Abstract
Carbonyl pigments are characterized by the presence of one or more carbonyl (C = O) groups in their structures, generally as a component of the chromophoric grouping and as part of an extended conjugated π-electron system. Structurally, they constitute a diverse group of pigments that offer a wide range of colors throughout the spectrum, and most of them provide high levels of technical performance. This paper provides a description of the historical development of thioindigoid, isoindoline, isoindolinone, and quinophthalone pigment types, and discusses their molecular and crystal structures in relation to their properties, the synthetic procedures used in their manufacture and their principal applications. They provide some of the most important high-performance yellow organic pigments for demanding applications in paints, inks, and plastics. Separate individual chapters in this series are devoted the anthraquinonoid, quinacridone, diketopyrrolopyrrole, perylene, and perinone carbonyl pigment subclasses.
References
1. Balfour-Paul J. Indigo. London: British Museum Press, 1998.Suche in Google Scholar
2. https://www.loebclassics.com/view/pliny_eldernatural_history/1938/pb_LCL394.295.xml?readMode=recto. Accessed: 31 Jan 2021.Suche in Google Scholar
3. Baeyer A. Ueber die Verbindungen der Indigogruppe. Berichte der Deutschen chemischen Gesellschaft zu Berlin. 1883:16;2188–204.10.1002/cber.188301602130Suche in Google Scholar
4. Fisher W. Thioindigo pigments. In: Hoboken PT, editor. Pigment handbook, vol. l. Wiley Interscience, 1973:Vol 1;676.Suche in Google Scholar
5. Jones W. GB 2,537,352. (7th September 1946). (ICI).10.1097/00000542-194605000-00046Suche in Google Scholar
6. Kettner F, Hüter L, Schäfer J, Röde K, Purgahn U, Krautscheid H. Selective crystallization of indigo B by a modified sublimation method and its redetermined structure. Acta Cryst. 2011:E67;2867.10.1107/S1600536811040220Suche in Google Scholar PubMed PubMed Central
7. Mizuguchi J, Endo A, Matsumoto S. Electronic structure of intermolecularly hydrogen-bonded indigo: comparison with quinacridone and diketopyrrolopyrrole pigments. J Imaging Soc Jpn. 2000:39;94–102.Suche in Google Scholar
8. Christie RM. Colour chemistry, 2nd ed. London: RSC, Ch 9, 2015.10.1039/9781782626510Suche in Google Scholar
9. Hunger K, Schmidt MU. Industrial organic pigments, 4th ed. Weinheim: Wiley-VCH Verlag GmbH, Ch 2, 2019.Suche in Google Scholar
10. Radtke V, Erk P, Sens B. In: Faulkner EB, Schwartz RJ. High performance pigments, 2nd ed. Weinheim: Wiley-VCH Verlag GmbH, ch 14, 2009.Suche in Google Scholar
11. Von Der Crone. New isoindolines for high quality applications. J Coat Technol. 1985:57;67–72.Suche in Google Scholar
12. Iqbal A, Herren F, Wallquist O. In: Faulkner EB, Schwartz RJ. High performance pigments, 2nd ed. Weinheim: Wiley-VCH Verlag GmbH, ch 15, 2009.Suche in Google Scholar
13. Radtke V. In: Faulkner EB, Schwartz RJ. High performance pigments, 2nd ed. Weinheim: Wiley-VCH Verlag GmbH, ch 19, 2009.Suche in Google Scholar
14. Gumbert SD, Körbitzer M, Alig E, Schmidt MU, Chierotti MR, Gobetto R, et al. Crystal structure and tautomerism of Pigment Yellow 138 determined by X-ray powder diffraction and solid-state NMR. Dyes Pigm. 2016:31;364–72.10.1016/j.dyepig.2016.03.035Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial: Advanced chemoinformatics applications at the service of natural product discovery
- Combinatorial library design and virtual screening of cryptolepine derivatives against topoisomerase IIA by molecular docking and DFT studies
- Chemical similarity methods for analyzing secondary metabolite structures
- Carbonyl pigments: miscellaneous types
- Diketopyrrolopyrrole (DPP) pigments
Artikel in diesem Heft
- Frontmatter
- Editorial: Advanced chemoinformatics applications at the service of natural product discovery
- Combinatorial library design and virtual screening of cryptolepine derivatives against topoisomerase IIA by molecular docking and DFT studies
- Chemical similarity methods for analyzing secondary metabolite structures
- Carbonyl pigments: miscellaneous types
- Diketopyrrolopyrrole (DPP) pigments