Abstract
In vivo tracking of administered cells chosen for specific disease treatment may be conducted by diagnostic imaging techniques preceded by cell labeling with special contrast agents. The most commonly used agents are those with radioactive properties, however their use in research is often impossible. This review paper focuses on the essential aspect of cell tracking with the exclusion of radioisotope tracers, therefore we compare application of different types of non-radioactive contrast agents (cell tracers), methods of cell labeling and application of various techniques for cell tracking, which are commonly used in preclinical or clinical studies. We discuss diagnostic imaging methods belonging to three groups: (1) Contrast-enhanced X-ray imaging, (2) Magnetic resonance imaging, and (3) Optical imaging. In addition, we present some interesting data from our own research on tracking immune cell with the use of discussed methods. Finally, we introduce an algorithm which may be useful for researchers planning leukocyte targeting studies, which may help to choose the appropriate cell type, contrast agent and diagnostic technique for particular disease study.
Funding source: European Research Council
Award Identifier / Grant number: 715048
Acknowledgments
We would like to kindly acknowledge Mr. Kijan Crowley for his linguistic verification and grammar corrections. We thank MSc Jarosław Olszewski for researching articles related to MRI.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This paper and research cited in this article is funded by the European Research Council Starting Grant McHAP: 715048 (MKról).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Bulte, JWM, Daldrup-Link, HE. Clinical tracking of cell transfer and cell transplantation: trials and tribulations. Radiology 2018;289:604–15. https://doi.org/10.1148/radiol.2018180449.Suche in Google Scholar PubMed PubMed Central
2. Farahi, N, Loutsios, C, Tregay, N, Summers, C, Lok, LSC, Ruparelia, P, et al.. Radiolabelled leucocytes in human pulmonary disease. Br Med Bull 2018;127:69–82. https://doi.org/10.1093/bmb/ldy022.Suche in Google Scholar PubMed PubMed Central
3. Weist, MR, Starr, R, Aguilar, B, Chea, J, Miles, JK, Poku, E, et al.. PET of adoptively transferred chimeric antigen receptor T cells with 89Zr-oxine. J Nucl Med: Off Publ Soc Nucl Med 2018;59:1531–7. https://doi.org/10.2967/jnumed.117.206714.Suche in Google Scholar PubMed PubMed Central
4. Perrin, J, Capitao, M, Mougin-Degraef, M, Guérard, F, Faivre-Chauvet, A, Rbah-Vidal, L, et al.. Cell tracking in cancer immunotherapy. Front Med 2020;7:34. https://doi.org/10.3389/fmed.2020.00034.Suche in Google Scholar PubMed PubMed Central
5. Goodman, LR. The beatles, the Nobel prize, and CT scanning of the chest. Radiol Clin 2010;48:1–7. https://doi.org/10.1016/j.rcl.2009.09.008.Suche in Google Scholar PubMed
6. Bernstein, AL, Dhanantwari, A, Jurcova, M, Cheheltani, R, Naha, PC, Ivanc, T, et al.. Improved sensitivity of computed tomography towards iodine and gold nanoparticle contrast agents via iterative reconstruction methods. Sci Rep 2016;6:26177. https://doi.org/10.1038/srep26177.Suche in Google Scholar PubMed PubMed Central
7. Pelc, NJ. Recent and future directions in CT imaging. Ann Biomed Eng 2014;42:260–8. https://doi.org/10.1007/s10439-014-0974-z.Suche in Google Scholar PubMed PubMed Central
8. Oliva, MR, Erturk, SM, Ichikawa, T, Rocha, T, Ros, PR, Silverman, SG, et al.. Gastrointestinal tract wall visualization and distention during abdominal and pelvic multidetector CT with a neutral barium sulphate suspension: comparison with positive barium sulphate suspension and with water. JBR-BTR 2012;95:237–42. https://doi.org/10.5334/jbr-btr.628.Suche in Google Scholar PubMed
9. Kurihara, O, Takano, M, Uchiyama, S, Fukuizumi, I, Shimura, T, Matsushita, M, et al.. Microvascular resistance in response to iodinated contrast media in normal and functionally impaired kidneys. Clin Exp Pharmacol Physiol 2015;42:1245–50. https://doi.org/10.1111/1440-1681.12479.Suche in Google Scholar PubMed PubMed Central
10. Pasternak, JJ, Williamson, EE. Clinical pharmacology, uses, and adverse reactions of iodinated contrast agents: a primer for the non-radiologist. Mayo Clin Proc 2012;87:390–402. https://doi.org/10.1016/j.mayocp.2012.01.012.Suche in Google Scholar PubMed PubMed Central
11. Kim, J, Chhour, P, Hsu, J, Litt, HI, Ferrari, VA, Popovtzer, R, et al.. Use of nanoparticle contrast agents for cell tracking with computed tomography. Bioconjugate Chem 2017;28:1581–97. https://doi.org/10.1021/acs.bioconjchem.7b00194.Suche in Google Scholar PubMed PubMed Central
12. Gabizon, AA. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Canc Invest 2001;19:424–36. https://doi.org/10.1081/CNV-100103136.Suche in Google Scholar
13. Bernsen, MR, Guenoun, J, van Tiel, ST, Krestin, GP. Nanoparticles and clinically applicable cell tracking. BJR 2015;88:20150375. https://doi.org/10.1259/bjr.20150375.Suche in Google Scholar PubMed PubMed Central
14. Callera, F, de Melo, CMTP. Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells’ migration into the injured site. Stem Cell Dev 2007;16:461–6. https://doi.org/10.1089/scd.2007.0083.Suche in Google Scholar PubMed
15. Mieszawska, AJ, Mulder, WJM, Fayad, ZA, Cormode, DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 2013;10:831–47. https://doi.org/10.1021/mp3005885.Suche in Google Scholar PubMed PubMed Central
16. Meir, R, Shamalov, K, Betzer, O, Motiei, M, Horovitz-Fried, M, Yehuda, R, et al.. Nanomedicine for cancer immunotherapy: tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano 2015;9:6363–72. https://doi.org/10.1021/acsnano.5b01939.Suche in Google Scholar PubMed
17. Serban, MA. Translational biomaterials—the journey from the bench to the market—think ‘product’. Curr Opin Biotechnol 2016;40:31–4. https://doi.org/10.1016/j.copbio.2016.02.009.Suche in Google Scholar PubMed
18. Dullin, C, dal Monego, S, Larsson, E, Mohammadi, S, Krenkel, M, Garrovo, C, et al.. Functionalized synchrotron in‐line phase‐contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium‐labelled alveolar macrophages within mouse lung samples. J Synchrotron Radiat 2015;22:143–55. https://doi.org/10.1107/S1600577514021730.Suche in Google Scholar PubMed PubMed Central
19. Usselman, RJ, Qazi, S, Aggarwal, P, Eaton, S, Eaton, G, Russek, S, et al.. Gadolinium-loaded viral capsids as magnetic resonance imaging contrast agents. Appl Magn Reson 2015;46:349–55. https://doi.org/10.1007/s00723-014-0639-y.Suche in Google Scholar PubMed PubMed Central
20. Pierre, VC, Allen, MJ, Caravan, P. Contrast agents for MRI: 30+ years and where are we going? J Biol Inorg Chem 2014;19:127–31. https://doi.org/10.1007/s00775-013-1074-5.Suche in Google Scholar PubMed PubMed Central
21. Sinharay, S, Pagel, MD. Advances in magnetic resonance imaging contrast agents for biomarker detection. Annu Rev Anal Chem 2016;9:95–115. https://doi.org/10.1146/annurev-anchem-071015-041514.Suche in Google Scholar PubMed PubMed Central
22. Agudelo, CA, Tachibana, Y, Hurtado, AF, Ose, T, Iida, H, Yamaoka, T. The use of magnetic resonance cell tracking to monitor endothelial progenitor cells in a rat hindlimb ischemic model. Biomaterials 2012;33:2439–48. https://doi.org/10.1016/j.biomaterials.2011.11.075.Suche in Google Scholar PubMed
23. Guenoun, J, Koning, GA, Doeswijk, G, Bosman, L, Wielopolski, PA, Krestin, GP, et al.. Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI. Cell Transplant 2012;21:191–205. https://doi.org/10.3727/096368911X593118.Suche in Google Scholar PubMed
24. Navya, PN, Kaphle, A, Srinivas, SP, Bhargava, SK, Rotello, VM, Daima, HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence 2019;6:23. https://doi.org/10.1186/s40580-019-0193-2.Suche in Google Scholar PubMed PubMed Central
25. Bhorade, R, Weissleder, R, Nakakoshi, T, Moore, A, Tung, C-H. Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide. Bioconjugate Chem 2000;11:301–5. https://doi.org/10.1021/bc990168d.Suche in Google Scholar PubMed
26. Laurent, S, Elst, LV, Muller, RN. Superparamagnetic iron oxide nanoparticles for MRI. In: Merbach, A, Helm, L, Tóth, É, editors. The chemistry of contrast agents in medical magnetic resonance imaging. Chichester, UK: John Wiley & Sons, Ltd; 2013.10.1002/9781118503652.ch10Suche in Google Scholar
27. Elias, A, Tsourkas, A. Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hematology 2009;2009:720–6. https://doi.org/10.1182/asheducation-2009.1.720.Suche in Google Scholar PubMed
28. Walter, GA, Cahill, KS, Huard, J, Feng, H, Douglas, T, Sweeney, HL, et al.. Noninvasive monitoring of stem cell transfer for muscle disorders. Magn Reson Med 2004;51:273–7. https://doi.org/10.1002/mrm.10684.Suche in Google Scholar PubMed
29. Seifalian, A, Bull, E, Madani, S, Green, M, Seifalian, A. Stem cell tracking using iron oxide nanoparticles. IJN 2014;9:1641. https://doi.org/10.2147/IJN.S48979.Suche in Google Scholar PubMed PubMed Central
30. Tavaré, R, Sagoo, P, Varama, G, Tanriver, Y, Warely, A, Diebold, SS, et al.. Monitoring of in vivo function of superparamagnetic iron oxide labelled murine dendritic cells during anti-tumour vaccination. PloS One 2011;6:e19662. https://doi.org/10.1371/journal.pone.0019662.Suche in Google Scholar PubMed PubMed Central
31. De Cuyper, M, Joniau, M. Magnetoliposomes: formation and structural characterization. Eur Biophys J 1988;15:311–9. https://doi.org/10.1007/BF00256482.Suche in Google Scholar PubMed
32. Berry, CC, Wells, S, Charles, S, Aitchison, G, Curtis, ASG. Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 2004;25:5405–13. https://doi.org/10.1016/j.biomaterials.2003.12.046.Suche in Google Scholar PubMed
33. Holland, GN, Bottomley, PA, Hinshaw, WS. 19F magnetic resonance imaging. J Magn Reson 1969;28:133–6.10.1016/0022-2364(77)90263-3Suche in Google Scholar
34. Bachert, P. Pharmacokinetics using fluorine NMR in vivo. Prog Nucl Magn Reson Spectrosc 1998;33:1–56. https://doi.org/10.1016/S0079-6565(98)00016-8.Suche in Google Scholar
35. Fox, MS, Gaudet, JM, Foster, PJ. Fluorine-19 MRI contrast agents for cell tracking and lung imaging. Magn Reson Insights 2015;8:53–67. https://doi.org/10.4137/MRI.S23559.Suche in Google Scholar PubMed PubMed Central
36. Janjic, JM, Ahrens, ET. Fluorine-containing nanoemulsions for MRI cell tracking: fluorine-containing nanoemulsions for MRI cell tracking. WIREs Nanomed Nanobiotechnol 2009;1:492–501. https://doi.org/10.1002/wnan.35.Suche in Google Scholar PubMed PubMed Central
37. Ahrens, ET, Flores, R, Xu, H, Morel, PA. In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 2005;23:983–7. https://doi.org/10.1038/nbt1121.Suche in Google Scholar PubMed
38. Srinivas, M, Turner, MS, Janjic, JM, Morel, PA, Laidlaw, DH, Ahrens, ET. In vivo cytometry of antigen-specific t cells using 19 F MRI. Magn Reson Med 2009;62:747–53. https://doi.org/10.1002/mrm.22063.Suche in Google Scholar PubMed PubMed Central
39. Bouchlaka, MN, Ludwig, KD, Gordon, JW, Kutz, MP, Bednarz, BP, Fain, SB, et al.. 19 F-MRI for monitoring human NK cells in vivo. OncoImmunology 2016;5:e1143996. https://doi.org/10.1080/2162402X.2016.1143996.Suche in Google Scholar PubMed PubMed Central
40. Senanayake, PK, Rogers, NJ, Finney, KN, Harvey, P, Funk, AM, Wilson, JI, et al.. A new paramagnetically shifted imaging probe for MRI: PARASHIFT imaging for molecular MRI. Magn Reson Med 2017;77:1307–17. https://doi.org/10.1002/mrm.26185.Suche in Google Scholar PubMed PubMed Central
41. Schmidt, R, Nippe, N, Strobel, K, Masthoff, M, Reifschneider, O, Castelli, DD, et al.. Highly shifted proton MR imaging: cell tracking by using direct detection of paramagnetic compounds. Radiology 2014;272:785–95. https://doi.org/10.1148/radiol.14132056.Suche in Google Scholar PubMed
42. Liu, G, Song, X, Chan, KWY, McMahon, MT. Nuts and bolts of chemical exchange saturation transfer MRI. NMR Biomed 2013. https://doi.org/10.1002/nbm.2899.Suche in Google Scholar PubMed PubMed Central
43. McMahon, MT, Gilad, AA, DeLiso, MA, Cromer Berman, SM, Bulte, JWM, van Zijl, PCM. “New ‘multicolor’ polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn Reson Med 2008;60:803–12. https://doi.org/10.1002/mrm.21683.Suche in Google Scholar PubMed PubMed Central
44. Gilad, AA, McMahon, MT, Walczak, P, Winnard, PT Jr, Raman, V, van Laarhoven, HW, et al.. Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 2007;25:217–9. https://doi.org/10.1038/nbt1277.Suche in Google Scholar PubMed
45. McMahon, MT, Gilad, AA. Cellular and molecular imaging using chemical exchange saturation transfer (CEST). Top Magn Reson Imag 2016;25:197–204. https://doi.org/10.1097/RMR.0000000000000105.Suche in Google Scholar PubMed PubMed Central
46. Zhang, S, Merritt, M, Woessner, DE, Lenkinski, RE, Sherry, AD. “PARACEST Agents: modulating MRI contrast via water proton exchange. Acc Chem Res 2003;36:783–90. https://doi.org/10.1021/ar020228m.Suche in Google Scholar PubMed
47. Ferrauto, G, Castelli, DD, Terreno, E, Aime, S. In vivo MRI visualization of different cell populations labeled with PARACEST agents. Magn Reson Med 2013;69:1703–11. https://doi.org/10.1002/mrm.24411.Suche in Google Scholar PubMed
48. Aime, S, Carrera, C, Delli Castelli, D, Geninatti Crich, S, Terreno, E. Tunable imaging of cells labeled with MRI-PARACEST agents. Angew Chem Int Ed 2005;44:1813–5. https://doi.org/10.1002/anie.200462566.Suche in Google Scholar PubMed
49. Srivastava, AK, Kadayakkara, DK, Bar-Shir, A, Gilad, AA, McMahon, MT, Bulte, JWM. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. Dis Model Mech 2015;8:323–36. https://doi.org/10.1242/dmm.018499.Suche in Google Scholar PubMed PubMed Central
50. Mezzanotte, L, van ’t Root, M, Karatas, H, Goun, EA, Löwik, CWGM. In vivo molecular bioluminescence imaging: new tools and applications. Trends Biotechnol 2017;35:640–52. https://doi.org/10.1016/j.tibtech.2017.03.012.Suche in Google Scholar PubMed
51. Kim, JE, Kalimuthu, S, Ahn, B-C. In vivo cell tracking with bioluminescence imaging. Nucl Med Mol Imaging 2015;49:3–10. https://doi.org/10.1007/s13139-014-0309-x.Suche in Google Scholar PubMed PubMed Central
52. Sadikot, RT. Bioluminescence imaging. Proc Am Thorac Soc 2005;2:537–40. https://doi.org/10.1513/pats.200507-067DS.Suche in Google Scholar PubMed PubMed Central
53. Liu, Z, Li, Z. Molecular imaging in tracking tumor-specific cytotoxic T lymphocytes (CTLs). Theranostics 2014;4:990–1001. https://doi.org/10.7150/thno.9268.Suche in Google Scholar PubMed PubMed Central
54. Nguyen, VH, Zeiser, R, Dasilva, DL, Chang, DS, Beilhack, A, Contag, CH, et al.. In vivo dynamics of regulatory T-cell trafficking and survival predict effective strategies to control graft-versus-host disease following allogeneic transplantation. Blood 2007;109:2649–56. https://doi.org/10.1182/blood-2006-08-044529.Suche in Google Scholar PubMed
55. Shin, IJ, Shon, SM, Schellingerhout, D, Park, JY, Kim, JY, Lee, SK, et al.. Characterization of partial ligation-induced carotid atherosclerosis model using dual-modality molecular imaging in ApoE knock-out mice. PloS One 2013;8:e73451. https://doi.org/10.1371/journal.pone.0073451.Suche in Google Scholar PubMed PubMed Central
56. Lee, HW, Jeon, YH, Hwang, MH, Kim, JE, Park, TI, Ha, JH, et al.. Dual reporter gene imaging for tracking macrophage migration using the human sodium iodide symporter and an enhanced firefly luciferase in a murine inflammation model. Mol Imag Biol 2013;15:703–12. https://doi.org/10.1007/s11307-013-0645-8.Suche in Google Scholar PubMed
57. Rao, J, Dragulescu-Andrasi, A, Yao, H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 2007;18:17–25. https://doi.org/10.1016/j.copbio.2007.01.003.Suche in Google Scholar PubMed
58. Hoffman, RM. Whole-body fluorescence imaging with green fluorescence protein. Green fluorescent protein, Hicks BW New Jersey: Humana Press; 2002, 183.10.1385/1-59259-280-5:135Suche in Google Scholar PubMed
59. Mosaad, EO, Futrega, K, Seim, I, Gloss, B, Chambers, KF, Clements, JA, et al.. Constraints to counting bioluminescence producing cells by a commonly used transgene promoter and its implications for experimental design. Sci Rep 2019;9:11334. https://doi.org/10.1038/s41598-019-46916-z.Suche in Google Scholar PubMed PubMed Central
60. Ntziachristos, V. Fluorescence molecular imaging. Annu Rev Biomed Eng 2006;8:1–33. https://doi.org/10.1146/annurev.bioeng.8.061505.095831.Suche in Google Scholar PubMed
61. Kremers, G-J, Gilbert, SG, Cranfill, PJ, Davidson, MW, Piston, DW. Fluorescent proteins at a glance. J Cell Sci 2011;124:2676. https://doi.org/10.1242/jcs.095059.Suche in Google Scholar
62. Funovics, M, Weissleder, R, Tung, C-H. Protease sensors for bioimaging. Anal Bioanal Chem 2003;377:956–63. https://doi.org/10.1007/s00216-003-2199-0.Suche in Google Scholar PubMed
63. Germain, RN, Robey, EA, Cahalan, MD. A decade of imaging cellular motility and interaction dynamics in the immune system. Science 2012;336:1676–81. https://doi.org/10.1126/science.1221063.Suche in Google Scholar PubMed PubMed Central
64. Stoll, S. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 2002;296:1873–6. https://doi.org/10.1126/science.1071065.Suche in Google Scholar PubMed
65. Mempel, TR, Pittet, MJ, Khazaie, K, Weninger, W, Weissleder, R, von Boehmer, H, et al.. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 2006;25:129–41. https://doi.org/10.1016/j.immuni.2006.04.015.Suche in Google Scholar PubMed
66. Cahalan, MD, Parker, I. Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu Rev Immunol 2008;26:585–626. https://doi.org/10.1146/annurev.immunol.24.021605.090620.Suche in Google Scholar PubMed PubMed Central
67. Laviron, M, Combadière, C, Boissonnas, A. Tracking monocytes and macrophages in tumors with live imaging. Front Immunol 2019;10:1201. https://doi.org/10.3389/fimmu.2019.01201.Suche in Google Scholar PubMed PubMed Central
68. Nakajima, A, Seroogy, CM, Sandora, MR, Tarner, IH, Costa, GL, Taylor-Edwards, C, et al.. Antigen-specific T cell–mediated gene therapy in collagen-induced arthritis. J Clin Invest 2001;107:1293–301. https://doi.org/10.1172/JCI12037.Suche in Google Scholar PubMed PubMed Central
69. Lim, YT, Cho, MY, Noh, Y-W, Chung, JW, Chung, BH. Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy. Nanotechnology 2009;20:475102. https://doi.org/10.1088/0957-4484/20/47/475102.Suche in Google Scholar PubMed
70. Chtanova, T, Schaeffer, M, Han, SJ, van Dooren, GG, Nollmann, M, Herzmark, P, et al.. Dynamics of neutrophil migration in lymph nodes during infection. Immunity 2008;29:487–96. https://doi.org/10.1016/j.immuni.2008.07.012.Suche in Google Scholar PubMed PubMed Central
71. Iannacone, M, Moseman, EA, Tonti, E, Bosurgi, L, Junt, T, Henrickson, SE, et al.. Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 2010;465:1079–83. https://doi.org/10.1038/nature09118.Suche in Google Scholar PubMed PubMed Central
72. Laissue, PP, Alghamdi, RA, Tomancak, P, Reynaud, EG, Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat Methods 2017;14:657–61. https://doi.org/10.1038/nmeth.4344.Suche in Google Scholar PubMed
73. Ettinger, A, Wittmann, T. Fluorescence live cell imaging. Methods in cell biology, Waters, JC, Wittmann, T Cambridge: Academic Press; 2014, 123.10.1016/B978-0-12-420138-5.00005-7Suche in Google Scholar PubMed PubMed Central
74. Szabó, Á, Szendi-Szatmári, T, Ujlaky-Nagy, L, Rádi, I, Vereb, G, Szöllősi, J, et al.. The effect of fluorophore conjugation on antibody affinity and the photophysical properties of dyes. Biophys J 2018;114:688–700. https://doi.org/10.1016/j.bpj.2017.12.011.Suche in Google Scholar PubMed PubMed Central
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Technology supporting green chemistry in chemical education
- Poly(glycerol sebacate) – a revolutionary biopolymer
- Non-radioactive imaging strategies for in vivo immune cell tracking
- Stereoselective organocascades: from fundamentals to recent developments
- Determination of bulk and surface properties of liquid Bi-Sn alloys using an improved quasi-lattice theory
- Molecular mechanics approaches for rational drug design: forcefields and solvation models
Artikel in diesem Heft
- Frontmatter
- Reviews
- Technology supporting green chemistry in chemical education
- Poly(glycerol sebacate) – a revolutionary biopolymer
- Non-radioactive imaging strategies for in vivo immune cell tracking
- Stereoselective organocascades: from fundamentals to recent developments
- Determination of bulk and surface properties of liquid Bi-Sn alloys using an improved quasi-lattice theory
- Molecular mechanics approaches for rational drug design: forcefields and solvation models