar PubMed

211. Kawasaki, T, Chen, W, Htwe, YM, Tatsumi, K, Dudek, SM. DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2018;315:L834–l845.10.1152/ajplung.00031.2018Suche in Google Scholar PubMed

212. Zhao, X, Zhang, K, Daniel, P, Wisbrun, N, Fuchs, H, Fan, H. Delayed allogeneic skin graft rejection in CD26-deficient mice. Cell Mol Immunol 2019;16:557–67.10.1038/s41423-018-0009-zSuche in Google Scholar PubMed PubMed Central

213. Bauvois, B, Dauzonne, D. Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects. Med Res Rev 2006;26:88–130.10.1002/med.20044Suche in Google Scholar PubMed PubMed Central

214. Wang, Q, Wong, G, Lu, G. MERS-CoV spike protein: targets for vaccines and therapeutics. Antiviral Res 2016;133:165–77.10.1016/j.antiviral.2016.07.015Suche in Google Scholar PubMed PubMed Central

215. Mucha, A, Drag, M, Dalton, JP, Kafarski, P. Metallo-aminopeptidase inhibitors. Biochimie 2010;92:1509–29.10.1016/j.biochi.2010.04.026Suche in Google Scholar PubMed PubMed Central

216. Raj, VS, Mou, H, Smits, SL, Dekkers, DH, Müller, MA, Dijkman, R. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013;495:251–4.10.1038/nature12005Suche in Google Scholar PubMed PubMed Central

217. Ohnuma, K, Haagmans, BL, Hatano, R, Raj, VS, Mou, H, Iwata, S. Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody. J Virol 2013;87:13892–9.10.1128/JVI.02448-13Suche in Google Scholar PubMed PubMed Central

218. Inn, KS, Kim, Y, Aigerim, A, Park, U, Hwang, ES, Choi, MS. Reduction of soluble dipeptidyl peptidase 4 levels in plasma of patients infected with Middle East respiratory syndrome coronavirus. Virology 2018;518:324–7.10.1016/j.virol.2018.03.015Suche in Google Scholar PubMed PubMed Central

219. Algaissi, A, Agrawal, AS, Han, S, Peng, BH, Luo, C, Li, F. Elevated human dipeptidyl-peptidase 4 expression reduces the susceptibility of hDPP4 transgenic mice to Middle East respiratory syndrome coronavirus infection and disease. J Infect Dis 2019;219:829–35.10.1093/infdis/jiy574Suche in Google Scholar PubMed PubMed Central

220. Vankadari, N, Wilce, JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect 2020;9:601–4.10.1080/22221751.2020.1739565Suche in Google Scholar PubMed PubMed Central

221. Tai, W, He, L, Zhang, X, Pu, J, Voronin, D, Jiang, S. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral Attachment inhibitor and vaccine. Cell Mol Immunol 2020;17:613–20.10.1038/s41423-020-0400-4Suche in Google Scholar PubMed PubMed Central

222. Zhou, F, Yu, T, Du, R, Fan, G, Liu, Y, Liu, Z. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–62.10.1016/S0140-6736(20)30566-3Suche in Google Scholar PubMed PubMed Central

223. Solerte, SB, D’addio, F, Trevisan, R, Lovati, E, Rossi, A, Pastore, I. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: a multicenter, case-control, retrospective, observational study. Diabetes Care 2020;43:2999–3006.10.2337/dc20-1521Suche in Google Scholar PubMed PubMed Central

224. Solerte, SB, Di Sabatino, A, Galli, M, Fiorina, P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabeto 2020;57:779–83.10.1007/s00592-020-01539-zSuche in Google Scholar PubMed PubMed Central

225. Pal, R, Banerjee, M, Mukherjee, S, Bhogal, RS, Kaur, A, Bhadada, SK. Dipeptidyl peptidase-4 inhibitor use and mortality in COVID-19 patients with diabetes mellitus: an updated systematic review and MetaAnalysis. Ther Adv Endocrinol Metab 2021;12:2042018821996482.10.1177/2042018821996482Suche in Google Scholar PubMed PubMed Central

226. Rakhmat, II, Kusmala, YY, Handayani, DR, Juliastuti, H, Nawangsih, EN, Wibowo, A. Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19) – a systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr 2021;15:777–82.10.1016/j.dsx.2021.03.027Suche in Google Scholar PubMed PubMed Central

227. Zhou, JH, Wu, B, Wang, WX, Lei, F, Cheng, X, Qin, JJ. No significant association between dipeptidyl peptidase-4 inhibitors and adverse outcomes of COVID-19. World J Clin Cases 2020;8:5576–88.10.12998/wjcc.v8.i22.5576Suche in Google Scholar PubMed PubMed Central

228. Roussel, R, Darmon, P, Pichelin, M, Goronflot, T, Abouleka, Y, Ait Bachir, L. Use of dipeptidyl peptidase-4 inhibitors and prognosis of COVID-19 in hospitalized patients with type 2 diabetes: a propensity score analysis from the CORONADO study. Diabetes Obes Metab 2021;23:1162–72.10.1111/dom.14324Suche in Google Scholar PubMed PubMed Central

229. Strollo, R, Maddaloni, E, Dauriz, M, Pedone, C, Buzzetti, R, Pozzilli, P. Use of DPP4 inhibitors in Italy does not correlate with diabetes prevalence among COVID-19 deaths. Diabetes Res Clin Pract 2021;171:108444.10.1016/j.diabres.2020.108444Suche in Google Scholar PubMed PubMed Central

230. Hariyanto, TI, Kurniawan, A. Dipeptidyl peptidase 4 (DPP4) inhibitor and outcome from coronavirus disease 2019 (COVID-19) in diabetic patients: a systematic review, meta-analysis, and meta-regression. J Diabetes Metab Disord 2021;20:1–8.10.1007/s40200-021-00777-4Suche in Google Scholar PubMed PubMed Central

231. Shiobara, T, Chibana, K, Watanabe, T, Arai, R, Horigane, Y, Nakamura, Y. Dipeptidyl peptidase-4 is highly expressed in bronchial epithelial cells of untreated asthma and it increases cell proliferation along with fibronectin production in airway constitutive cells. Respir Res 2016;17:28.10.1186/s12931-016-0342-7Suche in Google Scholar PubMed PubMed Central

232. Poole, A, Urbanek, C, Eng, C, Schageman, J, Jacobson, S, O’connor, BP. Dissecting childhood asthma with nasal transcriptomics distinguishes subphenotypes of disease. J Allergy Clin Immunol 2014;133:670–8.10.1016/j.jaci.2013.11.025Suche in Google Scholar PubMed PubMed Central

233. Ranade, K, Pham, TH, Damera, G, Brohawn, PZ, Pilataxi, F, Kuziora, M. Dipeptidyl peptidase-4 (DPP-4) is a novel predictive biomarker for the investigational anti-IL-13 targeted therapy Tralokinumab. Am J Respir Crit Care Med 2016;193:A4332.Suche in Google Scholar

234. Mitchell, J, Dimov, V, Townley, RG. IL-13 and the IL-13 receptor as therapeutic targets for asthma and allergic disease. Curr Opin Investig Drugs 2010;11:527–34.Suche in Google Scholar

235. Nader, MA. Inhibition of airway inflammation and remodeling by sitagliptin in murine chronic asthma. Int Immunopharmacol 2015;29:761–9.10.1016/j.intimp.2015.08.043Suche in Google Scholar PubMed

236. Helal, MG, Megahed, NA, Abd Elhameed, AG. Saxagliptin Mitigates airway inflammation in a mouse model of acute asthma via modulation of NF-kB and TLR4. Life Sci 2019;239:117017.10.1016/j.lfs.2019.117017Suche in Google Scholar PubMed

237. Anderluh, M, Kocic, G, Tomovic, K, Kocic, H, Smelcerovic, A. DPP-4 inhibition: a novel therapeutic approach to the treatment of pulmonary hypertension. Pharmacol Ther 2019;201:1–7.10.1016/j.pharmthera.2019.05.007Suche in Google Scholar PubMed

238. Li, Y, Yang, L, Dong, L, Yang, ZW, Zhang, J, Zhang, SL. Crosstalk between the Akt/mTORC1 and NF-Κb signaling pathways promotes hypoxia-induced pulmonary hypertension by increasing DPP4 expression in PASMCs. Acta Pharmacol Sin 2019;40:1322–33.10.1038/s41401-019-0272-2Suche in Google Scholar PubMed PubMed Central

239. Xu, J, Wang, J, He, M, Han, H, Xie, W, Wang, H. Dipeptidyl peptidase IV (DPP-4) inhibition alleviates pulmonary arterial remodeling in experimental pulmonary hypertension. Lab Invest 2018;98:1333–46.10.1038/s41374-018-0080-1Suche in Google Scholar PubMed

240. Wang, J, Yu, M, Xu, J, Cheng, Y, Li, X, Wei, G. Glucagon-like peptide-1 (GLP-1) mediates the protective effects of dipeptidyl peptidase IV inhibition on pulmonary hypertension. J Biomed Sci 2019;26:6.10.1186/s12929-019-0496-ySuche in Google Scholar PubMed PubMed Central

241. Deacon, CF. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front Endocrinol 2019;10:80.10.3389/fendo.2019.00080Suche in Google Scholar PubMed PubMed Central

242. Gangadharan Komala, M, Gross, S, Zaky, A, Pollock, C, Panchapakesan, U. Saxagliptin reduces renal tubulointerstitial inflammation, hypertrophy and fibrosis in diabetes. Nephrology 2016;21:423–31.10.1111/nep.12618Suche in Google Scholar PubMed

243. Lay, AJ, Zhang, HE, Mccaughan, GW, Gorrell, MD. Fibroblast activation protein in liver fibrosis. Front Biosci Landmark 2019;24:1–17.10.2741/4706Suche in Google Scholar PubMed

244. Soare, A, Györfi, HA, Matei, AE, Dees, C, Rauber, S, Wohlfahrt, T. Dipeptidylpeptidase 4 as a marker of activated fibroblasts and a potential target for the treatment of fibrosis in systemic sclerosis. Arthritis Rheumatol 2020;72:137–49.10.1002/art.41058Suche in Google Scholar PubMed

245. Lee, SY, Wu, ST, Liang, YJ, Su, MJ, Huang, CW, Jao, YH. Soluble dipeptidyl peptidase-4 induces fibroblast activation through proteinase-activated receptor-2. Front Pharmacol 2020;11: 552818.10.3389/fphar.2020.552818Suche in Google Scholar PubMed PubMed Central

246. Suzuki, T, Tada, Y, Gladson, S, Nishimura, R, Shimomura, I, Karasawa, S. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide induced lung injury by inhibiting endothelial-to-mesenchymal transition. Respir Res 2017;18:177.10.1186/s12931-017-0660-4Suche in Google Scholar PubMed PubMed Central

247. Liu, Y, Qi, Y. Vildagliptin, a CD26/DPP4 inhibitor, ameliorates bleomycin-induced pulmonary fibrosis via regulating the extracellular matrix. Int Immunopharmacol 2020;87:106774.10.1016/j.intimp.2020.106774Suche in Google Scholar PubMed

248. Kim, KM, Noh, JH, Bodogai, M, Martindale, JL, Yang, X, Indig, FE. Identification of senescent cell surface targetable protein DPP4. Genes Dev 2017;31:1529–34.10.1101/gad.302570.117Suche in Google Scholar PubMed PubMed Central

249. Chen, Z, Yu, J, Fu, M, Dong, R, Yang, Y, Luo, J. Dipeptidyl peptidase-4 inhibition improves endothelial senescence by activating AMPK/SIRT1/Nrf2 signaling pathway. Biochem Pharmacol 2020;177:113951.10.1016/j.bcp.2020.113951Suche in Google Scholar PubMed

250. Schafer, MJ, White, TA, Iijima, K, Haak, AJ, Ligresti, G, Atkinson, EJ. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 2017;8:14532.10.1038/ncomms14532Suche in Google Scholar PubMed PubMed Central

251. Yao, C, Guan, X, Carraro, G, Parimon, T, Liu, X, Huang, G. Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. Am J Respir Crit Care Med 2021;203:707–17.10.1164/rccm.202004-1274OCSuche in Google Scholar PubMed PubMed Central

252. Zhong, J, Maiseyeu, A, Davis, SN, Rajagopalan, S. DPP4 in cardiometabolic disease: recent insights from the laboratory and clinical trials of DPP4 inhibition. Circ Res 2015;116:1491–504.10.1161/CIRCRESAHA.116.305665Suche in Google Scholar PubMed PubMed Central

253. Kadoglou, N, Korakas, E, Lampropoulos, S, Maratou, E, Kassimis, G, Patsourakos, N, et al.. Plasma nesfatin-1 and DDP-4 levels in patients with coronary artery disease: Kozani study. Cardiovasc Diabetol 2021;20:166.10.1186/s12933-021-01355-xSuche in Google Scholar PubMed PubMed Central

254. Batchu, SN, Yerra, VG, Liu, Y, Advani, SL, Klein, T, Advani, A. The dipeptidyl peptidase-4 inhibitor linagliptin directly enhances the contractile recovery of mouse hearts at a concentration equivalent to that achieved with standard dosing in humans. Int J Mol Sci 2020;21:5756.10.3390/ijms21165756Suche in Google Scholar PubMed PubMed Central

255. Fadini, P, Avogaro, A. Cardiovascular effects of DPP-IV inhibition: beyond GLP-1. Vasc Pharmacol 2011;55:10–6.10.1016/j.vph.2011.05.001Suche in Google Scholar PubMed

256. Murgai, M, Giles, A, Kaplan, R. Physiological, tumour, and metastatic niches: opportunities and challenges for targeting the tumour microenvironment. Crit Rev Oncog 2015;20:301–14.10.1615/CritRevOncog.2015013668Suche in Google Scholar

257. Busek, P, Duke-Cohan, JS, Sedo, A. Does DPP-IV inhibition offer new avenues for therapeutic intervention in malignant disease. Cancers 2022;14:2072.10.3390/cancers14092072Suche in Google Scholar PubMed PubMed Central

258. Iwata, S, Morimoto, C. CD26/dipeptidyl peptidase IV in context. The different roles of a multifunctional ectoenzyme in malignant transformation. J Exp Med 1999, 190, 301-6.10.1084/jem.190.3.301Suche in Google Scholar PubMed PubMed Central

259. Wesley, UV, Albino, AP, Tiwari, S, Houghton, AN. A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. J Exp Med 1999;190:311–22.10.1084/jem.190.3.311Suche in Google Scholar PubMed PubMed Central

260. Asada, Y, Aratake, Y, Kotani, T, Marutsuka, K, Araki, Y, Ohtaki, S. Expression of dipeptidyl aminopeptidase IV activity in human lung carcinoma. Histopathology 1993;23:265–70.10.1111/j.1365-2559.1993.tb01199.xSuche in Google Scholar PubMed

261. Wesley, UV, Tiwari, S, Houghton, AN. Role for dipeptidyl peptidase IV in tumour suppression of human non small cell lung carcinoma cells. Int J Cancer 2004;109:855–66.10.1002/ijc.20091Suche in Google Scholar PubMed

262. Dimitrova, M, Ivanov, I, Todorova, R, Stefanova, N, Moskova-Doumanova, V, Topouzova-Hristova, T. Comparison of the activity levels and localization of dipeptidyl peptidase IV in normal and tumour human lung cells. Tissue Cell 2012;44:74–9.Suche in Google Scholar

263. Khin, EE, Kikkawa, F, Ino, K, Kajiyama, H, Suzuki, T, Shibata, K. Dipeptidyl peptidase IV expression in endometrial endometrioid adenocarcinoma and its inverse correlation with tumour grade. Am J Obstet Gynecol 2003;188:670–6.10.1067/mob.2003.169Suche in Google Scholar

264. Bogenrieder, T, Finstad, CL, Freeman, RH, Papandreou, CN, Scher, HI, Albino, AP. Expression and localization of aminopeptidase A, aminopeptidase N, and dipeptidyl peptidase IV in benign and malignant human prostate tissue. Prostate 1997;33:225–32.10.1002/(SICI)1097-0045(19971201)33:4<225::AID-PROS1>3.3.CO;2-QSuche in Google Scholar

265. Dinjens, WN, Ten Kate, J, Kirch, JA, Tanke, HJ, Van der Linden, EP, Van den Ingh, HF. Adenosine deaminase complexing protein (ADCP) expression and metastatic potential in prostatic adenocarcinomas. J Pathol 1990;160:195–20.10.1002/path.1711600303Suche in Google Scholar

266. Wesley, UV, McGroarty, M, Homoyouni, A. Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway. Cancer Res 2005;65:1325–34.10.1158/0008-5472.CAN-04-1852Suche in Google Scholar

267. Urade, M, Komatsu, M, Yamaoka, M, Fukasawa, K, Harada, M, Mima, T. Serum dipeptidyl peptidase activities as a possible marker of oral cancer. Cancer 1989;64:1274–80.10.1002/1097-0142(19890915)64:6<1274::AID-CNCR2820640618>3.0.CO;2-2Suche in Google Scholar

268. de la Haba-Rodriguez, J, Macho, A, Calzado, MA, Blazquez, MV, Gomez, MA, Munoz, EE. Soluble dipeptidyl peptidase IV (CD-26) in serum of patients with colorectal carcinoma. Neoplasma 2002;49:307–11.Suche in Google Scholar

269. Cordero, OJ, Imbernon, M, Chiara, LD, Martinez-Zorzano, VS, Ayude, D, de la Cadena, MP. Potential of soluble CD26 as a serum marker for colorectal cancer detection. World J Clin Oncol 2011;2:245–61.10.5306/wjco.v2.i6.245Suche in Google Scholar

270. Sedo, A, Krepela, E, Kasafirek, E. Dipeptidyl peptidase IV, prolyl endopeptidase and cathepsin B activities in primary human lung tumours and lung parenchyma. J Cancer Res Clin Oncol 1991;117:249–53.10.1007/BF01625433Suche in Google Scholar

271. Frohlich, E, Maier, E, Wahl, R. Interspecies differences in membrane-associated protease activities of thyrocytes and their relevance for thyroid cancer studies. J Exp Clin Cancer Res 2012;31:45.10.1186/1756-9966-31-45Suche in Google Scholar

272. Pro, B, Dang, NH. CD26/dipeptidyl peptidase IV and its role in cancer. Histol Histopathol 2004, 19, 1345–51.Suche in Google Scholar

273. Goscinski, MA, Suo, ZH, Nesland, JM, Florenes, VA, Giercksky, KE. Dipeptidyl peptidase IV expression in cancer and stromal cells of human esophageal squamous cell carcinomas, adenocarcinomas and squamous cell carcinoma cell lines. APMIS 2008;116:823–31.10.1111/j.1600-0463.2008.01029.xSuche in Google Scholar

274. Kikkawa, F, Kajiyama, H, Ino, K, Shibata, K, Mizutani, S. Increased adhesion potency of ovarian carcinoma cells to mesothelial cells by overexpression of dipeptidyl peptidase IV. Int J Cancer 2003;105:779–83.10.1002/ijc.11177Suche in Google Scholar

275. Jiang, YX, Yang, SW, Li, PA, Luo, X, Li, ZY, Hao, YX, et al.. The promotion of the transformation of quiescent gastric cancer stem cells by IL-17 and the underlying mechanisms. Oncogene 2017;36:1256–64.10.1038/onc.2016.291Suche in Google Scholar PubMed PubMed Central

276. Bauvois, B, De Meester, I, Dumont, J, Rouillard, D, Zhao, HX, Bosmans, E. Constitutive expression of CD26/dipeptidylpeptidase IV on peripheral blood B lymphocytes of patients with B chronic lymphocytic leukaemia. Br J Cancer 1999;79:1042–8.10.1038/sj.bjc.6690167Suche in Google Scholar PubMed PubMed Central

277. Cro, L, Morabito, F, Zucal, N, Fabris, S, Lionetti, M, Cutrona, G. CD26 expression in mature B-cell neoplasia: its possible role as a new prognostic marker in B-CLL. Hematol Oncol 2009;27:140–7.10.1002/hon.888Suche in Google Scholar PubMed

278. Havre, PA, Dang, LH, Ohnuma, K, Iwata, S, Morimoto, C, Dang, NH. CD26 expression on T-anaplastic large cell lymphoma (ALCL) line Karpas 299 is associated with increased expression of versican and MT1-MMP and enhanced adhesion. BMC Cancer 2013;13:517.10.1186/1471-2407-13-517Suche in Google Scholar PubMed PubMed Central

279. Carbone, A, Cozzi, M, Gloghini, A, Pinto, A. CD26/dipeptidylpeptidase IV expression in human lymphomas is restricted to CD30-positive anaplastic large cell and a subset of Tcell non-Hodgkin’s lymphomas. Human Pathol 1994;25:1360–5.10.1016/0046-8177(94)90098-1Suche in Google Scholar PubMed

280. Carbone, A, Gloghini, A, Zagonel, V, Aldinucci, D, Gattei, V, Degan, M, et al.. The expression of CD26 and CD40 ligand is mutually exclusive in human T-cell non-Hodgkin’s lymphomas/leukemias. Blood 1995;86:4617–26.10.1182/blood.V86.12.4617.bloodjournal86124617Suche in Google Scholar

281. Dang, NH, Aytac, U, Sato, K, O’Brien, S, Melenhorst, J, Morimoto, C, et al.. T-large granular lymphocyte lymphoproliferative disorder: expression of CD26 as a marker of clinically aggressive disease and characterization of marrow inhibition. Br J Haematol 2003;121:857–65.10.1046/j.1365-2141.2003.04365.xSuche in Google Scholar PubMed

282. Pethiyagoda, CL, Welch, DR, Fleming, TP. Dipeptidyl peptidase IV (DPPIV) inhibits cellular invasion of melanoma cells. Clin Exp Metast 2001;18:391–400.10.1023/A:1010930918055Suche in Google Scholar

283. Novelli, M, Savoia, P, Fierro, MT, Verrone, A, Quaglino, P, BernengoMG. Keratinocytes express dipeptidyl-peptidase IV (CD26) in benign and malignant skin diseases. Br J Dermatol 1996;134:1052–6.10.1111/j.1365-2133.1996.tb07941.xSuche in Google Scholar

284. Ansorge, S, Bank, U, Heimburg, A, Helmuth, M, Koch, G, Tadje, J. Recent insights into the role of dipeptidyl aminopeptidase IV (DPIV) and aminopeptidase N (APN) families in immune functions. Clin Chem Lab Med 2009;47:253–61.10.1515/CCLM.2009.063Suche in Google Scholar PubMed

285. Van Der Velden, VH, Hulsmann, AR. Peptidases: structure, function and modulation of peptide-mediated effects in the human lung. Clin Exp Allergy 1999;29:445–56.10.1046/j.1365-2222.1999.00462.xSuche in Google Scholar

286. Mentlein, R, Dahms, P, Grandt, D, Kruger, R. Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul Pept 1993;49:133–44.10.1016/0167-0115(93)90435-BSuche in Google Scholar

287. Ghersi, G, Chen, W, Lee, EW, Zukowska, Z. Critical role of dipeptidyl peptidase IV in neuropeptide Y-mediated endothelial cell migration in response to wounding. Peptides 2001;22:453–8.10.1016/S0196-9781(01)00340-0Suche in Google Scholar

288. Jang, JH, Janker, F, De Meester, I, Arni, S, Borgeaud, N, Yamada, Y. The CD26/DPP4-inhibitor vildagliptin suppresses lung cancer growth via macrophage-mediated NK cell activity. Carcinogenesis 2019;40:324–34.10.1093/carcin/bgz009Suche in Google Scholar

289. Mathew, S, Morrison, ME, Murty, VV, Houghton, AN, Chaganti, RS. Assignment of the DPP4 gene encoding adenosine deaminase binding protein (CD26/dipeptidylpeptidase IV) to 2q23. Genomics 1994;22:211–2.10.1006/geno.1994.1364Suche in Google Scholar

290. Otsuka, T, Kohno, T, Mori, M, Noguchi, M, Hirohashi, S, Yokota, J. Deletion mapping of chromosome 2 in human lung carcinoma. Genes Chromosomes Cancer 1996;16:113–9.10.1002/(SICI)1098-2264(199606)16:2<113::AID-GCC5>3.0.CO;2-2Suche in Google Scholar

291. Dimitrova, M, Ivanov, I, Todorova, R, Stefanova, N, Moskova-Doumanova, V, Topouzova-Hristova, T. Comparison of the activity levels and localization of dipeptidyl peptidase IV in normal and tumour human lung cells. Tissue Cell 2012;44:74–9.10.1016/j.tice.2011.11.003Suche in Google Scholar

292. Morrison, H, Sherman, LS, Legg, J, Banine, F, Isacke, C, Haipek, CA. The NF2 tumour suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 2001;15:968–80.10.1101/gad.189601Suche in Google Scholar

293. Yan, P, Muhlethaler, A, Bourloud, KB, Beck, MN, Gross, N. Hypermethylation-mediated regulation of CD44 gene expression in human neuroblastoma. Genes Chromosomes Cancer 2003;36:129–38.10.1002/gcc.10150Suche in Google Scholar

294. Yang, X, Zhang, X, Wu, R, Huang, Q, Jiang, Y, Qin, J, et al.. DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumourigenesis. Oncotarget 2017;8:8679–92.10.18632/oncotarget.14412Suche in Google Scholar

295. Kajiyama, H, Kikkawa, F, Maeda, O, Suzuki, T, Ino, K, Mizutani, S. Increased expression of dipeptidyl peptidase IV in human mesothelial cells by malignant ascites from ovarian carcinoma patients. Oncology 2002;63:158–65.10.1159/000063801Suche in Google Scholar PubMed

296. Ware, JL. Growth factor network disruption in prostate cancer progression. Cancer Metastasis Rev 1998;17:443–7.10.1023/A:1006114527274Suche in Google Scholar

297. Giri, D, Ropiquet, F, Ittmann, M. Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res 1999;5:1063–71.Suche in Google Scholar

298. Dow, JK, deVere White, RW. Fibroblast growth factor 2: its structure and property, paracrine function, tumour angiogenesis, and prostate-related mitogenic and oncogenic functions. Urology 2000;55:800–6.10.1016/S0090-4295(00)00457-XSuche in Google Scholar PubMed

299. Feldman, BJ, Feldman, D. The development of androgen-independent prostate cancer. Nat Rev Cancer 2001;1:34–45.10.1038/35094009Suche in Google Scholar PubMed

300. Isaacs, JT, Isaacs, WB. Androgen receptor outwits prostate cancer drugs. Nat Med 2004;10:26–7.10.1038/nm0104-26Suche in Google Scholar PubMed

301. Nakamoto, T, Chang, CS, Li, AK, Chodak, GW. Basic fibroblast growth factor in human prostate cancer cells. Cancer Res 1992;52:571–7.Suche in Google Scholar

302. Gioeli, D, Mandell, JW, Petroni, GR, Frierson, HF, Weber, MJ. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res 1999;59:279–84.Suche in Google Scholar

303. Pintucci, G, Moscatelli, D, Saponara, F, Biernacki, PR, Baumann, FG, Bizekis, C. Lack of ERK activation and cell migration in FGF-2-deficient endothelial cells. FASEB J 2002;16:598–600.10.1096/fj.01-0815fjeSuche in Google Scholar PubMed

304. Giuliani, R, Bastaki, M, Coltrini, D, Presta, M. Role of endothelial cell extracellular signal-regulated kinase1/2 in urokinase-type plasminogen activator upregulation and in vitro angiogenesis by fibroblast growth factor-2. J Cell Sci 1999;112:2597–606.10.1242/jcs.112.15.2597Suche in Google Scholar PubMed

305. Rabbani, SA, Mazar, AP. The role of the plasminogen activation system in angiogenesis and metastasis. Surg Oncol Clin N Am 2001;10:393–415.10.1016/S1055-3207(18)30072-3Suche in Google Scholar

306. Bugler, B, Amalric, F, Prats, H. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol 1991;11:573–7.10.1128/MCB.11.1.573Suche in Google Scholar

307. Bikfalvi, A, Klein, S, Pintucci, G, Rifkin, DB. Biological roles of fibroblast growth factor-2. Endocr Rev 1997;18:26–45.10.1210/edrv.18.1.0292Suche in Google Scholar PubMed

308. Delrieu, I. The high molecular weight isoforms of basic fibroblast growth factor (FGF-2): an insight into an intracrine mechanism. FEBS Lett 2000;468:6–10.10.1016/S0014-5793(00)01189-3Suche in Google Scholar PubMed

309. Wilson, MJ, Ruhland, AR, Quast, BJ, Reddy, PK, Ewing, SL, Sinha, AA. Dipeptidylpeptidase IV activities are elevated in prostate cancers and adjacent benign hyperplastic glands. J Androl 2000;21:220–6.10.1002/j.1939-4640.2000.tb02099.xSuche in Google Scholar

310. Lu, Z, Qi, L, Bo, XJ, Liu, GD, Wang, JM, Li, G. Expression of CD26 and CXCR4 in prostate carcinoma and its relationship with clinical parameters. J Res Med Sci 2013;18:647–52.Suche in Google Scholar

311. Boonacker, E, Van Noorden, CJ. The multifunctional or moonlighting protein CD26/DPPIV. Eur J Cell Biol 2003;82:53–73.10.1078/0171-9335-00302Suche in Google Scholar PubMed

312. Proost, P, Struyf, S, Schols, D, Opdenakker, G, Sozzani, S, Allavena, P. Truncation of macrophage-derived chemokine by CD26/ipeptidyl-peptidase IV beyond its predicted cleavage site affects chemotactic activity and CC chemokine receptor 4 interaction. J Biol Chem 1999;274:3988–93.10.1074/jbc.274.7.3988Suche in Google Scholar PubMed

313. Tang, AC, Raphael, SJ, Lampe, HB, Matthews, TW, Becks, GP. Expression of dipeptidyl aminopeptidase IV activity in thyroid tumours: a possible marker of thyroid malignancy. J Otolaryngol 1996;25:14–9.Suche in Google Scholar

314. Lee, JJ, Wang, TY, Liu, CL, Chien, MN, Chen, MJ, Hsu, YC, et al.. Dipeptidyl peptidase IV as a prognostic marker and therapeutic target in papillary thyroid carcinoma. J Clin Endocrinol Metab 2017;102:2930–40.10.1210/jc.2017-00346Suche in Google Scholar PubMed

315. Kotani, T, Asada, Y, Aratake, Y, Umeki, K, Yamamoto, I, Tokudome, R. Diagnostic usefulness of dipeptidyl aminopeptidase IV monoclonal antibody in paraffin-embedded thyroid follicular tumours. J Pathol 1992;168:41–5.10.1002/path.1711680108Suche in Google Scholar PubMed

316. Maruta, J, Hashimoto, H, Yamashita, H, Yamashita, H, Noguchi, S. Diagnostic applicability of dipeptidyl aminopeptidase IV activity in cytological samples for differentiating follicular thyroid carcinoma from follicular adenoma. Arch Surg 2004;139:83–8.10.1001/archsurg.139.1.83Suche in Google Scholar PubMed

317. Stremenova, J, Krepela, E, Mares, V, Trim, J, Dbaly, V, Marek, J. Expression and enzymatic activity of dipeptidyl peptidase-IV in human astrocytic tumours are associated with tumour grade. Int J Oncol 2007;31:785–92.10.3892/ijo.31.4.785Suche in Google Scholar

318. Ehtesham, M, Winston, JA, Kabos, P, Thompson, RC. CXCR4 expression mediates glioma cell invasiveness. Oncogene 2006;25:2801–6.Suche in Google Scholar

319. Christopherson, KW, Hangoc, G, Broxmeyer, HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 2002;169:7000–8.10.4049/jimmunol.169.12.7000Suche in Google Scholar PubMed

320. Stremenova, J, Mares, V, Lisa, V, Hilser, M, Krepela, E, Vanickova, Z. Expression of dipeptidyl peptidase-IV activity and/or structure homologs in human meningiomas. Int J Oncol 2010;36:351–8.10.3892/ijo_00000506Suche in Google Scholar

321. Arscott, WT, LaBauve, AE, May, V, Wesley, UV. Suppression of neuroblastoma growth by dipeptidyl peptidase IV: relevance of chemokine regulation and caspase activation. Oncogene 2009;28:479–91.10.1038/onc.2008.402Suche in Google Scholar PubMed PubMed Central

322. Pass, H, Vogelzang, N, Hahn, S, Carbone, M. Malignant pleural mesothelioma. Curr Proble Cancer 2004;28:93–104.10.1016/j.currproblcancer.2004.04.001Suche in Google Scholar PubMed

323. Amatya, V, Takeshima, Y, Kushitani, K, Yamada, T, Morimoto, C. Overexpression of CD26/DPPIV in mesothelioma tissue and mesothelioma cell lines. Oncol Rep 2011;26:1369–75.10.3892/or.2011.1449Suche in Google Scholar PubMed

324. Angevin, E, Isambert, N, Trillet-Lenoir, V, You, B, Alexandre, J, Zalcman, G, et al.. First-in-human phase 1 of YS110, a monoclonal antibody directed against CD26 in advanced CD26-expressing cancers. Br J Cancer 2017;116:1126–34.10.1038/bjc.2017.62Suche in Google Scholar PubMed PubMed Central

325. Ghani, FI, Yamazaki, H, Iwata, S, Okamoto, K, Okabe, K, Mimura, Y, et al.. Identification of cancer stem cell markers in human malignant mesothelioma cells. Biochem Biophys Res Commun 2011;404:735–42.10.1016/j.bbrc.2010.12.054Suche in Google Scholar PubMed

326. Dietrich, P, Wormser, L, Fritz, V, Seitz, T, De Maria, M, Schambony, A, et al.. Molecular crosstalk between Y5 receptor and neuropeptide Y drives liver cancer. J Clin Investig 2020;130:2509–26.10.1172/JCI131919Suche in Google Scholar PubMed PubMed Central

327. Stecca, BA, Nardo, B, Chieco, P, Mazziotti, A, Bolondi, L, Cavallari, A. Aberrant dipeptidyl peptidase IV (DPP IV/CD26) expression in human hepatocellular carcinoma. J Hepatol 1997;27:337–45.10.1016/S0168-8278(97)80180-8Suche in Google Scholar

328. Hollande, C, Boussier, J, Ziai, J, Nozawa, T, Bondet, V, Phung, W, et al.. Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumour growth. Nat Immunol 2019;20:257–64.10.1038/s41590-019-0321-5Suche in Google Scholar PubMed

329. Nishina, S, Yamauchi, A, Kawaguchi, T, Kaku, K, Goto, M, Sasaki, K, et al.. Dipeptidyl peptidase 4 inhibitors reduce hepatocellular carcinoma by activating lymphocyte chemotaxis in mice. Cell Mol Gastroenterol Hepatol 2019;7:115–34.10.1016/j.jcmgh.2018.08.008Suche in Google Scholar PubMed PubMed Central

330. Henderson, JM, Xiang, MS, Huang, JC, Wetzel, S, Jiang, L, Lai, JH, et al.. Dipeptidyl peptidase inhibition enhances CD8 T cell recruitment and activates Intrahepatic inflammasome in a murine model of hepatocellular carcinoma. Cancers 2021;13:5495.10.3390/cancers13215495Suche in Google Scholar PubMed PubMed Central

331. Gaetaniello, L, Fiore, M, de Filippo, S, Pozzi, N, Tamasi, S, Pignata, C. Occupancy of dipeptidyl peptidase IV activates an associated tyrosine kinase and triggers an apoptotic signal in human hepatocarcinoma cells. Hepatology 1998;27:934–42.10.1002/hep.510270407Suche in Google Scholar PubMed

332. Itou, M, Kawaguchi, T, Taniguchi, E, Sumie, S, Oriishi, T, Mitsuyama, K, et al.. Altered expression of glucagon-like peptide-1 and dipeptidyl peptidase IV in patients with HCV-related glucose intolerance. J Gastroenterol Hepatol 2008;23:244–51.10.1111/j.1440-1746.2007.05183.xSuche in Google Scholar PubMed

333. Kaji, K, Yoshiji, H, Ikenaka, Y, Noguchi, R, Aihara, Y, Douhara, A, et al.. Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J Gastroenterol 2014;49:481–91.10.1007/s00535-013-0783-4Suche in Google Scholar PubMed

334. Abd Elmaaboud, M, Khattab, H, Shalaby, S. Hepatoprotective effect of linagliptin against liver fibrosis induced by carbon tetrachloride in mice. Can J Physiol Pharmacol 2021;99:294–302.10.1139/cjpp-2020-0049Suche in Google Scholar PubMed

335. Sokar, SS, El-Sayad, ME, Ghoneim, ME, Shebl, AM. Combination of Sitagliptin and Silymarin ameliorates liver fibrosis induced by carbon tetrachloride in rats. Biomed Pharmacother 2017;89:98–107.10.1016/j.biopha.2017.02.010Suche in Google Scholar PubMed

336. Wang, XM, Holz, LE, Chowdhury, S, Cordoba, SP, Evans, KA, Gall, MG, et al.. The pro-fibrotic role of dipeptidyl peptidase 4 in carbon tetrachloride-induced experimental liver injury. Immunol Cell Biol 2017;95:443–53.10.1038/icb.2016.116Suche in Google Scholar PubMed

337. Nagami, Y, Ominami, M, Otani, K, Tanaka, F, Taira, K, Yamagami, H. Endoscopic submucosal dissection for adenocarcinomas of the esophagogastric junction. Digestion 2018;97:38–44.10.1159/000484111Suche in Google Scholar PubMed

338. Sharman, P, Sidorenko, EI. Are screening and surveillance for Barrett’s oesophagus really worthwhile. Gut 2005;54:27–31.10.1136/gut.2004.041566Suche in Google Scholar PubMed PubMed Central

339. Omae, M, Fujisaki, J, Shimizu, T, Igarashi, M, Yamamoto, N. Magnifying endoscopy with narrow-band imaging finding in the diagnosis of Barrett’s esophageal adenocarcinoma spreading below squamous epithelium. Dig Endosc 2013;225:162–7.10.1111/den.12077Suche in Google Scholar PubMed

340. Yamamoto, K, Ohnishi, S, Mizushima, T, Kodaira, J, Ono, M, Hatanaka, Y, et al.. Detection of early adenocarcinoma of the esophagogastric junction by spraying an enzyme-activatable fluorescent probe targeting Dipeptidyl peptidase-IV. BMC Cancer 2020;20:64.10.1186/s12885-020-6537-9Suche in Google Scholar PubMed PubMed Central

341. Onoyama, H, Kamiya, M, Kuriki, Y, Komatsu, T, Abe, H, Tsuji, Y. Rapid and sensitive detection of early esophageal squamous cell carcinoma with fluorescence probe targeting dipeptidylpeptidase IV. Sci Rep 2016;6:26399.10.1038/srep26399Suche in Google Scholar PubMed PubMed Central

342. Larrinaga, G, Perez, I, Sanz, B, Beitia, M, Errarte, P, Fernandez, A, et al.. Dipeptidylpeptidase IV activity is correlated with colorectal cancer prognosis. PLoS One 2015;10:e0119436.10.1371/journal.pone.0119436Suche in Google Scholar PubMed PubMed Central

343. Pang, R, Law, WL, Chu, AC, Poon, JT, Lam, CS, Chow, AK, et al.. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 2010;6:603–15.10.1016/j.stem.2010.04.001Suche in Google Scholar PubMed

344. Kumaravelu, P, Chellathai, D. Evaluation of anti cancer effects of DPP-4Inhibitors in colon cancer- an Invitro study. J Clin Diagn Res 2015;9:14–6.Suche in Google Scholar

345. Gorrell, MD, Gysbers, V, McCaughan, GW. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol 2001;54:249–64.10.1046/j.1365-3083.2001.00984.xSuche in Google Scholar PubMed

346. Gonzalez-Gronow, M, Misra, UK, Gawdi, G, Pizzo, SV. Association of plasminogen with dipeptidyl peptidase IV and Na+/H+ exchanger isoform NHE3 regulates invasion of human 1-LN prostate tumour cells. J Biol Chem 2005;280:27173–8.10.1074/jbc.M500383200Suche in Google Scholar PubMed

347. Cheng, HC, Abdel-Ghany, M, Elble, RC, Pauli, BU. Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumour cell surface-associated fibronectin. J Biol Chem 1998;273:24207–15.10.1074/jbc.273.37.24207Suche in Google Scholar PubMed

348. Korach, S, Poupon, MF, Du Villard, JA, Becker, M. Differential adhesiveness of rhabdomyosarcoma-derived cloned metastatic cell lines to vascular endothelial monolayers. Cancer Res 1986;46:3624–9.Suche in Google Scholar

349. Kato, Y, Saijo, N. Developed new agents for lung cancer. Nihon Geka Gakkai Zasshi 2002;103:218–23.Suche in Google Scholar

350. Beckenkamp, A, Davies, S, Willig, JB, Buffon, A. DPPIV/CD26: a tumour suppressor or a marker of malignancy. Tumour Biol 2016;37:7059–73.10.1007/s13277-016-5005-2Suche in Google Scholar PubMed

351. Ehtesham, M, Winston, JA, Kabos, P, Thompson, RC. CXCR4 expression mediates glioma cell invasiveness. Oncogene 2006;25:2801–6.10.1038/sj.onc.1209302Suche in Google Scholar PubMed

352. Vangoitsenhoven, R, Mathieu, C, Van der Schueren, B. GLP1 and cancer: friend or foe? Endocr Relat Cancer 2012;19:F77–88.10.1530/ERC-12-0111Suche in Google Scholar PubMed

353. Korner, M, Stockli, M, Waser, B, Reubi, JC. GLP-1 receptor expression in human tumours and human normal tissues: potential for in vivo targeting. J Nucl Med 2007;48:736–43.10.2967/jnumed.106.038679Suche in Google Scholar PubMed

354. Koehler, JA, Drucker, DJ. Activation of glucagon-like peptide-1 receptor signaling does not modify the growth or apoptosis of human pancreatic cancer cells. Diabetes 2006;55:1369–79.10.2337/db05-1145Suche in Google Scholar PubMed

355. Girman, CJ, Kou, TD, Cai, B, Alexander, CM, O’Neill, EA, Williams-Herman, DE. Patients with type 2 diabetes mellitus have higher risk for acute pancreatitis compared with those without diabetes. Diabetes Obes Metab 2010;2:766–71.10.1111/j.1463-1326.2010.01231.xSuche in Google Scholar PubMed

356. Garg, R, Chen, W, Pendergrass, M. Acute pancreatitis in type 2 diabetes treated with exenatide or sitagliptin: a retrospective observational pharmacy claims analysis. Diabetes Care 2010;33:2349–54.10.2337/dc10-0482Suche in Google Scholar PubMed PubMed Central

357. Dore, DD, Bloomgren, GL, Wenten, M, Hoffman, C, Clifford, CR, Quinn, SG, et al.. A cohort study of acute pancreatitis in relation to exenatide use. Diabetes Obes Metab 2011;13:559–66.10.1111/j.1463-1326.2011.01376.xSuche in Google Scholar PubMed

358. Ueberberg, S, Jutte, H, Uhl, W, Schmidt, W, Nauck, M, Montanya, E, et al.. Histological changes in endocrine and exocrine pancreatic tissue from patients exposed to incretin-based therapies. Diabetes Obes Metab 2016;18:1253–62.10.1111/dom.12766Suche in Google Scholar PubMed

359. Aston-Mourney, K, Subramanian, SL, Zraika, S, Samarasekera, T, Meier, DT, Goldstein, LC, et al.. One year of sitagliptin treatment protects against islet amyloid-associated beta-cell loss and does not induce pancreatitis or pancreatic neoplasia in mice. Am J Physiol Endocrinol Metab 2013;305:E475–E484.10.1152/ajpendo.00025.2013Suche in Google Scholar PubMed PubMed Central

360. Cox, AR, Lam, CJ, Rankin, MM, Rios, JS, Chavez, J, Bonnyman, CW, et al.. Incretin therapies do not expand beta-cell mass or alter pancreatic histology in young male mice. Endocrinology 2017;158:1701–14.10.1210/en.2017-00027Suche in Google Scholar PubMed PubMed Central

361. Busch, SJ, Hoffmann, P, Sahota, P, Johnson, R, Kothny, W, Meyer, F, et al.. Studies in rodents with the dipeptidyl peptidase-4 inhibitor vildagliptin to evaluate possible drug-induced pancreatic histological changes that are predictive of pancreatitis and cancer development in man. Diabetes Obes Metab 2013;15:72–6.10.1111/j.1463-1326.2012.01678.xSuche in Google Scholar PubMed

362. Bjerre Knudsen, L, Madsen, LW, Andersen, S, Almholt, K, de Boer, AS, Drucker, DJ. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 2010;151:1473–86.10.1210/en.2009-1272Suche in Google Scholar PubMed

363. Waser, B, Beetschen, K, Pellegata, NS, Reubi, JC. Incretin receptors in non-neoplastic and neoplastic thyroid C cells in rodents and humans: relevance for incretin-based diabetes therapy. Neuroendocrinology 2011;94:291–301.10.1159/000330447Suche in Google Scholar PubMed

364. Roman, S, Lin, R, Sosa, JA. Prognosis of medullary thyroid carcinoma: demographic, clinical, and pathologic predictors of survival in 1252 cases. Cancer 2006;107:2134–42.10.1002/cncr.22244Suche in Google Scholar PubMed

365. Koehler, JA, Kain, T, Drucker, DJ. Glucagon-like peptide-1 receptor activation inhibits growth and augments apoptosis in murine CT26 colon cancer cells. Endocrinology 2011;152:3362–72.10.1210/en.2011-1201Suche in Google Scholar PubMed

366. Greenberg, ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995;270:1326–31.10.1126/science.270.5240.1326Suche in Google Scholar PubMed

367. Arrebola, Y, Díaz, L, García, G, Pascual, I. Dipeptidil peptidasa IV: inhibidores y sus potenciales aplicaciones biomédicas. Rev Cuba Cien Biol 2014;3:14–26.Suche in Google Scholar

368. Pascual, I, Arrebola, Y, Almeida, F, Valdés, ME, Rivera, L, Hernández-Zanuy, A, et al.. Marine and coastal organisms: a source of biomedically relevant dipeptidyl peptidase IV inhibitors. Rev Cuba Cien Biol 2020;8:1–16.Suche in Google Scholar

369. Lu, Y, Lu, P, Wang, Y, Fang, X. A novel dipeptidyl peptidase IV inhibitory tea peptide improves pancreatic β-cell function and reduces α-cell proliferation in StreptozotocinInduced diabetic mice. Int J Mol Sci 2019;20:322.10.3390/ijms20020322Suche in Google Scholar PubMed PubMed Central

370. Lin, SR, Chang, CH, Tsai, MJ, Cheng, H. The perceptions of natural compounds against dipeptidyl peptidase 4 in diabetes: from in silico to in vivo. Thera Adv Chron Dis 2019;10:2040622319875305.10.1177/2040622319875305Suche in Google Scholar PubMed PubMed Central

371. Pascual, I, Lopéz, A, Gómez, H, Chappé, M. Screening of inhibitors of porcine dipeptidyl peptidase IV activity in aqueous extracts from marine organisms. Enz Microb Tech 2007;40:414–9.10.1016/j.enzmictec.2006.07.012Suche in Google Scholar

372. Turdu, G, Gao, H, Jiang, Y, Kabas, M. Plant dipeptidyl peptidase-iv inhibitors as antidiabetic agents: a brief review. Future Med Chem 2018;10:1229–39.10.4155/fmc-2017-0235Suche in Google Scholar PubMed

373. Singh, AK, Patel, PK, Choudhary, K, Joshi, J. Quercetin and coumarin inhibit dipeptidyl peptidase-IV and exhibits antioxidant properties: in silico, in vitro, ex vivo. Biomolecules 2020;10:207.10.3390/biom10020207Suche in Google Scholar PubMed PubMed Central

374. Liu, R, Cheng, J, Wu, H. Discovery of food-derived dipeptidyl peptidase IV inhibitory peptides: a review. Int J Mol Sci 2019;20:3463.10.3390/ijms20030463Suche in Google Scholar PubMed PubMed Central

375. Gomez, HL, Peralta, JP, Tejano, LA, Chang, YW. In silico and in vitro assessment of Portuguese oyster (Crassostrea angulata) proteins as precursor of bioactive peptides. Int J Mol Sci 2019, 20, 5191.10.3390/ijms20205191Suche in Google Scholar PubMed PubMed Central

376. Chakraborty, K, Joy, M. Anti-diabetic and anti-inflammatory activities of commonly available cephalopods. Int J Food Prop 2017;20:1655–65.10.1080/10942912.2016.1217008Suche in Google Scholar

377. Lauritano, C, Ianora, A. Marine organisms with anti-diabetes properties. Mar Drugs 2016;14:220.10.3390/md14120220Suche in Google Scholar PubMed PubMed Central

378. Nongonierma, A, Mooney, C, Shields, D, FitzGerald, R. Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides. Food Chem 2013;141:644–53.10.1016/j.foodchem.2013.02.115Suche in Google Scholar PubMed

379. Kelly, TA, Adams, J, Bachovchin, WW, Barton, RW, Campbell, SJ, Coutts, SJ, et al.. Immunosuppressive boronic acid dipeptides: correlation between conformation and activity. J Am Chem Soc 1993;115:12637–8.10.1021/ja00079a074Suche in Google Scholar

380. Lam, B, Zhang, Z, Stafford, J, Skene, R, Shi, L, Gwaltney, S. Structure-based design of pyridopyrimidinediones as dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2012;22:6628–31.10.1016/j.bmcl.2012.08.110Suche in Google Scholar PubMed

381. Motoshima, K, Sugita, K, Hashimoto, Y, Ishikawa, M. Non-competitive and selective dipeptidyl peptidase IV inhibitors with phenethylphenylphthalimide skeleton derived from thalidomide-related a-glucosidase inhibitors and liver X receptor antagonists. Bioorg Med Chem Lett 2011;21:3041–5.10.1016/j.bmcl.2011.03.026Suche in Google Scholar PubMed

382. Gómez, H, Chappé, M, Valiente, P, Pons, T. Effect of zinc and calcium ions on the rat kidney membrane-bound form of dipeptidyl peptidase IV. J Biosci 2013;38:1–9.10.1007/s12038-013-9333-8Suche in Google Scholar PubMed

383. Pascual, I, Gómez, H, Pons, T, Chappé, M. Effect of divalent cations on the porcine kidney cortex membrane-bound form of dipeptidyl peptidase IV. Int J Biochem Cell Biol 2011;4:2–16.10.1016/j.biocel.2010.11.006Suche in Google Scholar PubMed

384. Pascual, I, Valiente, P, Valdés-Tresanco, ME, Arrebola, Y, Almeida, F, Díaz, L, et al.. Int J Biol Macromol 2022;196:120–30.10.1016/j.ijbiomac.2021.12.056Suche in Google Scholar PubMed

385. Wang, H, Liu, X, Long, M, Huang, Y, Zhang, L, Zhang, R, et al.. NRF2 activation by antioxidant antidiabetic agents accelerates tumour metastasis. Sci Transl Med 2016;8:334–51.10.1126/scitranslmed.aad6095Suche in Google Scholar PubMed

386. Russo, JW, Gao, C, Bhasin, SS, Voznesensky, OS, Calagua, C, Arai, S, et al.. Downregulation of dipeptidyl peptidase 4 accelerates progression to castration-resistant prostate cancer. Cancer Res 2018;78:6354–62.10.1158/0008-5472.CAN-18-0687Suche in Google Scholar PubMed PubMed Central

387. Yang, F, Takagaki, Y, Yoshitomi, Y, Ikeda, T, Li, J, Kitada, M, et al.. Inhibition of dipeptidyl peptidase-4 accelerates epithelial-mesenchymal transition and breast cancer metastasis via the CXCL12/CXCR4/mTOR Axis. Cancer Res 2019;79:735–46.10.1158/0008-5472.CAN-18-0620Suche in Google Scholar PubMed

388. Pech, V, Abusaada, K, Alemany, C. Dipeptidyl peptidase-4 inhibition may stimulate progression of carcinoid tumour. Case Rep Endocrinol 2015;2015:952019.10.1155/2015/952019Suche in Google Scholar PubMed PubMed Central

389. Ali, A, Fuentes, A, Skelton, WP, Wang, Y, Mcgorray, S, Shah, C. A multi-center retrospective analysis of the effect of DPP4 inhibitors on progression-free survival in advanced airway and colorectal cancers. Mol Clin Oncol 2019;10:118–24.10.3892/mco.2018.1766Suche in Google Scholar PubMed PubMed Central

390. Bishnoi, R, Hong, YR, Shah, C, Ali, A, Skelton, WP, Huo, J. Dipeptidyl peptidase 4 inhibitors as novel agents in improving survival in diabetic patients with colorectal cancer and lung cancer: a surveillance epidemiology and endpoint research medicare study. Cancer Med 2019;8:3918–27.10.1002/cam4.2278Suche in Google Scholar PubMed PubMed Central

391. Tseng, CH. Sitagliptin may reduce breast cancer risk in women with type 2 diabetes. Clin Breast Cancer 2017;17:211–8.10.1016/j.clbc.2016.11.002Suche in Google Scholar PubMed

392. Tseng, CH. Sitagliptin may reduce prostate cancer risk in male patients with type 2 diabetes. Oncotarget 2017;8:19057–64.10.18632/oncotarget.12137Suche in Google Scholar PubMed PubMed Central

393. Hsu, WH, Sue, SP, Liang, HL, Tseng, CW, Lin, HC, Wen, WL, et al.. Dipeptidyl peptidase 4 inhibitors decrease the risk of hepatocellular carcinoma in patients with chronic hepatitis C infection and type 2 diabetes mellitus: a Nationwide study in Taiwan. Front Public Health 2021;9:711723.10.3389/fpubh.2021.711723Suche in Google Scholar PubMed PubMed Central

394. Kamada, S, Namekawa, T, Ikeda, K, Suzuki, T, Kagawa, M, Takeshita, H, et al.. Functional inhibition of cancer stemness-related protein DPP4 rescues tyrosine kinase inhibitor resistance in renal cell carcinoma. Oncogene 2021;40:3899–913.10.1038/s41388-021-01822-5Suche in Google Scholar PubMed

395. Kabel, AM, Atef, A, Estfanous, RS. Ameliorative potential of sitagliptin and/or resveratrol on experimentally-induced clear cell renal cell carcinoma. Biomed Pharmacother 2018;97:667–74.10.1016/j.biopha.2017.10.149Suche in Google Scholar PubMed

396. Arwert, EN, Mentink, RA, Driskell, RR, Hoste, E, Goldie, SJ, Quist, WFM. Upregulation of CD26 expression in epithelial cells and stromal cells during wound-induced skin tumour formation. Oncogene 2012;31:992–1000.10.1038/onc.2011.298Suche in Google Scholar PubMed

397. Choi, HJ, Kim, JY, Lim, SC, Kim, G, Yun, HJ, Choi, HS. Dipeptidyl peptidase 4 promotes epithelial cell transformation and breast tumourigenesis via induction of PIN1 gene expression. Br J Pharmacol 2015;172:5096–109.10.1111/bph.13274Suche in Google Scholar PubMed PubMed Central

398. Wang, Q, Lu, P, Wang, T, Zheng, Q, Li, Y, Leng, SX, et al.. Sitagliptin affects gastric cancer cells proliferation by suppressing Melanoma-associated antigen-A3 expression through Yes-associated protein inactivation. Cancer Med 2020;9:3816–28.10.1002/cam4.3024Suche in Google Scholar PubMed PubMed Central

399. Sliwinska, A, Rogalska, A, Marczak, A, Kasznicki, J, Drzewoski, J. Metformin, but not sitagliptin, enhances WP 631-induced apoptotic HepG2 cell death. Toxicol Vitr 2015;29:1116–23.10.1016/j.tiv.2015.04.019Suche in Google Scholar PubMed

400. Beckenkamp, A, Willig, JB, Santana, DB, Nascimento, J, Paccez, JD, Zerbini, LF, et al.. Differential expression and enzymatic activity of DPPIV/CD26 affects migration ability of cervical carcinoma cells. PLoS One 2015;10:e0134305.10.1371/journal.pone.0134305Suche in Google Scholar PubMed PubMed Central

401. Herrmann, H, Sadovnik, I, Cerny-Reiterer, S, Rulicke, T, Stefanzl, G, Willmann, M, et al.. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood 2014;123:3951–62.10.1182/blood-2013-10-536078Suche in Google Scholar PubMed

402. Spagnuolo, PA, Hurren, R, Gronda, M, MacLean, N, Datti, A, Basheer, A, et al.. Inhibition of intracellular dipeptidyl peptidases 8 and 9 enhances parthenolide’s anti-leukemic activity. Leukemia 2013;27:1236–44.10.1038/leu.2013.9Suche in Google Scholar PubMed

403. Sato, T, Tatekoshi, A, Takada, K, Iyama, S, Kamihara, Y, Jawaid, P, et al.. DPP8 is a novel therapeutic target for multiple myeloma. Sci Rep 2019;9:18094.10.1038/s41598-019-54695-wSuche in Google Scholar PubMed PubMed Central

404. Nabeno, M, Akahoshi, F, Kishida, H, Miyaguchi, I, Tanaka, Y, Ishii, S, et al.. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun 2013;434:191–6.10.1016/j.bbrc.2013.03.010Suche in Google Scholar PubMed

405. Roppongi, S, Suzuki, Y, Tateoka, C, Fujimoto, M, Morisawa, S, Iizuka, I, et al.. Crystal structures of a bacterial dipeptidyl peptidase IV reveal a novel substrate recognition mechanism distinct from that of mammalian orthologues. Sci Rep, 2018, 8:2714, 1–18.10.1038/s41598-018-21056-ySuche in Google Scholar PubMed PubMed Central

406. Yoshida, T, Akahoshi, F, Sakashita, H, Kitajima, H, Nakamura, M, Sonda, S, et al.. Discovery and preclinical profile of teneleglptin (3-[(2S,4S)-4[4-(3-methyl-1-phenyl-1H-pyrazol-5yl)piperazin-1yl]pyrrolidin-2-ylcarbonyl]thiazolidyne): a highly potent, selective, longlasting and orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg Med Chem 2012;20:5705–19.10.1016/j.bmc.2012.08.012Suche in Google Scholar PubMed

Received: 2022-10-30
Accepted: 2023-04-11
Published Online: 2023-05-11

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2022-0288/html?lang=de
Button zum nach oben scrollen