Abstract
This article furnishes an introduction to one of the most well-known classes of photochromic colorant. While the properties of spiropyran dyes inspired pioneering efforts to exploit photochromism for industrial applications, their lack of robustness held them back from commercialization. Nevertheless, this type of dye remains at the heart of much of the work to develop light-responsive materials upon which many potential applications in different fields of scientific and technological endeavor depend. The article describes the photochromism, synthesis, and applications of spiropyran colorants with an emphasis on the structural subtype that has attracted the greatest scrutiny. It also acts as a springboard to sources of more detail on these aspects.
References
1. Hirschberg Y. The photochemical memory. New Scientist. 1960;7:1423–5. https://books.google.co.uk/books?id=RRVRuUO5vFIC&pg=PA1379&source=gbs_toc&cad=2#v=onepage&q&f=false Accessed: 9 Feb 2021.Suche in Google Scholar
2. Towns A. Photochromic Dyes. in press (10.1015/psr-2020-0191).Suche in Google Scholar
3. Aiken S, Edgar RJ, Gabbutt CD, Heron BM, Hobson PA. Negatively photochromic organic compounds: exploring the dark side. Dyes Pigm. 2018;149:92–121.10.1016/j.dyepig.2017.09.057Suche in Google Scholar
4. Barachevsky VA. Negative photochromism in organic systems. Rev J Chem. 2017;7:334–71.10.1134/S2079978017030013Suche in Google Scholar
5. Zakhs ÉR, Martynova VM, Éfros LS. Synthesis and Properties of Spiropyrans that are capable of reversible opening of the pyran ring (Review). Chem Het Comp. 1979:351–72.10.1007/BF00471764Suche in Google Scholar
6. Samat A, De Keukeleire D, Guglielmetti R. Synthesis and spectrokinetic properties of photochromic spiropyrans. Bull Soc Chim Belg. 1991;100:679–700.10.1002/bscb.19911000908Suche in Google Scholar
7. Guglielmetti R. Chapter 8 (“4n+2 Systems: Spiropyrans”). In: Dürr H, Bouas-Laurent H, editors. Photochromism molecules and systems. Revised ed. Amsterdam: Elsevier, 2003:314–466.10.1016/B978-044451322-9/50012-9Suche in Google Scholar
8. Lukyanov BS, Lukyanova MB. Spiropyrans: synthesis, properties and application (review). Chem Het Comp. 2005;41:281–311.10.1007/s10593-005-0148-xSuche in Google Scholar
9. Bertelson RC. Reminiscences about organic photochromics. Mol Cryst Liq Cryst. 1994;246:1–8.10.1080/10587259408037778Suche in Google Scholar
10. Aldoshin SM. Spiropyrans: structural features and photochemical properties. Russ Chem Rev. 1990;59:663–85.10.1070/RC1990v059n07ABEH003549Suche in Google Scholar
11. Kholmanskii AS, Dyumaev KM. The photochemistry and photophysics of spiropyrans. Russ Chem Rev. 1987;56:136–51.10.1070/RC1987v056n02ABEH003262Suche in Google Scholar
12. Minkin VI. Photo-, Thermo-, Solvato-, and electrochromic spiroheterocyclic compounds. Chem Rev. 2004;104:2751–76.10.1021/cr020088uSuche in Google Scholar PubMed
13. Dietz F, El’tsov AV. Chapter 1 (“Theoretical Studies of the Photochromism of Organic Compounds”). In: El’tsov AV, editor. Organic photochromes. New York: Consultants Bureau/Plenum, 1990:1–44.10.1007/978-1-4615-8585-5_1Suche in Google Scholar
14. Aldoshin S. Chapter 7 (“Structural Studies by X-Ray Diffraction”). In: Crano JC, Guglielmetti RJ, editors. Organic photochromic and thermochromic compounds. vol. 2. New York: Plenum, 1998:297–355.10.1007/0-306-46912-X_8Suche in Google Scholar
15. Seiler VK, Tumanov N, Robeyns K, Wouters J, Champagne B, Leyssens T. A structural analysis of spiropyran and spirooxazine compounds and their polymorphs. Crystals. 2017;7:84. DOI:10.3390/cryst7030084.Suche in Google Scholar
16. Lenoble C, Becker RS. Photophysics, photochemistry and kinetics of indolinospiropyran derivatives and an indolinospiropyran. J Photochem. 1986;34:83–8.10.1016/0047-2670(86)87054-XSuche in Google Scholar
17. Mustroph H. Cyanine dyes. Phys Sci Rev. 2020;5:20190145. DOI:10.1515/psr-2019-0145.Suche in Google Scholar
18. Mustroph H. Polymethine dyes. Phys Sci Rev. 2020;5:20190084. DOI:10.1515/psr-2019-0084.Suche in Google Scholar
19. Krongauz VA. Chapter 21 (“Environmental Effects on Organic Photochromic Systems”). In: Dürr H, Bouas-Laurent H, editors. Photochromism molecules and systems. Revised ed. Amsterdam: Elsevier, 2003:793–821.10.1016/B978-044451322-9/50025-7Suche in Google Scholar
20. Such G, Evans RA, Yee LH, Davis TP. Factors influencing photochromism of spiro-compounds within polymeric matrices. J Macromol Sci C Polym Rev. 2003;43:547–79.10.1081/MC-120025978Suche in Google Scholar
21. Hobley J, Lear MJ, Fukumura H. Chapter 8 (“Photo-Switching Spiropyrans and Related Compounds”). In: Ramamurthy V, Schanze KS, editors. Photochemistry of organic molecules in isotropic and anisotropic media. New York: Marcel Dekker, 2003:353–404.Suche in Google Scholar
22. Kortekaas L, Browne WR. The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem Soc Rev. 2019;48:3406–24.10.1039/C9CS00203KSuche in Google Scholar
23. International Union of Pure and Applied Chemistry Organic and Biomolecular Chemistry Division. Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure Appl Chem. 2007;79:293–465.10.1351/pac200779030293Suche in Google Scholar
24. Bénard S, Yu P. New spiropyrans showing crystalline-state photochromism. Adv Mater. 2000;12:48–50.10.1002/(SICI)1521-4095(200001)12:1<48::AID-ADMA48>3.0.CO;2-GSuche in Google Scholar
25. Yurieva EA, Aldoshin SM. Spiropyran salts and their neutral precursors: synthesis, crystal structure, photochromic transformations in solutions and solid state. Org Photonics Photovolt. 2015;3:42–53.10.1515/oph-2015-0004Suche in Google Scholar
26. Funasako Y, Ason M, Takebayashi J-I, Inokuchi M. Solid-state photochromism of salts of cationic spiropyran with various anions: a correlation between reaction cavity volumes and reactivity. Cryst Growth Des. 2019;19:7308–14.10.1021/acs.cgd.9b01185Suche in Google Scholar
27. Godsi O, Peskin U, Kapon M, Natan E, Eichen Y. Site effects in controlling the chemical reactivity in crystals: solid-state photochromism of N-(n-propyl)nitrospiropyrane. Chem Commun. 2001;2132–3.10.1039/b102121bSuche in Google Scholar
28. Harada J, Kawazoe Y, Ogawa K. Photochromism of spiropyrans and spirooxazines in the solid state: low temperature enhances photocoloration. Chem Commun. 2010;46:2593–5.10.1039/b925514aSuche in Google Scholar
29. Lukyanov BS, Metelitsa AV, Voloshin NA, Alexeenko YS, Lukyanova MB, Vasilyuk GT, et al. Solid state photochromism of spiropyrans. Int J Photoenerg. 2005;7:17–22.10.1155/S1110662X05000036Suche in Google Scholar
30. Lafleur SSD, Severn JR, Verpaalen RC, Schenning AP, Bastiaansen CW. Rewritable optical patterns in light-responsive ultrahigh molecular weight polyethylene. ACS Appl Polym Mater. 2019;1:392–6.10.1021/acsapm.8b00117Suche in Google Scholar
31. Abdollahi A, Roghani-Mamaqani H, Razavia B. Stimuli-chromism of photoswitches in smart polymers: recent advances and applications as chemosensors. Prog Polym Sci. 2019;98:101149.10.1016/j.progpolymsci.2019.101149Suche in Google Scholar
32. For example: Tokyo Chemical Industry, Photochromic Dyes. www.tcichemicals.com/eshop/en/gb/category_index/12995/ Accessed: 9 Feb 2021. Merck, Photochromic and Thermochromic Dyes, www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=9541081 Accessed: 9 Feb 2021.Suche in Google Scholar
33. Koelsch CF, Workman WR. Some Thermochromic Spiropyrans. J Am Chem Soc. 1952;74:6288–9.10.1021/ja01144a514Suche in Google Scholar
34. Keum S-R, Ku B-S, Shin J-T, Ko JJ, Buncel E. Stereoselective formation of diconsdensed spiropyran product obtained from the reaction of excess Fischer base with salicaldehydes: first full characterization of X-ray crystal structure analysis of a DC·acetone crystal. Tetrahedron. 2005;61:6720–5.10.1016/j.tet.2005.05.005Suche in Google Scholar
35. Keum S-R, Kazmaier PM, Cheon K-S, Manderville RA, Buncel E. The structural identification of dicondensed products derived from the reaction of excess Fischer’s base with salicylaldehydes. Bull Korean Chem Soc. 1996;17:391–3.10.1002/chin.199644140Suche in Google Scholar
36. Bertelson RC. Chapter 1 (“Spiropyrans”). In: Crano JC, Guglielmetti RJ, editors. Organic photochromic and thermochromic compounds. vol. 1. New York: Plenum, 1998:11–83.10.1007/0-306-46911-1_2Suche in Google Scholar
37. Bertelson RC. Chapter 3 (“Photochromic process involving heterolytic cleavage”). In: Brown GH, editor. Photochromism – Techniques of chemistry. vol. III. London: Wiley, 1971:45–431.Suche in Google Scholar
38. Kellmann A, Tfibel F, Dubest R, Levoir P, Aubard J, Pottier E, et al. Photophysics and kinetics of two photochromic indolinospirooxazines and one indolinospironaphthopyran. J Photochem Photobiol A Chem. 1989;49:63–73.10.1016/1010-6030(89)87106-0Suche in Google Scholar
39. Lee YS, Kim JG, Huh YD, Kim MK. Thermochromism of spiropyran and spirooxazine derivatives. J Korean Chem Soc. 1994;38:864–72.Suche in Google Scholar
40. Feng K-C, Griffiths J. Thermochromic and photochromic properties of some new spiropyran systems. Adv Col Sci Technol. 2001;4:12–20.Suche in Google Scholar
41. Vázquez-Mera N, Roscini C, Hernando J, Ruiz-Molina D. Liquid-filled capsules as fast responsive photochromic materials. Adv Optical Mater. 2013;1:631–6.10.1002/adom.201300121Suche in Google Scholar
42. Chu NY. Chapter 10 (“4n+2 Systems: Spirooxazines”). In: Dürr H, Bouas-Laurent H, editors. Photochromism molecules and systems. Revised ed. Amsterdam: Elsevier, 2003:493–509.10.1016/B978-044451322-9/50014-2Suche in Google Scholar
43. Wojtyk JT, Wasey A, Kazmaier PM, Hoz S, Buncel E. Thermal reversion mechanism of N-functionalized merocyanines to spiropyrans: a solvatochromic, solvatokinetic, and semiempirical study. J Phys Chem A. 2000;104:9046–55.10.1021/jp001533xSuche in Google Scholar
44. Keum S-R, Hur M-S, Kazmaier PM, Buncel E. Thermo- and photochromic dyes: indoline-benzospiropyrans. Part 1. UV-VIS spectroscopic studies of 1,3,3-spiro(2H-1-benzopyran-2,2ʹ-indolines) and the open-chain merocyanine forms; solvatochromism and medium effects on spiro ring formation. Can J Chem. 1991;69:1940–7.10.1139/v91-279Suche in Google Scholar
45. Rosario R, Gust D, Hayes M, Springer J, Garcia AA. Solvatochromic study of the microenvironment of surface-bound spiropyrans. Langmuir. 2003;19:8801–6.10.1021/la0344332Suche in Google Scholar
46. Chibisov AK, Görner H. Photoprocesses in spiropyran-derived merocyanines. J Phys Chem A. 1997;101:4305–12.10.1021/jp962569lSuche in Google Scholar
47. Sueishi Y, Ohcho M, Nishimura N. Kinetic studies of solvent and pressure effects on thermochromic behavior of 6-nitrospiropyran. Bull Soc Chem Jpn. 1985;58:2608–13.10.1246/bcsj.58.2608Suche in Google Scholar
48. Zhang S, Zhang Q, Ye B, Li X, Zhang X, Deng Y. Photochromism of spiropyran in ionic liquids: enhanced fluorescence and delayed thermal reversion. J Phys Chem B. 2009;113:6012–9.10.1021/jp9004218Suche in Google Scholar
49. Görner H. Photoprocesses in spiropyrans and their merocyanine isomers: Effects of temperature and viscosity. Chem Phys. 1997;222:315–29.10.1016/S0301-0104(97)00205-XSuche in Google Scholar
50. Reichardt C. Solvents and solvent effects in organic chemistry. vols 339–405. 2nd ed. Weinheim: VCH; 1988.Suche in Google Scholar
51. Towns A. Spirooxazine Dyes. Phys Sci Rev. 2020;5:20200013. 10.1515/psr-2020-0013.Suche in Google Scholar
52. Nuernberger P, Ruetzel S, Brixner T. Multidimensional electronic spectroscopy of photochemical reactions. Angew Chem Int Ed. 2015;54:11368–86.10.1002/anie.201502974Suche in Google Scholar PubMed
53. Mustroph H. Dyes: quantum chemical calculation of electronic spectra. Phys Sci Rev. 2019;4:20190040. 10.1515/psr-2019-0040.Suche in Google Scholar
54. Ruetzel S, Diekmann M, Nuernberger P, Walter C, Engels B, Brixner T. Multidimensional spectroscopy of photoreactivity. Proc Nat Acad Sci. 2014;111:4764–9.10.1073/pnas.1323792111Suche in Google Scholar PubMed PubMed Central
55. Tian W, Tian J. An insight into the solvent effect on photo-, solvato-chromism of spiropyran through the perspective of intermolecular interactions. Dyes Pigm. 2014;105:66–74.10.1016/j.dyepig.2014.01.020Suche in Google Scholar
56. Gautron R. Photochromisme des indolinospiropyranes. IV – Étude de la dégradation par voie physique. Relation avec la structure. Bull Soc Chim Fr. 1968;3190–200.Suche in Google Scholar
57. Malatesta V. Chapter 2 (“Photodegradation of Organic Photochromes”). In: Crano JC, Guglielmetti RJ, editors. Organic photochromic and thermochromic compounds. vol. 2. New York: Plenum, 1999:65–166.10.1007/0-306-46912-X_3Suche in Google Scholar
58. Seto J. Chapter 7 (“Photochromic Dyes”). In: Matsuoka M, editor. Infrared absorbing dyes. New York: Springer, 1990:71–88.10.1007/978-1-4899-2046-1_7Suche in Google Scholar
59. Pugachev AD, Ozhogin IV, Lukyanova MB, Lukyanov BS, Rostovtseva IA, Dorogan IV, et al. Visible to near-IR switches based on photochromic indoline spiropyrans with a conjugated cationic fragment. Spectrochim Acta A Mol Biomol Spectr. 2020;230:118041.10.1016/j.saa.2020.118041Suche in Google Scholar PubMed
60. Tyurin RV, Lukyanov BS, Chernyshev AV, Malay VI, Kozlenko AS, Tkacheva NS, et al. Effect of bulky substituents on the photochromic properties of indoline spiropyrans containing an annelated aromatic or heteroaromatic fragment. Doklady Chem. 2016;470:268–73.10.1134/S0012500816090081Suche in Google Scholar
61. Day JH. Thermochromism. Chem Rev. 1963;63:65–80.10.1021/cr60221a005Suche in Google Scholar
62. Samat A, Lokshin V. Chapter 10 (“Thermochromism of Organic Compounds”). In: Crano JC, Guglielmetti RJ, editors. Organic photochromic and thermochromic compounds. vol. 2. New York: Plenum, 1998:415–66.10.1007/0-306-46912-X_11Suche in Google Scholar
63. Wizinger R, Wennig H. Über intramolekulare Ionisation. Helv Chim Acta. 1940;23:247–71.10.1002/hlca.19400230133Suche in Google Scholar
64. Bertelson RC. Chapter 10 (“Applications of photochromism”). In: Brown GH, editor. Photochromism – techniques of chemistry. vol. III. London: Wiley, 1971:733–840.Suche in Google Scholar
65. Jackson G. The Properties of Photochromic Materials. Optica Acta 1969;16:1–16.10.1080/713818150Suche in Google Scholar
66. Fischer E, Hirschberg Y. Formation of coloured forms of spirans by low-temperature irradiation. J Chem Soc. 1952;4522–4.Suche in Google Scholar
67. Hirschberg Y. Reversible Formation and Eradication of Colors by Irradiation at Low Temperatures. A Photochemical Memory Model. J Am Chem Soc. 1956;78:2304–12.10.1021/ja01591a075Suche in Google Scholar
68. Kumar S, Soni S, Danowski W, Leach IF, Faraji S, Feringa BL, et al. Eliminating fatigue in surface-bound spiropyrans. J Phys Chem C. 2019;123:25908–14.10.1021/acs.jpcc.9b05889Suche in Google Scholar PubMed PubMed Central
69. Florea L, Diamond D, Benito-Lopez F. Photo-responsive polymeric structures based on spiropyran. Macromol Mater Eng. 2012;297:1148–59.10.1002/mame.201200306Suche in Google Scholar
70. Klajn R. Spiropyran-based dynamic materials. Chem Soc Rev. 2014;43:148–84.10.1039/C3CS60181ASuche in Google Scholar PubMed
71. Ma S, Ting H, Ma Y, Zheng L, Zhang M, Xiao L, et al. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers. AIP Adv. 2015;5:057154.10.1063/1.4921880Suche in Google Scholar
72. Doan HN, Tsuchida H, Iwata T, Kinashi K, Sakai W, Tsutsumi N, et al. Fabrication and photochromic properties of Forcespinning® fibers based on spiropyran-doped poly(methyl methacrylate). RSC Adv. 2017;7:33061.10.1039/C7RA03794ESuche in Google Scholar
73. Bao B, Fan J, Wang W, Yu D. Photochromic cotton fabric prepared by spiropyran-terminated water polyurethane coating. Fibers Polym. 2020;21:733–42.10.1007/s12221-020-9749-3Suche in Google Scholar
74. Abdollahi A, Sahandi-Zangabad K, Roghani-Mamaqani H. Rewritable anticounterfeiting polymer inks based on functionalized stimuli-responsive latex particles containing spiropyran photoswitches: reversible photopatterning and security marking. ACS Appl Mater Interfaces. 2018;10:39279–92.10.1021/acsami.8b14865Suche in Google Scholar PubMed
75. Towns A. Naphthopyran Dyes. Phys Sci Rev. 2020;5:20190085. DOI:10.1515/psr-2019-0085.Suche in Google Scholar
76. Barachevsky VA. Photochromic spirocompounds and chromenes for sensing metal ions. Rev J Chem. 2013;3:52–94.10.1134/S2079978012040012Suche in Google Scholar
77. Zhang X, Hou L, Samorì P. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nat Commun. 2016;7:11118.10.1038/ncomms11118Suche in Google Scholar PubMed PubMed Central
78. Berkovic G, Krongauz V, Weiss V. Spiropyrans and spirooxazines for memories and switches. Chem Rev. 2000;100:1741–53.10.1021/cr9800715Suche in Google Scholar PubMed
79. Vijayamohanan H, Palermo EF, Ullal CK. Spirothiopyran-based reversibly saturable photoresist. Chem Mater. 2017;29:4754–60.10.1021/acs.chemmater.7b00506Suche in Google Scholar
80. Raymo FM, Giordani S. All-optical processing with molecular switches. Proc Nat Acad Sci. 2002;99:4941–4.10.1073/pnas.062631199Suche in Google Scholar PubMed PubMed Central
81. Hao Y, Meng J, Wang S. Photo-responsive polymer materials for biological applications. Chin Chem Lett. 2017;28:2085–91.10.1016/j.cclet.2017.10.019Suche in Google Scholar
82. Szymański W, Beierle JM, Kistemaker HA, Velema WA, Feringa BL. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem Rev. 2013;113:6114–78.10.1021/cr300179fSuche in Google Scholar PubMed
83. Paramonova SV, Lokshin V, Fedorova OA. Spiropyran, chromene or spirooxazine ligands: Insights into mutual relations between complexing and photochromic properties. J Photochem Photobiol C Photochem Rev. 2011;12:209–36.10.1016/j.jphotochemrev.2011.09.001Suche in Google Scholar
84. Petriashvili G, Devadze L, Chanishvili A, Zurabishvili C, Sepashvili N, Ponjavidze N, et al. Spiropyran doped rewritable cholesteric liquid crystal polymer film for the generation of quick response codes. Optical Mater Express. 2018;8:3708–16.10.1364/OME.8.003708Suche in Google Scholar
85. Pei JV, Heng S, De Ieso ML, Sylvia G, Kourghi M, Nourmohammadi S, et al. Development of a Photoswitchable Lithium-Sensitive probe to analyze nonselective cation channel activity in migrating cancer cells. Mol Pharmacol. 2019;95:573–83.10.1124/mol.118.115428Suche in Google Scholar PubMed
86. Ali AA, Kharbash R, Kim Y. Chemo- and biosensing applications of spiropyran and its derivatives – A review. Analytica Chim Acta. 2020;1110:199–223.10.1016/j.aca.2020.01.057Suche in Google Scholar PubMed
87. Kim D, Park SY. Multicolor fluorescence photoswitching: color-correlated versus color-specific switching. Adv Optical Mater. 2018;6:1800678.10.1002/adom.201800678Suche in Google Scholar
88. Ter Schiphorst J, Saez J, Diamond D, Benito-Lopez F, Schenning AP. Light-responsive polymers for microfluidic applications. Lab Chip. 2018;18:699–709.10.1039/C7LC01297GSuche in Google Scholar PubMed
89. Dunne A, Francis W, Delaney C, Florea L, Diamond D. Stimuli-controlled fluid control and microvehicle movement in microfluidic channels. In: Hashmi S, editor. Reference module in materials science and materials engineering. Amsterdam: Elsevier, 2017.10.1016/B978-0-12-803581-8.04043-1Suche in Google Scholar
90. Zayas MS, Dolinski ND, Self JL, Abdilla A, Hawker CJ, Bates CM, Read de Alaniz J. Tuning merocyanine photoacid structure to enhance solubility and temporal control: application in ring opening polymerization. ChemPhotoChem. 2019;3:467–72.10.1002/cptc.201800255Suche in Google Scholar
91. Wagner N, Theato P. Light-induced wettability changes on polymer surfaces. Polymer. 2014;55:3436–53.10.1016/j.polymer.2014.05.033Suche in Google Scholar
92. Katz E. Modified electrodes and electrochemical systems switchable by light signals. Electroanalysis. 2018;30:759–97.10.1002/9783527818761.ch4Suche in Google Scholar
93. Fu L-N, Leng B, Li Y-S, Gao X-K. Photoresponsive organic field-effect transistors involving photochromic molecules. Chin Chem Lett. 2016;27:1319–29.10.1016/j.cclet.2016.06.045Suche in Google Scholar
94. Bertarelli C, Bianco A, Castagna R, Pariani G. Photochromism into optics: opportunities to develop light-triggered optical elements. J Photochem Photobiol C Photochem Rev. 2011;12:106–25.10.1016/j.jphotochemrev.2011.05.003Suche in Google Scholar
95. Wang L, Li Q. Photochromism into nanosystems: towards lighting up the future nanoworld. Chem Soc Rev. 2018;47:1044–97.10.1039/C7CS00630FSuche in Google Scholar
96. Bisoyi HK, Li Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem Rev. 2016;116:15089–166.10.1021/acs.chemrev.6b00415Suche in Google Scholar PubMed
97. Sahoo PR, Prakash K, Kumar S. Light controlled receptors for heavy metal ions. Coord Chem Rev. 2018;357:18–49.10.1016/j.ccr.2017.11.010Suche in Google Scholar
98. Kinashi K, Miyamae Y, Nakamura R, Sakai W, Tsutsumi N, Yamane H, et al. A spiropyran-based X-ray sensitive fiber. Chem Commun. 2015;51:11170–3.10.1039/C5CC03977KSuche in Google Scholar PubMed
99. Tsuchida H, Nakamura R, Kinashi K, Sakai W, Tsutsumi N, Ozaki M, et al. Radiation-induced colour changes in a spiropyran/BaFCl:Eu2+/polystyrene composite film and nonwoven fabric. New J Chem. 2016;40:8658–63.10.1039/C6NJ01661HSuche in Google Scholar
100. Asai K, Koshimizu M, Fujimoto Y, Asai K. Isomerization behavior of spiropyran-based compounds upon X-ray irradiation. Radiat Meas. 2017;106:166–9.10.1016/j.radmeas.2017.05.016Suche in Google Scholar
101. Sadeghi K, Yoon J-Y, Seo J. Chromogenic polymers and their packaging applications: a review. Polym Rev. 2020;60:442–92.10.1080/15583724.2019.1676775Suche in Google Scholar
102. Wang S, Liu X, Yang M, Zhang Y, Xiang K, Tang R. Review of time temperature indicators as quality monitors in food packaging. Packag Technol Sci. 2015;28:839–67.10.1002/pts.2148Suche in Google Scholar
103. Kreyenschmidt J, Christiansen H, Hübner A, Raab V, Petersen B. A novel photochromic time–temperature indicator to support cold chain management. Int J Food Sci Technol. 2010;45:208–15.10.1111/j.1365-2621.2009.02123.xSuche in Google Scholar
104. Biegańska M. Shelf-life monitoring of food using time-temperature indicators (TTI) for application in intelligent packaging. Pol J Commodity Sci. 2017;51:75–85.Suche in Google Scholar
105. Brizio AP, Prentice C. Use of smart photochromic indicator for dynamic monitoring of the shelf life of chilled chicken based products. Meat Sci. 2014;96:1219–26.10.1016/j.meatsci.2013.11.006Suche in Google Scholar PubMed
106. Beyer KB, Clausen-Schaumann H. Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev. 2005;105:2921–48.10.1021/cr030697hSuche in Google Scholar PubMed
107. Potisek SL, Davis DA, Sottos NR, White SR, Moore JS. Mechanophore-Linked Addition Polymers. J Am Chem Soc. 2007;129:13808–9.10.1021/ja076189xSuche in Google Scholar PubMed
108. Li M, Zhang Q, Zhou Y-N, Zhu S. Let spiropyran help polymers feel force! Prog Polym Sci. 2018;79:26–39.10.1016/j.progpolymsci.2017.11.001Suche in Google Scholar
109. Katsonis N, Lubomska M, Pollard MM, Feringa BL, Rudolf P. Synthetic light-activated molecular switches and motors on surfaces. Prog Surf Sci. 2007;82:407–34.10.1016/j.progsurf.2007.03.011Suche in Google Scholar
110. Rosario R, Gust D, Hayes M, Jahnke F, Springer J, Garcia AA. Photon-Modulated Wettability Changes on Spiropyran-Coated Surfaces. Langmuir. 2002;18:8062–9.10.1021/la025963lSuche in Google Scholar
111. Niskanen J, Vapaavuori J. Photobreathing Zwitterionic Micelles. ChemSystemsChem. 2019;1:e1900018.10.1002/syst.201900018Suche in Google Scholar
112. Cheng H, Yoon J, Tian H. Recent advances in the use of photochromic dyes for photocontrol in biomedicine. Coord Chem Rev. 2018;372:66–84.10.1016/j.ccr.2018.06.003Suche in Google Scholar
113. Jia S, Fong W-K, Graham B, Boyd BJ. Photoswitchable molecules in long-wavelength light-responsive drug delivery: from molecular design to applications. Chem Mater. 2018;30:2873–87.10.1021/acs.chemmater.8b00357Suche in Google Scholar
114. Ali AA, Kang M, Kharbash R, Kim Y. Spiropyran as a potential molecular diagnostic tool for double-stranded RNA detection. BMC Biomedical Eng. 2019;1:6.10.1186/s42490-019-0008-xSuche in Google Scholar PubMed PubMed Central
© 2020 Walter de Gruyter GmbH, Berlin/Boston