Startseite Titanium dioxide pigments
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Titanium dioxide pigments

  • Gerhard Pfaff EMAIL logo
Veröffentlicht/Copyright: 6. Mai 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Titanium dioxide (TiO2) is by far the most important white pigment. The extraordinary scattering behavior of TiO2 together with the lack of absorption in the visible range and the stability in different application systems is the reason why TiO2 is the most commonly used pigment. Of the three TiO2 modifications, only rutile and anatase play a role for pigment uses, whereas brookite has no technical importance. Two main processes are used for the production of TiO2 pigments, the sulfate process and the chloride process. Many TiO2 pigments are equipped with an additional surface treatment (aftertreatment) to improve weather resistance and lightfastness of the pigment itself and of the pigmented organic matrix. A second aim of the surface treatment is the improvement of the dispersibility of the pigments in the application system.

References

1. Elfenthal L, Schmelzer J. In Kittel - Lehrbuch der Lacke und Beschichtungen. Spille J, editor. vol. 5. 2nd ed. Stuttgart/Leipzig: S. Hirzel Verlag, 2003:24.Suche in Google Scholar

2. Winkler J. Titanium Dioxide. Hannover: Vincentz Verlag; 2003.Suche in Google Scholar

3. Auer G. In industrial inorganic pigments. Buxbaum G, Pfaff G, editors. 3rd ed. Weinheim: Wiley-VCH Verlag, 2005:51.10.1002/3527603735.ch2Suche in Google Scholar

4. Pfaff G. Inorganic pigments. Berlin/Boston: Walter de Gruyter GmbH, 2017:48.10.1515/9783110484519Suche in Google Scholar

5. Leutz R. Gewinnung und Aufbereitung von Schwermineralsanden in Camaratuba/Brasilien. Erzmetall. 1989;42:383.Suche in Google Scholar

6. Patent DE. 23 42 889 (DuPont). 1973.10.1177/000313137302300328Suche in Google Scholar

7. Patent US. 4,781,761 (DuPont). 1987.Suche in Google Scholar

8. Gesenhues U. Coprecipitation of hydrous alumina and silica with TiO2 pigments as substrate. J Colloid Interface Sci. 1994;168:428.10.1006/jcis.1994.1439Suche in Google Scholar

9. Patent US. 2,885,366 (DuPont). 1956.10.1136/bmj.2.4997.885-bSuche in Google Scholar

10. Patent GB. 1008652 (Tioxide Group Ltd.). 1961.Suche in Google Scholar

11. Patent DE. 12 08 438 (Titangesellschaft mbH). 1960.Suche in Google Scholar

12. Patent DE. 146 712 (British Titanium Products). 1965.Suche in Google Scholar

13. Boehm HP. Funktionelle Gruppen an Festkörperoberflächen. Chem Ing Tech. 1974;46:716.10.1002/cite.330461703Suche in Google Scholar

14. Primet M, Pichat P, Mathieu MV. Infrared studies of the surface of titanium dioxides. I. Hydroxyl groups. J Phys Chem. 1971;75:1216.10.1021/j100679a007Suche in Google Scholar

15. Schrauzer GN, Guth TD. Photolysis of water and photoreduction of nitrogen on titanium dioxide. Am Chem Soc Div Org. 1977;99:7189.10.1021/ja00464a015Suche in Google Scholar

16. Kubelka P, Munk FZ. Ein Beitrag zur Optik der Farbanstriche. Tech Phys. 1931;12:539.Suche in Google Scholar

17. Kämpf G, Papenroth W, Holm R. Systematische Untersuchungen der mikromorphologischen Abbauvorgänge an bewitterten Beschichtungssystemen mit unterschiedlichem Aufbau. Farbe + Lack. 1973;79:9.Suche in Google Scholar

18. Völz HG, Kämpf G, Klaeren A. Die photochemischen Abbaureaktionen bei der Bewitterung TiO2-pigmentierter Bindemittel. Farbe + Lack. 1976;82:805.Suche in Google Scholar

19. Patent JP. 58025-363 (K. K. Ricoh). 1981.Suche in Google Scholar

20. EU Regulation No 1272/2008 on classification. labelling and packing (CLP) of substances and mixtures. 2008.Suche in Google Scholar

Published Online: 2021-05-06

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2020-0199/pdf?lang=de
Button zum nach oben scrollen