Startseite Sulfonated β-cyclodextrins: efficient supramolecular organocatalysts for diverse organic transformations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sulfonated β-cyclodextrins: efficient supramolecular organocatalysts for diverse organic transformations

  • Bubun Banerjee EMAIL logo , Anu Priya , Aditi Sharma , Gurpreet Kaur und Manmeet Kaur
Veröffentlicht/Copyright: 7. September 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The present review summarizes various organic transformations carried out by using sulfonated β-cyclodextrins such as β-cyclodextrin sulfonic acid, β-cyclodextrin propyl sulfonic acid, and β-cyclodextrin butyl sulfonic acid as an efficient, supramolecular reusable catalyst under diverse reaction conditions.


Corresponding author: Bubun Banerjee, Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab-151302, India, E-mail:

Acknowledgments

Authors are thankful to Prof. Gurmail Singh, Vice-Chancellor, Akal University for his wholehearted encouragement and support. BB is grateful to Akal University and Kalgidhar Trust, Barusahib, India for providing laboratory facilities.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kaur, G, Moudgil, R, Shamim, M, Gupta, VK, Banerjee, B. Camphor sulfonic acid catalyzed a simple, facile, and general method for the synthesis of 2-arylbenzothiazoles, 2-arylbenzimidazoles, and 3H-spiro[benzo[d]thiazole-2,3′-indolin]-2′-ones at room temperature. Synth Commun 2021;51:1100–20. https://doi.org/10.1080/00397911.2020.1870043.Suche in Google Scholar

2. Kaur, G, Singh, A, Kaur, N, Banerjee, B. A general method for the synthesis of structurally diverse quinoxalines and pyrido-pyrazine derivatives using camphor sulfonic acid as an efficient organo-catalyst at room temperature. Synth Commun 2021;51:1121–31. https://doi.org/10.1080/00397911.2021.1873383.Suche in Google Scholar

3. Brahmachari, G, Banerjee, B. Sulfamic acid-catalyzed carbon-carbon and carbon-heteroatom bond forming reactions: an overview. Curr Organocatal 2016;3:93–124. https://doi.org/10.2174/2213337202666150812230830.Suche in Google Scholar

4. Kaur, G, Singh, D, Singh, A, Banerjee, B. Camphor sulfonic acid catalyzed facile and general method for the synthesis of 3,3′-(arylmethylene)bis(4-hydroxy-2h-chromen-2-ones), 3,3′-(arylmethylene)bis(2-hydroxynaphthalene-1,4-diones) and 3,3′-(2-oxoindoline-3,3-diyl)bis(2-hydroxynaphthalene-1,4-dione) derivatives at room temperature. Synth Commun 2021;51:1045–57. https://doi.org/10.1080/00397911.2020.1856877.Suche in Google Scholar

5. Banerjee, B, Bhardwaj, V, Kaur, A, Kaur, G, Singh, A. Catalytic applications of saccharin and its derivatives in organic synthesis. Curr Org Chem 2019;23:3191–205.10.2174/1385272823666191121144758Suche in Google Scholar

6. Banerjee, B. Recent developments on organo-bicyclo-bases catalyzed multicomponent synthesis of biologically relevant heterocycles. Curr Org Chem 2018;22:208–33. https://doi.org/10.2174/1385272821666170703123129.Suche in Google Scholar

7. Kaur, G, Bala, K, Devi, S, Banerjee, B. Camphorsulfonic acid (CSA): an efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities. Curr Green Chem 2018;5:150–67. https://doi.org/10.2174/2213346105666181001113413.Suche in Google Scholar

8. Banik, BK, Banerjee, B, Kaur, G, Saroch, S, Kumar, R. Tetrabutylammonium bromide (TBAB) catalyzed synthesis of bioactive heterocycles. Molecules 2020;25:5918. https://doi.org/10.3390/molecules25245918.Suche in Google Scholar PubMed PubMed Central

9. Bhosale, SV, Bhosale, SV. β-Cyclodextrin as a catalyst in organic synthesis. Mini-Rev Org Chem 2007;4:143–57. https://doi.org/10.2174/157019307781369922.Suche in Google Scholar

10. Li, S, Purdy, WC. Cyclodextrins and their applications in analytical chemistry. Chem Rev 1992;92:1457–70. https://doi.org/10.1021/cr00014a009.Suche in Google Scholar

11. Surendra, K, Srilakshmi, NK, Rao, KR. A new and efficient method for the synthesis of thiiranes from oxirane–β-cyclodextrin complexes and thiourea in water. Tetrahedron Lett 2004;45:6523–6. https://doi.org/10.1016/j.tetlet.2004.06.111.Suche in Google Scholar

12. Sun, T, Wang, Q, Bi, Y, Chen, X, Liu, L, Ruan, C, et al.. Supramolecular amphiphiles based on cyclodextrin and hydrophobic drugs. J Mater Chem B 2017;5:2644–54. https://doi.org/10.1039/c6tb03272a.Suche in Google Scholar

13. Sun, T, Shu, L, Shen, J, Ruan, C, Zhao, Z, Jiang, C. Photo and redox-responsive vesicles assembled from Bola-type superamphiphiles. RSC Adv 2016;6:52189–200. https://doi.org/10.1039/c6ra05808f.Suche in Google Scholar

14. Takahashi, K. Organic reactions mediated by cyclodextrins. Chem Rev 1998;98:2013–33. https://doi.org/10.1021/cr9700235.Suche in Google Scholar

15. Zhao, Q, Ye, Z, Su, Y, Quyang, D. Predicting complexation performance between cyclodextrins and guest molecules by integrated machine learning and molecular modeling techniques. Acta Pharm Sin B 2019;9:1241–52. https://doi.org/10.1016/j.apsb.2019.04.004.Suche in Google Scholar

16. Surendra, K, Krishnaveni, NS, Mahesh, A, Rao, KR. Supramolecular catalysis of strecker reaction in water under neutral conditions in the presence of β-cyclodextrin. J Org Chem 2006;71:2532–4. https://doi.org/10.1021/jo052510n.Suche in Google Scholar

17. Ravichandran, R. β-Cyclodextrin mediated regioselective photo-reimer–tiemann reaction of phenols. J Mol Catal A Chem 1998;130:L205–7. https://doi.org/10.1016/s1381-1169(97)00223-9.Suche in Google Scholar

18. Surendra, K, Krishnaveni, NS, Sridhar, R, Rao, KR. β-Cyclodextrin promoted aza-michael addition of amines to conjugated alkenes in water. Tetrahedron Lett 2006;47:2125–7. https://doi.org/10.1016/j.tetlet.2006.01.124.Suche in Google Scholar

19. Kunishima, M, Yoshimura, K, Moriqaki, H, Kawamata, R, Terao, K, Tani, SJ. Cyclodextrin-based artificial acyltransferase:  substrate-specific catalytic amidation of carboxylic acids in aqueous solvent. J Am Chem Soc 2001;123:10760–1. https://doi.org/10.1021/ja011660m.Suche in Google Scholar PubMed

20. Reddy, MS, Narender, M, Nageswar, YVD, Rao, KR. A facile β-cyclodextrin-catalyzed oxidative deprotection of tert-butyldimethylsilyl (TBDMS) ethers with NBS in water. Synthesis 2005;5:714–6. https://doi.org/10.1002/chin.200533070.Suche in Google Scholar

21. Tee, OS, Mazza, C, Du, XX. Chain length effects in the cleavage of aryl esters by cyclodextrins different transition states for M- and P-nitrophenyl alkanoates. J Org Chem 1990;55:3603–9. https://doi.org/10.1021/jo00298a042.Suche in Google Scholar

22. Narender, M, Reddy, MS, Sridhar, R, Nageswar, YVD, Rao, KR. Aqueous phase synthesis of thiazoles and aminothiazoles in the presence of β-cyclodextrin. Tetrahedron Lett 2005;46:5953–5. https://doi.org/10.1016/j.tetlet.2005.06.130.Suche in Google Scholar

23. Reddy, MA, Surendra, K, Bhanumathi, N, Rao, KR. Highly facile biomimetic regioselective ring opening of epoxides to halohydrins in the presence of β-cyclodextrin. Tetrahedron Lett 2002;58:6003–8. https://doi.org/10.1016/s0040-4020(02)00614-2.Suche in Google Scholar

24. Masurier, N, Estour, F, Lefeve, B, Masson, P, Lafont, O. Improved access to 2-O-monobenzyl ethers of β-cyclodextrin as precursors of catalysts for organophosphoryl esters hydrolysis. Carbohydr Res 2006;341:935–40. https://doi.org/10.1016/j.carres.2006.02.012.Suche in Google Scholar PubMed

25. Surendra, K, Krishnaveni, NS, Kumar, VP, Sridhar, R, Rao, KR. Selective and efficient oxidation of sulfides to sulfoxides with N-bromosuccinimide in the presence of β-cyclodextrin in water. Tetrahedron Lett 2005;46:4581–3. https://doi.org/10.1016/j.tetlet.2005.05.011.Suche in Google Scholar

26. Reddy, MA, Reddy, LR, Bhanumathi, N, Rao, KR. Selective deprotection of tetrahydropyranyl ethers catalysed by β-cyclodextrin in water. New J Chem 2001;25:359–60. https://doi.org/10.1039/b009187l.Suche in Google Scholar

27. Reddy, MS, Narender, M, Nagehwar, YVD, Rao, KR. N-Boc protection of amines with di-tert-butyldicarbonate in water under neutral conditions in the presence of β-cyclodextrin. Synlett 2006;2006:1110–2. https://doi.org/10.1002/chin.200636053.Suche in Google Scholar

28. Sridhar, R, Srinivas, B, Surendra, K, Krishnaveni, NS, Rao, KR. Synthesis of β-hydroxy selenides using benzeneselenol and oxiranes under supramolecular catalysis in the presence of β-cyclodextrin in water. Tetrahedron Lett 2005;46:8837–9. https://doi.org/10.1016/j.tetlet.2005.10.094.Suche in Google Scholar

29. Chate, AV, Bhadke, PK, Khande, MA, Sangshetti, JN, Gill, CH. β-Cyclodextrin as a supramolecular catalyst for the synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives in water and their antimicrobial activities. Chin Chem Lett 2017;28:1577–82. https://doi.org/10.1016/j.cclet.2017.03.007.Suche in Google Scholar

30. Suresh, P, Pitchumani, K. Per-6-amino-β-cyclodextrin as an efficient supramolecular ligand and host for Cu(I)-catalyzed N-arylation of imidazole with aryl bromides. J Org Chem 2008;73:9121–4. https://doi.org/10.1021/jo801811w.Suche in Google Scholar PubMed

31. Suresh, P, Pitchumani, K. Per-6-amino-β-cyclodextrin catalyzed asymmetric michael addition of nitromethane and thiols to chalcones in water. Tetrahedron: Asymmetry 2008;19:2037–44. https://doi.org/10.1016/j.tetasy.2008.08.014.Suche in Google Scholar

32. Kanagaraj, K, Pitchumani, K. Solvent-free multicomponent synthesis of pyranopyrazoles: per-6-amino-β-cyclodextrin as a remarkable catalyst and host. Tetrahedron Lett 2010;51:3312–6. https://doi.org/10.1016/j.tetlet.2010.04.087.Suche in Google Scholar

33. Sahakijpijarn, S, Moon, C, Koleng, JJ, Christensen, DJ, Williams, ROIII. Development of remdesivir as a dry powder for inhalation by thin film freezing. Pharmaceutics 2020;12:1002. https://doi.org/10.3390/pharmaceutics12111002.Suche in Google Scholar PubMed PubMed Central

34. Asghari, S, Tajbaksh, M, Kenari, BJ, Khaksar, S. Supramolecular synthesis of 3,4-dihydropyrimidine-2(1H)-one/thiones under neat conditions. Chin Chem Lett 2011;22:127–30. https://doi.org/10.1016/j.cclet.2010.09.030.Suche in Google Scholar

35. Bialer, M, Yagen, B, Mechoulam, R, Becker, Y. Structure–activity relationships of pyrrole amidine antiviral antibiotics III: preparation of distamycin and congocidine derivatives based on 2,5-disubstituted pyrroles. J Pharm Sci 1980;69:1334–8. https://doi.org/10.1002/jps.2600691125.Suche in Google Scholar PubMed

36. Massa, S, Stefancich, G, Artico, M, Corelli, F, Pantaleoni, GC, Palumbo, G, et al.. 5-Aroyl-5,6-dihydro-4H-pyrrolo[1,2-a][1,4]benzodiazepin-4-carboxylic acids: synthesis and analgesic and neurobehavioral activity. Farmaco Sci 1986;41:281–91.Suche in Google Scholar

37. Bijev, A, Radev, I, Borisova, Y. Synthesis and antibacterial activity of new cephalosporines containing a pyrrole ring in the N-acyl chain. Pharmazie 2000;55:568–71. https://doi.org/10.1002/chin.200047216.Suche in Google Scholar PubMed

38. Yanagimoto, K, Lee, KG, Ochi, H, Shibamoto, T. Antioxidative activity of heterocyclic compounds found in coffee volatiles produced by maillard reaction. J Agric Food Chem 2002;50:5480–4. https://doi.org/10.1021/jf025616h.Suche in Google Scholar PubMed

39. Paal, C. Synthese von thiophen- und pyrrolderivaten. Ber Dtsch Chem Ges 1885;18:367–71. https://doi.org/10.1002/cber.18850180175.Suche in Google Scholar

40. Wang, Z. Comprehensive organic name reactions and reagents. Weinheim: Wiley VCH; 2009.10.1002/9780470638859Suche in Google Scholar

41. Banik, BK, Banik, I, Renteria, M, Dasgupta, SK. A straightforward highly efficient paal–knorr synthesis of pyrroles. Tetrahedron Lett 2005;46:2643–5. https://doi.org/10.1016/j.tetlet.2005.02.103.Suche in Google Scholar

42. Silveira, CC, Fortes, MP, Mendes, SR. Cerium(III) chloride as a catalyst in the clauson-kaas reaction: synthesis and reactivity of N-aryl-2-thiocyanatopyrroles. Curr Org Chem 2012;19:1540–8. https://doi.org/10.2174/138527212800672538.Suche in Google Scholar

43. Azizi, N, Amiri, AK, Ghafuri, H, Bolourtchian, M, Saidi, MR. Iron-catalyzed inexpensive and practical synthesis of n-substituted pyrroles in water. Synlett 2009;14:2245–8. https://doi.org/10.1055/s-0029-1217799.Suche in Google Scholar

44. Ballini, R, Barboni, L, Bosica, G, Petrini, M. 2, 5-Dialkylfurans and nitroalkanes as source of 2, 3, 5-trialkylpyrroles. Synlett 2000;3:391–3. https://doi.org/10.1055/s-2000-6532.Suche in Google Scholar

45. Zuo, B, Chen, JX, Liu, MC, Wu, HY, Su, WK. Yb(OTf)3-catalyzed synthesis of pyrroles under solvent-free conditions. Chin Chem Lett 2009;20:423–6. https://doi.org/10.1016/j.cclet.2008.12.046.Suche in Google Scholar

46. Chen, JX, Liu, MC, Yang, XL, Ding, JC, Wu, HY. Indium(III)-catalyzed synthesis of n-substituted pyrroles under solvent-free conditions. J Braz Chem Soc 2008;19:877–83. https://doi.org/10.1590/s0103-50532008000500011.Suche in Google Scholar

47. Yu, SX, Quesne, PWL. Quararibea metabolites. 3. Total synthesis of (±)funebral, a rotationally restricted pyrrole alkaloid, using a novel paal-knorr reaction. Tetrahedron Lett 1995;36:6205–8. https://doi.org/10.1016/0040-4039(95)01250-l.Suche in Google Scholar

48. De, SK. Ruthenium (III) chloride as a novel and efficient catalyst for the synthesis of substituted pyrroles under solvent-free conditions. Catal Lett 2008;124:174–7. https://doi.org/10.1007/s10562-008-9461-1.Suche in Google Scholar

49. Deng, HJ, Fang, YJ, Chen, GW, Liu, MC, Wu, HY, Chen, JX. Copper-catalyzed clauson–kass pyrroles synthesis in aqueous media. Appl Organomet Chem 2012;26:164–7. https://doi.org/10.1002/aoc.1864.Suche in Google Scholar

50. De, SK. Cobalt(II) chloride as a novel and efficient catalyst for the synthesis of 1,2,5-trisubstituted pyrroles under solvent-free conditions. Heteroat Chem 2008;19:592–5. https://doi.org/10.1002/hc.20482.Suche in Google Scholar

51. Patil, RN, Kumar, AV. Biomimetic clauson-kass and paal-knorr pyrrole synthesis using β-cyclodextrin-SO3H under aqueous and neat conditions – application to formal synthesis of polygonatine. ChemistrySelect 2018;3:9812–8. https://doi.org/10.1002/slct.201801559.Suche in Google Scholar

52. Santra, S, Mitra, S, Bagdi, AK, Majee, A, Hajra, A. Iron(III)-catalyzed three-component domino strategy for the synthesis of imidazo[1,2-a]pyridines. Tetrahedron Lett 2014;55:5151–5. https://doi.org/10.1016/j.tetlet.2014.07.094.Suche in Google Scholar

53. Cao, H, Liu, X, Zhao, L, Cen, J, Lin, J, Zhu, Q, et al.. One-pot regiospecific synthesis of imidazo[1,2-a]pyridines: a novel, metal-free, three-component reaction for the formation of C–N, C–O, and C–S bonds. Org Lett 2014;16:146–9. https://doi.org/10.1021/ol4031414.Suche in Google Scholar PubMed

54. Shukla, NM, Salunke, DB, Yoo, E, Mutz, CA, Balakrishna, R, David, SA. Antibacterial activities of groebke-blackburn-bienaymé-derived imidazo[1,2-a]pyridin-3-amines. Bioorg Med Chem 2012;20:5850. https://doi.org/10.1016/j.bmc.2012.07.052.Suche in Google Scholar PubMed PubMed Central

55. Bode, ML, Gravestock, D, Moleele, SS, Christiaan, W, Westhuyzen, VD, Pelly, SC, et al.. Imidazo[1,2-a]pyridin-3-amines as potential HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 2011;19:4227–37. https://doi.org/10.1016/j.bmc.2011.05.062.Suche in Google Scholar PubMed

56. Stec, MM, Andrews, KL, Bo, Y, Caenepeel, S, Liao, H, McCarter, J, et al.. The imidazo[1,2-a]pyridine ring system as a scaffold for potent dual phosphoinositide-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitors. Bioorg Med Chem Lett 2015;25:4136–42. https://doi.org/10.1016/j.bmcl.2015.08.016.Suche in Google Scholar PubMed

57. Midzak, A, Denora, N, Laquintana, V, Cutrignelli, A, Lopedota, A, Franco, M, et al.. 2-Phenylimidazo[1,2-a]pyridine-containing ligands of the 18-kda translocator protein (TSPO) behave as agonists and antagonists of steroidogenesis in a mouse leydig tumor cell line. Eur J Pharmaceut Sci 2015;76:231–7. https://doi.org/10.1016/j.ejps.2015.05.021.Suche in Google Scholar PubMed

58. Rousseau, AL, Matlaba, P, Parkinson, CJ. Multicomponent synthesis of imidazo[1,2-a]pyridines using catalytic zinc chloride. Tetrahedron Lett 2007;48:4079–82. https://doi.org/10.1016/j.tetlet.2007.04.008.Suche in Google Scholar

59. Guchhait, SK, Madaan, C. An efficient, regioselective, versatile synthesis of N-fused 2- and 3-aminoimidazoles via ugi-type multicomponent reaction mediated by zirconium(IV) chloride in polyethylene glycol-400. Synlett 2009;4:628–32. https://doi.org/10.1055/s-0028-1087915.Suche in Google Scholar

60. Shaabani, A, Soleimani, E, Sarvary, A, Rezayan, AH, Maleki, A. Tin(II) chloride dihydrate catalyzed groebke condensation: an efficient protocol for the synthesis of 3‐aminoimidazo[1,2‐a]pyridines. Chin J Chem 2009;27:369–71. https://doi.org/10.1002/cjoc.200990060.Suche in Google Scholar

61. Shinde, AH, Srilaxmi, M, Satpathi, B, Sharada, DS. A highly efficient synthesis of imidazo-fused polyheterocycles via groebke–blackburn–bienaymè reaction catalyzed by LaCl3·7H2O. Tetrahedron Lett 2014;55:5915–20. https://doi.org/10.1016/j.tetlet.2014.08.126.Suche in Google Scholar

62. Rostamnia, S, Hassankhani, A. RuCl3-catalyzed solvent-free ugi-type groebke–blackburn synthesis of aminoimidazole heterocycles. RSC Adv 2013;3:18626–9. https://doi.org/10.1039/c3ra42752h.Suche in Google Scholar

63. Akbarzadeh, R, Shakibaei, GI, Bazgir, A. An efficient synthesis of ferrocenyl imidazo[1,2-a]pyridines. Monatsh Chem 2010;141:1077–81. https://doi.org/10.1007/s00706-010-0372-7.Suche in Google Scholar

64. Wu, J, Xu, FZ, Feng, SL, Xue, W, Wang, ZZ. A facile preparation of imidazo[1,2-a]pyridin-3-amine derivatives via a three component reaction with β-cyclodextrin–SO3H as catalyst. Heterocycles 2016;92:1629–42. https://doi.org/10.3987/com-16-13508.Suche in Google Scholar

65. Wolfe, JF, Rathman, TL, Sleevi, MC, Campbell, JA, Greenwood, TD. Synthesis and anticonvulsant activity of some new 2-substituted 3-aryl-4(3H)-quinazolinones. J Med Chem 1990;33:161–6. https://doi.org/10.1021/jm00163a027.Suche in Google Scholar

66. Padia, JK, Field, M, Hinton, J, Meecham, K, Pablo, J, Pinnock, R, et al.. Novel nonpeptide CCK-B antagonists: design and development of quinazolinone derivatives as potent, selective, and orally active CCK-B antagonists. J Med Chem 1998;41:1042–9. https://doi.org/10.1021/jm970373j.Suche in Google Scholar

67. Khalil, MA, Soliman, R, Farghaly, AM, Bekhit, AA. Non-steroidal anti-inflammatory agents: novel pyrazolyl-, 1,2-oxazolyl-, and 1,3-diazinyl derivatives of 4(3H)-quinazolinones. Arch Pharm 1994;327:27–30. https://doi.org/10.1002/ardp.19943270105.Suche in Google Scholar

68. Xia, Y, Yang, ZY, Hour, MJ, Kuo, SC, Xia, P, Bastow, KF, et al.. Antitumor agents. Part 204: synthesis and biological evaluation of substituted 2-aryl quinazolinones. Bioorg Med Chem Lett 2001;11:1193–6. https://doi.org/10.1016/s0960-894x(01)00190-1.Suche in Google Scholar

69. Ozaki, K, Yamada, Y, Oine, T, Ishizuka, T, Iwasawa, Y. Studies on 4(1H)-quinazolinones. 5. Synthesis and anti-inflammatory activity of 4(1H)-quinazolinone derivatives. J Med Chem 1985;28:568–76. https://doi.org/10.1021/jm50001a006.Suche in Google Scholar PubMed

70. Erlanson, DA, McDowell, RS, Brien, TO. Fragment-based drug discovery. J Med Chem 2004;47:3463–82. https://doi.org/10.1021/jm040031v.Suche in Google Scholar PubMed

71. Na, YH, Hong, SH, Lee, JH, Park, WK, Baek, DJ, Koh, HY, et al.. Novel quinazolinone derivatives as 5-HT7 receptor ligands. Bioorg Med Chem 2008;16:2570–8. https://doi.org/10.1016/j.bmc.2007.11.049.Suche in Google Scholar PubMed

72. Hamel, E, Lin, CM, Plowman, J, Wang, HK, Lee, KH, Paull, KD. Antitumor 2,3-dihydro-2-(aryl)-4(1H)-quinazolinone derivatives: interactions with tubulin. Biochem Pharmacol 1996;51:53–9. https://doi.org/10.1016/0006-2952(95)02156-6.Suche in Google Scholar

73. Chen, J, Wu, D, He, F, Liu, M, Wu, H, Ding, J, et al.. Gallium(III) triflate-catalyzed one-pot selective synthesis of 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones. Tetrahedron Lett 2008;49:3814–8. https://doi.org/10.1016/j.tetlet.2008.03.127.Suche in Google Scholar

74. Lopez, SE, Rosales, ME, Urdaneta, N, Gody, MV, Charris, J. The synthesis of substituted 2-Aryl-4(3H)-quinazolinones using NaHSO3/Dmac. Steric effect upon the cyclization-dehydrogenation step. J Chem Res 2000;6:258–9. https://doi.org/10.3184/030823400103167381.Suche in Google Scholar

75. Salehi, P, Dabiri, M, Baghbanzadeh, M. One‐pot, three‐component synthesis of 2,3‐dihydro‐4(1H)‐quinazolinones by montmorillonite K‐10 as an efficient and reusable catalyst. Synth Commun 2006;36:2287–92. https://doi.org/10.1080/00397910600639752.Suche in Google Scholar

76. Rostamizadeh, S, Amani, AM, Mahdavinia, GH, Sepehrian, H, Ebrahimi, S. Synthesis of some novel 2-aryl-substituted 2, 3-dihydroquinazolin-4-(1H)-ones under solvent-free conditions using MCM-41-SO3H as a highly efficient sulfonic acid. Synthesis 2010;2010:1356–60. https://doi.org/10.1055/s-0029-1218676.Suche in Google Scholar

77. Dabiri, M, Salehi, P, Otokesh, S, Baghbanzadeh, M, Kozehgary, G, Mohammadi, AA. Efficient synthesis of mono-and disubstituted 2, 3-dihydroquinazolin-4(1H)-ones using KAl (SO4)2·12H2O as a reusable catalyst in water and ethanol. Tetrahedron Lett 2005;46:6123–6. https://doi.org/10.1016/j.tetlet.2005.06.157.Suche in Google Scholar

78. Shaterian, HR, Oveisi, AR, Honarmand, M. Synthesis of 2,3-dihydroquinazoline-4(1H)-ones. Synth Commun 2010;40:1231–42. https://doi.org/10.1080/00397910903064831.Suche in Google Scholar

79. Wang, M, Zhang, TT, Song, ZG. Eco-friendly synthesis of 2-substituted-2,3-dihydro-4(1H)-quinazolinones in water. Chin Chem Lett 2011;22:427–30. https://doi.org/10.1016/j.cclet.2010.10.038.Suche in Google Scholar

80. Wu, J, Du, X, Ma, J, Zhang, Y, Shi, Y, Shi, Q, et al.. Preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in aqueous media with β-cyclodextrin-SO3H as a recyclable catalyst. Green Chem 2014;16:3210–7. https://doi.org/10.1039/c3gc42400f.Suche in Google Scholar

81. Grasso, S, Sarro, GD, Sarro, AD, Micale, N, Zappala, M, Puia, G, et al.. Synthesis and anticonvulsant activity of novel and potent 6,7-methylenedioxyphthalazin-1(2H)-ones. J Med Chem 2000;43:2851–9. https://doi.org/10.1021/jm001002x.Suche in Google Scholar PubMed

82. Sayyafi, M, Sayyedhamzeh, M, Khavasi, HR, Bazgir, A. One-pot, three-component route to 2H-indazolo[2,1-b]phthalazine-triones. Tetrahedron 2008;64:2375–8. https://doi.org/10.1016/j.tet.2008.01.006.Suche in Google Scholar

83. Kidwai, M, Chauhan, R, Jahan, A. Efficient CAN catalyzed synthesis of 1H-indazolo[1,2-b]phthalazine-1,6,11-triones: an eco-friendly protocol. Chin Sci Bull 2012;57:2273–9.10.1007/s11434-012-5081-7Suche in Google Scholar

84. Mosaddegh, E, Hassankhani, A. A rapid, one-pot, four-component route to 2H-indazolo[2,1-b]phthalazine-triones. Tetrahedron Lett 2011;52:488–90. https://doi.org/10.1016/j.tetlet.2010.08.099.Suche in Google Scholar

85. Wang, HJ, Zhang, XN, Zhang, ZH. Highly efficient three-component synthesis of 1H-indazolo[1,2-b]phthalazinetrione derivatives catalyzed by heteropolyacids. Monatsh Chem 2010;141:425–30. https://doi.org/10.1007/s00706-010-0283-7.Suche in Google Scholar

86. Corma, A, Garcia, H. Organic reactions catalyzed over solid acids. Catal Today 1997;38:257–308. https://doi.org/10.1016/s0920-5861(97)81500-1.Suche in Google Scholar

87. Sabitha, G, Srinivas, C, Raghavendar, A, Yadav, JS. Phosphomolybdic acid (PMA)–SiO2 as a heterogeneous solid acid catalyst for the one-pot synthesis of 2H-indazolo[1,2-b]phthalazine-triones. Helv Chim Acta 2010;93:1375–80. https://doi.org/10.1002/hlca.200900378.Suche in Google Scholar

88. Reddy, MV, Reddy, GCS, Jeong, YT. Microwave-assisted, montmorillonite K-10 catalyzed three-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones under solvent-free conditions. Tetrahedron 2012;68:6820–8. https://doi.org/10.1016/j.tet.2012.06.045.Suche in Google Scholar

89. Shaterian, HR, Ghashang, M, Feyzi, M. Silica sulfuric acid as an efficient catalyst for the preparation of 2H-indazolo[2,1-b]phthalazine-triones. Appl Catal A Gen 2008;345:128–33. https://doi.org/10.1016/j.apcata.2008.04.032.Suche in Google Scholar

90. Atar, AB, Lee, SD, Cho, BG, Cho, DW, Jeong, YT. β-Cyclodextrine-SO3H: the most efficient catalyst for one-pot synthesis of 2H-indazolo[2,1-b]phthalazinetriones under solvent-free conditions. Res Chem Intermed 2015;42:1707–28. https://doi.org/10.1007/s11164-015-2113-3.Suche in Google Scholar

91. Urmode, TD, Dawange, MA, Shinde, VS, Kusurkar, RS. Synthesis of spiroindolone scaffolds by pictet-spengler spirocyclisation using β-cyclodextrin-SO3H as a recyclable catalyst. Tetrahedron 2017;73:4348–54. https://doi.org/10.1016/j.tet.2017.05.089.Suche in Google Scholar

92. Badillo, JJ, Garcia, AS, Shupe, BH, Fettinger, JC, Franz, AK. Enantioselective pictet–spengler reactions of isatins forthe synthesis of spiroindolones. Tetrahedron Lett 2011;52:5550–3. https://doi.org/10.1016/j.tetlet.2011.08.071.Suche in Google Scholar PubMed PubMed Central

93. Duce, S, Pesciaioli, F, Gramigna, L, bernardi, L, Mazzanti, A, Ricci, A, et al.. An easy entry to optically active spiroindolinones: chiral brønsted acid-catalysed pictet–spengler reactions of isatins. Adv Synth Catal 2011;353:860–4. https://doi.org/10.1002/adsc.201100050.Suche in Google Scholar

94. Reddy, GN, Rao, BM, Vijay, M, Devi, BLAP, Prasad, RBN, Reddy, BVS. Bioglycerol-derived carbon−SO3H as a recyclable catalyst for the synthesis of tetrahydro-β-carbolines. Can J Chem 2015;93:341–7. https://doi.org/10.1139/cjc-2014-0350.Suche in Google Scholar

95. Shumaila, AMA, Puranik, VG, Kusurkar, RS. Diastereoselective synthesis of 1, 1, 4-trisubstituted-2, 3, 4, 9-tetrahydrospiro-b-carbolines via glacial acetic acid catalyzed pictet-spengler reaction. Arkivoc 2011;2:41–56.10.3998/ark.5550190.0012.204Suche in Google Scholar

96. Madankumar, N, Pitchumani, K. β-Cyclodextrin monosulphonic acid promoted multicomponent synthesis of 1,8-dioxodecahydroacridines in water. ChemistrySelect 2018;3:10886–91. https://doi.org/10.1002/slct.201802244.Suche in Google Scholar

97. Cheraghchi, M, Kiasat, AR, Badri, R. β-Cyclodextrain sulfonic acid as a biodegradable solid catalyst in benzoxanthenes synthesis. Int J Heterocycl Chem 2011;1:35–9.Suche in Google Scholar

98. Mohammad, B, Rahele, D, Mahdi, M, Khosrow, J. Synthesis of pyrazolopyranopyrimidines catalyzed by caffeine supported on boehmite nanoparticles and their evaluation for anti-bacterial activities. Iran J Catal 2017;7:27–35.Suche in Google Scholar

99. Nezhad, KA, Shahidzadeh, ES, Sarikhani, S, Panahi, F. A new silica-supported organocatalyst based on L-proline: an efficient heterogeneous catalyst for one-pot synthesis of spiroindolones in water. Tetrahedron Lett 2013;379:1–8. https://doi.org/10.1016/j.molcata.2013.07.009.Suche in Google Scholar

100. Panda, S, Roy, A, Deka, SJ, Trivedi, V, Manna, D. Fused heterocyclic compounds as potent indoleamine-2, 3-dioxygenase 1 inhibitors. ACS Med Chem Lett 2016;7:1167–72. https://doi.org/10.1021/acsmedchemlett.6b00359.Suche in Google Scholar PubMed PubMed Central

101. Patil, A, Gajare, S, Rashinkar, G, Salunkhe, R. β-CD-SO3H: synthesis, characterization and its application for the synthesis of benzylpyrazolyl naphthoquinone and pyrazolo pyranopyrimidine derivatives in water. Catal Lett 2020;150:127–37. https://doi.org/10.1007/s10562-019-02928-y.Suche in Google Scholar

102. Desai, KG, Desai, KR. A facile microwave enhanced synthesis of sulfur-containing 5-membered heterocycles derived from 2-mercaptobenzothiazole over ZnCl2/DMF and antimicrobial activity evaluation. J Sulfur Chem 2006;27:315–28. https://doi.org/10.1080/17415990600786409.Suche in Google Scholar

103. Zhou, H, Wu, S, Zhai, S, Liu, A, Sun, Y, Li, R, et al.. Design, synthesis, cytoselective toxicity, structure–activity relationships, and pharmacophore of thiazolidinone derivatives targeting drug-resistant lung cancer cells. J Med Chem 2008;51:1242–51. https://doi.org/10.1021/jm7012024.Suche in Google Scholar PubMed

104. Solomon, VR, Haq, W, Srivastava, K, Puri, SK, Katti, SB. Synthesis and antimalarial activity of side chain modified 4-aminoquinoline derivatives. J Med Chem 2007;50:394–8. https://doi.org/10.1021/jm061002i.Suche in Google Scholar

105. Ottana, R, Carotti, S, Maccari, R, Landini, I, Chiricosta, G, Caciagli, B, et al.. In vitro antiproliferative activity against human colon cancer cell lines of representative 4-thiazolidinones. Part I. Bioorg Med Chem Lett 2005;15:3930–3. https://doi.org/10.1016/j.bmcl.2005.05.093.Suche in Google Scholar

106. Kucukguzel, GC, Shchullek, JR, Kaocatepe, A, Clercq, ED, Sahinv, F, Gulluce, M. Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide. Eur J Med Chem 2006;41:353–9. https://doi.org/10.1016/j.ejmech.2005.11.005.Suche in Google Scholar

107. Archana, Srivastava, VK, Kumar, A. Synthesis of newer thiadiazolyl and thiazolidinonyl quinazolin-4(3H)-ones as potential anticonvulsant agents. Eur J Med Chem 2002;37:873–82. https://doi.org/10.1016/s0223-5234(02)01389-2.Suche in Google Scholar

108. Vigorita, MG, Ottana, R, Monforte, F, Maccari, R, Trovato, A, Monforte, MT, et al.. Synthesis and anti-inflammatory, analgesic activity of 3,3′-(1,2-ethanediyl)-bis[2-Aryl-4-thiazolidinone] chiral compounds. Part 10. Bioorg Med Chem Lett 2001;11:2791–4. https://doi.org/10.1016/s0960-894x(01)00476-0.Suche in Google Scholar

109. Tripathi, AC, Gupta, SJ, Fatima, GN, Sonar, PK, Verma, A, Saraf, SK. 4-Thiazolidinones: the advances continue… Eur J Med Chem 2014;72:52–77. https://doi.org/10.1016/j.ejmech.2013.11.017.Suche in Google Scholar PubMed

110. Chaudhari, MA, Gujar, JB, Kawade, DS, Shinde, PV, Shingare, MS. β-Cyclodextrin-SO3H-catalyzed facile and highly efficient synthesis of 4-thiazolidinones under solvent free conditions. Res Chem Intermed 2015;41:10027–35. https://doi.org/10.1007/s11164-015-2010-9.Suche in Google Scholar

111. Thombal, RS, Jadhav, AR, Jadhav, VH. Biomass derived β-cyclodextrin-SO3H as a solid acid catalyst for esterification of carboxylic acids with alcohols. RSC Adv 2015;5:12981–6. https://doi.org/10.1039/c4ra16699j.Suche in Google Scholar

112. Thombal, RS, Jadhav, VH. Biomass derived β-cyclodextrin-SO3H carbonaceous solid acid catalyst for catalytic conversion of carbohydrates to 5-hydroxymethylfurfural. Appl Catal A Gen 2015;499:213–6. https://doi.org/10.1016/j.apcata.2015.04.021.Suche in Google Scholar

113. Bal, TR, Anand, B, Yogeeswari, P, Sriram, D. Synthesis and evaluation of Anti-HIV activity of isatin beta-thiosemicarbazone derivatives. Bioorg Med Chem Lett 2005;15:4451–5. https://doi.org/10.1016/j.bmcl.2005.07.046.Suche in Google Scholar PubMed

114. Jiang, T, Kuhen, KL, Wolff, K, Yin, H, Bieza, K, Caldwell, J, et al.. Design, synthesis, and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part 2. Bioorg Med Chem Lett 2006;16:2109–12. https://doi.org/10.1016/j.bmcl.2006.01.066.Suche in Google Scholar

115. Tripathy, R, Reiboldt, A, Messina, PA, Iqbal, M, Singh, J, Bacon, ER, et al.. Structure-guided identification of novel VEGFR-2 kinase inhibitors via solution phase parallel synthesis. Bioorg Med Chem Lett 2006;16:2158–62. https://doi.org/10.1016/j.bmcl.2006.01.063.Suche in Google Scholar

116. Raj, AA, Raghunathan, R, Sridevikumari, MR, Raman, N. Synthesis, antimicrobial and antifungal activity of a new class of spiro pyrrolidines. Bioorg Med Chem 2003;11:407–19. https://doi.org/10.1016/s0968-0896(02)00439-x.Suche in Google Scholar

117. Arguelles, MCR, Vazaquez, SM, Touceda, PT, Matalobos, JS, Deibe, AMG, Ferraris, MB, et al.. Complexes of 2-thiophenecarbonyl and isonicotinoyl hydrazones of 3-(N-methyl)isatin.: a study of their antimicrobial activity. Inorg Biochem 2007;101:138–47. https://doi.org/10.1016/j.jinorgbio.2006.09.004.Suche in Google Scholar PubMed

118. Maskell, L, Blanche, EA, Colucci, MA, Whatmore, JL, Moody, CJ. Synthesis and evaluation of prodrugs for anti-angiogenic pyrrolylmethylidenyl oxindoles. Bioorg Med Chem Lett 2007;17:1575–8. https://doi.org/10.1016/j.bmcl.2006.12.108.Suche in Google Scholar PubMed

119. Verma, M, Pandeya, SN, Singh, KN, Stables, JP. Anticonvulsant activity of schiff bases of isatin derivatives. Acta Pharm 2004;54:49–56.Suche in Google Scholar

120. Tayade, YA, Patil, DR, Wagh, YB, Jangle, AD, Dalal, DS. An efficient synthesis of 3-indolyl-3-hydroxy oxindoles and 3,3-di(indolyl)indolin-2-ones catalyzed by sulfonated β-CD as a supramolecular catalyst in water. Tetrahedron Lett 2015;56:666–73. https://doi.org/10.1016/j.tetlet.2014.12.012.Suche in Google Scholar PubMed PubMed Central

121. Gong, K, Wang, H, Wang, S, Ren, X. β-Cyclodextrin-propyl sulfonic acid: a new and eco-friendly catalyst for one-pot multi-component synthesis of 3,4-dihydropyrimidones via biginelli reaction. Tetrahedron 2015;71:4830–4. https://doi.org/10.1016/j.tet.2015.05.028.Suche in Google Scholar

122. Ran, Y, Li, M, Zang, ZZ. β-Cyclodextrin–propyl sulfonic acid catalysed one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles as local anesthetic agents. Molecules 2015;20:20286–96. https://doi.org/10.3390/molecules201119696.Suche in Google Scholar PubMed PubMed Central

123. Sudhan, PN, Ghashang, M, Mansoor, SS. Efficient synthesis of a novel series of indeno fused pyrido[2,3-d]pyrimidines using β-cyclodextrin-propyl sulfonic acid as an eco-friendly catalyst. Beni-Seuf Univ J Appl Sci 2016;5:340–9. https://doi.org/10.1016/j.bjbas.2016.11.004.Suche in Google Scholar

124. Nagarapu, L, Kantevari, S, Cheemalapati, VN, Apuri, S, Kumari, NV. Potassium dodecatungstocobaltate trihydrate (K5CoW12O40·3H2O): a mild and efficient reusable catalyst for the synthesis of β-acetamido ketones under solvent-free conditions. J Mol Catal A Chem 2007;264:22–5. https://doi.org/10.1016/j.molcata.2006.09.001.Suche in Google Scholar

125. Shaterian, HR, Yarahmadi, H, Ghashang, M. An efficient, simple and expedition synthesis of 1-amidoalkyl-2-naphthols as ‘drug like’ molecules for biological screening. Bioorg Med Chem Lett 2008;18:788–92. https://doi.org/10.1016/j.bmcl.2007.11.035.Suche in Google Scholar PubMed

126. Samantaray, S, Hota, G, Mishra, BG. Physicochemical characterization and catalytic applications of MoO3–ZrO2 composite oxides towards one pot synthesis of amidoalkyl naphthols. Catal Commun 2011;12:1255–9. https://doi.org/10.1016/j.catcom.2011.04.014.Suche in Google Scholar

127. Safari, J, Zarnegar, Z. Synthesis of amidoalkyl naphthols by nano-Fe3O4 modified carbon nanotubes via a multicomponent strategy inthe presence of microwaves. J Ind Eng Chem 2013;20:2292–7.10.1016/j.jiec.2013.10.004Suche in Google Scholar

128. Tayebee, R, Amini, MM, Akbari, M, Aliakbari, A. A novel inorganic–organic nano hybrid material H4SiW12O40/pyridino-MCM-41 as efficient catalyst for the preparation of 1-amidoalkyl-2-naphthols under solvent-free conditions. Dalton Trans 2015;44:9596–609. https://doi.org/10.1039/c5dt00368g.Suche in Google Scholar PubMed

129. Dorehgiraee, A, Khabazzadeh, H, Saidi, K. Heteropoly acid catalyzed synthesis of 1-amidoalkyl-2-naphthols in the presence of molten tetraethylammonium chloride. Arkivoc 2009:303–10. https://doi.org/10.3998/ark.5550190.0010.729.Suche in Google Scholar

130. Hakimi, F. Silver nanoparticles: an efficient and versatile reagent for the synthesis of 1-amidoalkyl-2-naphthols. Inorg Nano Metal Chem 2017;47:994–8. https://doi.org/10.1080/15533174.2016.1216126.Suche in Google Scholar

131. Rakhtshah, J, Salehzadeh, S, Zolfigol, MA, Baghery, S. Mn(III)–Pentadentate schiff base complex supported on multi-walled carbon nanotubes as a green, mild and heterogeneous catalyst for the synthesis of tetrahydrobenzo[b]pyrans via tandem knoevenagel–michael cyclocondensation reaction. Appl Organomet Chem 2017;31:e3690. https://doi.org/10.1002/aoc.3690.Suche in Google Scholar

132. Khanapure, S, Jagadale, M, Salunkhe, R, Rashinkar, G. Zirconocene dichloride catalyzed multi-component synthesis of 1-amidoalkyl-2-naphthols at ambient temperature. Res Chem Intermed 2016;42:2075–85. https://doi.org/10.1007/s11164-015-2136-9.Suche in Google Scholar

133. Cai, Z, Shu, C, Peng, Y. Magnetically recoverable nano-sized mesoporous solid acid: effective catalysts for the synthesis of 1-amidoalkyl-2-naphthols. Monatsh Chem 2014;145:1681–7. https://doi.org/10.1007/s00706-014-1246-1.Suche in Google Scholar

134. Gong, K, Wang, H, Ren, X, Wang, Y, Chen, J. β-Cyclodextrin-butane sulfonic acid: an efficient and reusable catalyst for the multicomponent synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. Green Chem 2015;17:3141–7. https://doi.org/10.1039/c5gc00384a.Suche in Google Scholar

135. Kumar, NM, Pitchmani, K. β-Cyclodextrin-monosulphonic acid catalyzed efficient synthesis of 1-amidoalkyl-2-naphthols. ChemistrySelect 2017;2:10798–803. https://doi.org/10.1002/slct.201702038.Suche in Google Scholar

Published Online: 2021-09-07

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2021-0080/html
Button zum nach oben scrollen