Startseite Computational studies of biologically active alkaloids of plant origin: an overview
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Computational studies of biologically active alkaloids of plant origin: an overview

  • Mireille K. Bilonda ORCID logo EMAIL logo und Liliana Mammino ORCID logo EMAIL logo
Veröffentlicht/Copyright: 11. Dezember 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Computational studies nowadays constitute a crucial source of information for drug development, because they provide information on many molecular properties and also enable predictions of the properties of not-yet-synthesized compounds. Alkaloids are a vast group of natural products exhibiting a variety of biological activities, many of which are interesting for drug development. On the other hand, computational studies of biologically active alkaloids have so far mostly focused on few particularly relevant or “popular” molecules, such as quinine, caffeine, or cocaine, with only few works on the other molecules. The present work offers an overview of existing computational studies on alkaloid molecules, from the earliest ones to the most recent, and considering all the theoretical approaches with which studies have been performed (both quantum mechanics and molecular dynamics). The considered studies are grouped according to their objectives and outcomes, such as conformational analysis of alkaloid molecules, effects of selected solvents on their properties, docking studies aimed at better understanding of the interactions between alkaloid molecules and biological targets, studies focusing on structure activity relationships, and computational studies performed to confirm experimental results. It is concluded that it would be important that computational studies on many other alkaloid molecules are performed and their results made available, covering their different classes as well as the variety of their biological activities, to attain better understanding of the properties not only of individual molecules, but also of groups of related molecules and of the overall alkaloids family.


Corresponding authors: Mireille K. Bilonda, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa; and Faculty of Science, University of Kinshasa, Kinshasa, Democratic Republic of Congo, E-mail: ; and Liliana Mammino, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. The process of drug design. [cited 2016 May 10] Available from: http://www.netsci.org.Suche in Google Scholar

2. Puzyn, T, Cronin, MTD. Recent advances in QSRA studies: methods and applications. In: Leszczynski, J, editors. Challenges and advances in computational chemistry and physic, vol 8. Springer; 2010:261−78 pp.10.1007/978-1-4020-9783-6Suche in Google Scholar

3. Merz, KM, Ringe, D, Reynolds, CH. Drug design: structure and ligand based approaches. New York, USA: Cambridge University Press; 2010.10.1017/CBO9780511730412Suche in Google Scholar

4. Mazen, AE. Phytochemistry (3) alkaloids, 3th ed. Al-Azhar University, Faculty of Pharmacy, Department of Pharmacognosy; 2010.Suche in Google Scholar

5. Edmund, GR, Nowacki, K. The role of alkaloids in plants. In: Waller, editor Alkaloid biology and metabolism in plants. New York: Plenum Press; 1978.Suche in Google Scholar

6. Amirkia, MH. Alkaloids as drug leads – a predictive structural and biodiversity-based analysis. Phytochem Lett 2014;10:48–53. https://doi.org/10.1016/j.phytol.2014.06.015.Suche in Google Scholar

7. Cheuka, PM, Mayoka, G, Mutai, P, Chibale, K. The role of natural products in drug discovery and development against neglected tropical diseases. Molecules 2017;22:2–41.10.3390/molecules22010058Suche in Google Scholar PubMed PubMed Central

8. Krause, J, Tobin, G. Discovery development, and regulation of natural products. 2016. https://doi.org/10.5772/56424.Suche in Google Scholar

9. Mammino, L, Bilonda, MK. Computational study of antimalarial pyrazole alkaloids from Newbouldia laevis. J Mol Model 2014;20:2464. https://doi.org/10.1007/s00894-014-2464-5.Suche in Google Scholar PubMed

10. Mammino, L, Bilonda, MK. Computational study of naphthylisoquinoline alkaloids with antimalarial activity from Dioncophyllaceae and Ancistrodaceae in vacuo. Theor Chem Acc 2016;135:101. https://doi.org/10.1007/s00214-016-1843-7.Suche in Google Scholar

11. Mammino, L, Bilonda, MK. Computational study of michellamines – naphthylisoquinoline alkaloids with anti-HIV activity. In: Tadjer, A, Pavlov, R, Maruani, J, Brändas, EJ, Delgado-Barrio, G, editors Quantum systems in physics, chemistry, and biology – advances in concepts and applications. book series progress in theoretical chemistry and physics, Springer; 2017:303–16 pp.10.1007/978-3-319-50255-7_18Suche in Google Scholar

12. Bilonda, MK, Mammino, L. Computational study of jozimine A2 – a naphthylisoquinoline alkaloid with antimalarial activity. In: Wang, YA, Thachuk, M, Krems, R, Maruani, J, editors Concepts, methods and applications of quantum systems in chemistry and physics. Springer; 2018:305–28 pp.10.1007/978-3-319-74582-4_17Suche in Google Scholar

13. Bilonda, MK, Mammino, L. Computational study of mbandakamine A: a dimeric naphthylisoquinoline alkaloid with antimalarial activity. Theo Chem Acc 2018;137:139. https://doi.org/10.1007/s00214-018-2323-z.Suche in Google Scholar

14. Bilonda, MK, Mammino, L. Computational study of shuangancistrotectorine: a naphthylisoquinoline alkaloid with antimalarial activity. In: Mammino, L, Maruani, J, Ceresoli, D, Brändas EJ, editors. Concepts, methods and applications of quantum systems in chemistry and physics. Book series progress in theoretical chemistry and physics, vol. 32. Springer; 2020:183−203 pp.10.1007/978-3-030-34941-7_10Suche in Google Scholar

15. Bilonda, MK, Mammino, L. Intramolecular hydrogen bonds in conformers of quinine and quinidine: an HF, MP2 and DFT study. Molecules 2017;245. https://doi.org/10.3390/molecules22020245.Suche in Google Scholar PubMed PubMed Central

16. Katie, JM, Katie, IL, Gerena, L, Milhous, WK. Stereochemical evaluation of the relative activities of the cinchona alkaloids against Plasmodium Falciparum. Antimicrob Agents Chemother 1992;36:1538–44.10.1128/AAC.36.7.1538Suche in Google Scholar PubMed PubMed Central

17. Wilairatana, P, Krudsood, S, Treeprasertsuk, S, Chalermrut, K, Looareesuwan, S. The future outlook of antimalarial drugs and recent work on the treatment of malaria. Arch Med Res 2002;33:416–21. https://doi.org/10.1016/s0188-4409(02)00371-5.Suche in Google Scholar PubMed

18. Achan, J, Talisuna, AO, Erhart, A, Yeka, A, Tibenderana, JK, Baliraine, FN, et al.. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J. 2011;10:1−12. https://doi.org/10.1186/1475-2875-10-144.Suche in Google Scholar PubMed PubMed Central

19. Aviado, DM, Salem, HJ. Drug action, reaction, and interaction. I. Quinidine for cardiac arrhythmias. Clin Pharmacol. 1975;15:477−85. https://doi.org/10.1002/j.1552-4604.1975.tb01469.x.Suche in Google Scholar PubMed

20. Dewick, PM. Medicinal natural products: a biosynthetic approach. Chichester, UK: Wiley; 1997.Suche in Google Scholar

21. Hoffmann, HMR, Frackenpohl, J. Recent advances in cinchona alkaloid chemistry. Eur J Org Chem. 2004;4293–312. https://doi.org/10.1002/ejoc.200400294.Suche in Google Scholar

22. McCague, R, Smith, A. Applications of crystallization technology in chiral synthesis. Innov Pharm Technol 1999;99:100.Suche in Google Scholar

23. Francotte, ER. Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A 2001;906:379–97. https://doi.org/10.1016/s0021-9673(00)00951-1.Suche in Google Scholar PubMed

24. Bolm, C, Gladysz, JA. Introduction: enantioselective catalysis. Chem Rev 2003;103:2761–2. https://doi.org/10.1021/cr030693c.Suche in Google Scholar

25. Evans, WC. Trease and evans pharmacognosy. In: T Evans, editor Pharmacognosy. Edinburgh: Saunders Elsevier; 2009:614 p.Suche in Google Scholar

26. Bannon, AW, Decker, MW, Holladay, MW, Curzon, P, Donnelly-Roberts, D, Puttfarcken, PS, et al.. Broad- spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science 1998;279:77–81. https://doi.org/10.1126/science.279.5347.77.Suche in Google Scholar PubMed

27. Eglen, RM, Hunter, JC, Dray, A. Ions in the fire: recent ion-channel research and approaches to pain therapy. Trends Pharm Sci 1999;20:337–42. https://doi.org/10.1016/s0165-6147(99)01372-3.Suche in Google Scholar PubMed

28. Haydar, SN, Ghiron, C, Bettinetti, L, Bothmann, H, Comery, TA, Dunlop, J, et al.. SAR and biological evaluation of SEN12333/WAY-317538: novel alpha 7 nicotinic acetylcholine receptor agonist. Bio Med Chem 2009;17:5247–58. https://doi.org/10.1016/j.bmc.2009.05.040.Suche in Google Scholar PubMed

29. Yuan, H, Petukhov, PA. Computational evidence for the ligand selectivity to the 42 and 34 nicotinic acetylcholine receptors. Bioorg Med Chem 2006;14:7936–42. https://doi.org/10.1016/j.bmc.2006.07.049.Suche in Google Scholar PubMed

30. Kucinski, A, Wersinger, S, Stachowiak, EK, Radell, M, Hesse, R, Corso, T, et al.. Unilateral 6-OHDA th-fgfr1 (tk-) mouse model supports the role of FGFs in Parkinson’s disease and the effects of nicotine and l-DOPA on spontaneous motor impairments. Health 2012;4:1178–90. (and references therein). https://doi.org/10.4236/health.2012.431176.Suche in Google Scholar

31. Tiwari, MN, Agarwal, S, Bhatnagar, P, Singhal, NK, Tiwari, SK, Kumar, P, et al.. Nicotine-encapsulated poly (lactic-co- glycolic) acid nanoparticles improve neuroprotective efficacy against MPTP-induced Parkinsonism. Free Radic Biol Med 2013;65:704–18. (and references therein). https://doi.org/10.1016/j.freeradbiomed.2013.07.042.Suche in Google Scholar PubMed

32. Stornaiuolo, M, De Kloe, GE, Rucktooa, P, Fish, A, van Elk, R, Edink, ES, et al.. Assembly of a stack of ligands in the binding site of an acetylcholine-binding protein. Nat Commun 2013;4:1875–86. https://doi.org/10.1038/ncomms2900.Suche in Google Scholar PubMed PubMed Central

33. Xiu, X, Puskar, NL, Shanata, JA, Lester, HA, Dougherty, DA. Nicotine binding to brain receptors requires a strong cation-pi interaction. Nature 2009;45:8534–537.10.1038/nature07768Suche in Google Scholar

34. Holladay, MW, Dart, MJ, Lynch, JKJ. Neuronal nicotinic acetylcholine receptors as targets for drug discovery. Med Chem 1997;40:4169–94. https://doi.org/10.1021/jm970377o.Suche in Google Scholar PubMed

35. Elgen, RM, Hunter, JC, Dray, A. Ions in the fire: recent ion-channel research and approaches to pain therapy. Trends Pharm Sci 1999;20:337–42.10.1016/S0165-6147(99)01372-3Suche in Google Scholar

36. Soloway, SB. Naturally occurring insecticides. Env Health Perspect 1976;14:109–17. https://doi.org/10.1289/ehp.7614109.Suche in Google Scholar PubMed PubMed Central

37. Yunusov, TK, Matveeva, AP, Leont’ev, VB, Kamaev, FG, Aslanov, AKh, Saykov, AS. Comparative study of the IR spectra of alkaloids containing piperidine and quinolizidine rings in the 2500–2830 cm−1 range. Khim Prir Soedin 1972;2:200–7.10.1007/BF00565300Suche in Google Scholar

38. Granitova, OI, Dordzhin, GS. Infrared spectrum of anabasine. Nauchn Tr Tashkentsk Gos Univ 1964;257:55–63.Suche in Google Scholar

39. Wada, E, Yamasaki, K, Lida, M, Saito, K, Nakayama, Y. Tobacco alkaloids. Infrared absorption spectra of the tobacco alkaloids and some related compounds. Kenkyu Hokoku – Nippon Senbai Kosha Chuo Kenkyusho 1957;97:27–39.Suche in Google Scholar

40. Wojciechowska-Nowak, W, Rychlewska, U, Warzajtis, B. Spectroscopy and crystal structure of anabasine salts. J Mol Struct 2007;840:44–52. https://doi.org/10.1016/j.molstruc.2006.11.037.Suche in Google Scholar

41. Lesarri, A, Cocinero, EJ, Evangelisti, L, Suenram, RD, Caminati, WR, Grabow, JU. The conformational landscape of nicotinoids: solving the conformational disparity of anabasine. Chem Eur J 2010;16:214–9. https://doi.org/10.1002/chem.201000849.Suche in Google Scholar PubMed

42. Baranska, M, Dobrowolski, JCz, Kaczor, A, Chruszcz-Lipska, K, Gorz, K, Rygula, A. Tobacco alkaloids analyzed by Raman spectroscopy and DFT calculations. J Ram Spectr 2012;43:1065–73. https://doi.org/10.1002/jrs.3127.Suche in Google Scholar

43. Taba, KM, Paulus, J, Kayembe, JS. Novel plant remedies show great promise in treating the deadly disease. Global JRMI 2012;1:62–8.Suche in Google Scholar

44. Bringmann, G, Pokorny, F. The naphthylisoquinoline alkaloids. In: Cordell, GA, editor. The alkaloids: chemistry and pharmacology, vol 46. New York: Academic Press; 1995:127–271 pp.10.1016/S0099-9598(08)60288-6Suche in Google Scholar

45. Bringmann, G, Kimbadi, BL, Steinert, C, Ndjoko, KI, Brun, R, Turini, F, et al.. Mbandakamines A and B, unsymmetrically coupled dimeric naphthylisoquinoline alkaloids, from a Congolese Ancistrocladus species. Org Lett 2013;15:2590–3. https://doi.org/10.1021/ol4005883.Suche in Google Scholar PubMed

46. Bringmann, G, Zhang, G, Büttner, T, Bauckmann, G, Kupfer, T, Braunschweig, H, et al.. Jozimine A2: the first dioncophyllaceae-type naphthylisoquinoline dimer, with three chiral axes and high antimalarial activity. Chem Eur J 2013;19:916–23. https://doi.org/10.1002/chem.201202755.Suche in Google Scholar PubMed

47. Bringmann, G, Feineis, D. Stress‐related polyketide metabolism of Dioncophyllaceae and Ancistrocladaceae. J Exp Bot 2001;52:2015–22. https://doi.org/10.1093/jexbot/52.363.2015.Suche in Google Scholar PubMed

48. Xu, M, Bruhn, T, Hertlein, B, Brun, R, Stich, A, Wu, J, et al.. Dimeric naphtylisoquinoline alkaloids with three chiral biaryl axes from the Chinese plant Ancistrocladus tectorius. Chem Eur J 2010;16:4206–16. https://doi.org/10.1002/chem.200903247.Suche in Google Scholar PubMed

49. Bringmann, G, Günther, C, Ochse, M, Schupp, O, Tasler, S. Progress in the chemistry of organic natural products. In: Herz, W, Falk, H, Kirby, GW, Moore, RE, editors. Fortschritte der Chemie organischer Naturstoffe. Wien: Springer; 2001, vol 82:1–249 p.10.1007/978-3-7091-6227-9_1Suche in Google Scholar PubMed

50. Bringmann, G, Kajahn, I, Reichert, M, Pedersen, S, Faber, JH, Gulder, T, et al.. Ancistrocladinium A and B, the first N,C-coupled naphthyldihydroisoquinoline alkaloids from a Congolese Ancistrocladus species. J Org Chem 2006;71:9348–56. https://doi.org/10.1021/jo061626w.Suche in Google Scholar PubMed

51. Sabrin, RMI, Gamal, AM. Naphthylisoquinoline alkaloids potential drug leads. Fitoter 2015;106:194–225.10.1016/j.fitote.2015.09.014Suche in Google Scholar PubMed

52. Manfredi, KP, Blunt, JW, Cardellina, JHII, McMahon, JB, Pannell, LL, Cragg, GM, et al.. J Novel alkaloids from the tropical plant Ancistrocladus abbreviates inhibit cell killing by HIV-1 and HIV-2. Med Chem 1991;34:3402–5. https://doi.org/10.1021/jm00116a011.Suche in Google Scholar PubMed

53. Kobayashi, J, Morita, H. The daphniphyllum alkaloids. In: Cordell, GA, editor. The alkaloids, vol. 60. New York: Academic Press; 2003:165–205 pp. (and references therein).10.1016/S0099-9598(03)60003-9Suche in Google Scholar PubMed

54. Wu, H, Zhang, X, Ding, L, Chen, S, Yang, J, Xu, X. Daphniphyllum Alkaloids: recent findings on chemistry and pharmacology. Planta Med 2013;79:1589–98. https://doi.org/10.1055/s-0033-1351024.Suche in Google Scholar PubMed

55. Garcia-Beltrán, O, Soto-Delgado, J, Iturriaga-Vásquez, P, Areche, C, Cassels, BK. Structural reassignment of epierthratidine, an alkaloid from Erythrina fusca, based on NMR studies and computational methods. J Chil Chem Soc 2012;57:1323–7. https://doi.org/10.4067/s0717-97072012000300027.Suche in Google Scholar

56. Merlugo, L, Sant’Anna, MC, Santos, LS, Cordeiro, EWF, Batista, LAC, Miotto, STS, et al.. Alkaloids in Erythrina by UPLC-ESI-MS and in vivo hypotensive potential of extractive preparations. Evid Based Complement Alternat Med 2015. https://doi.org/10.1155/2015/959081.Suche in Google Scholar PubMed PubMed Central

57. Tanaka, H, Etoh, H, Shimizu, H, Oh-Uchi, T, Terada, Y, Tateishi, Y. Erythrina alkaloids and isoflavonoids from Erythrina poeppigiana. Planta Med 2001;67:871–3. https://doi.org/10.1055/s-2001-18852.Suche in Google Scholar PubMed

58. Wanjala, CCW, Juma, BF, Bojase, G, Gache, BA, Majinda, RRT. Erythrinaline alkaloids and antimicrobial flavonoids from Erythrina latissima. Planta Med 2002;68:640–2. https://doi.org/10.1055/s-2002-32891.Suche in Google Scholar PubMed

59. Juma, BF, Majinda, RRT. Erythrinaline alkaloids from the flowers and pods of Erythrina lysistemon and their DPPH radical scavenging proprieties. Phytochem 2004;65:1397–404. https://doi.org/10.1016/j.phytochem.2004.04.029.Suche in Google Scholar PubMed

60. Tanaka, H, Hattori, H, Tanaka, T, Sakai, E, Tanaka, N, Kulkarni, A, et al.. New Erythrina alkaloid from Erythrina herbacea. J Nat Med 2008;62:228–31. https://doi.org/10.1007/s11418-007-0222-z.Suche in Google Scholar PubMed

61. Cui, L, Thoung, PT, Fomum, T, Oh, WKA. New erythrinan alkaloid from the seed of Erythrina addsoniae. Arch Pharm Res 2009;32:325–8. https://doi.org/10.1007/s12272-009-1302-2.Suche in Google Scholar PubMed

62. Silva, DB, Guaratini, T, Vessecchi, R, Lopes, NP, Cramer, B, Humpf, HU, et al.. H-2 unimolecular elimination in electrospray ionization mass spectrometry from erythraline, a spirocyclic alkaloid. Eur J Mass Spectrom 2013;19:345–50. https://doi.org/10.1255/ejms.1243.Suche in Google Scholar PubMed

63. Rosa, DS, Faggion, SA, Gavin, AS, Souza, MA, Fachim, HA, Santos, WF, et al.. Erysothrine, an alkaloid extracted from flowers of Erythrina mulungu Mart. ex Benth: evaluating its anticonvulsant and anxiolytic potential. Epilepsy Behav 2012;23:205–12.10.1016/j.yebeh.2012.01.003Suche in Google Scholar PubMed

64. Faggion, SA, Cunha, AOS, Fachim, HA, Gavin, AS, Santos, WF, Pereira, AMS, et al.. Anticonvulsant profile of the alkaloids (+)-erythravine and (+)-11- α-hydroxyerythravine isolated from the flowers of Erythrina mulungu Mart ex Benth (Leguminosae–Papilionaceae). Epilepsy Behav 2011;20:441–6. https://doi.org/10.1016/j.yebeh.2010.12.037.Suche in Google Scholar PubMed

65. Iturriaga-Vásquez, P, Carbone, A, García-Beltrán, O, Livingstone, PD, Biggin, PC, Cassels, BK, et al.. Molecular determinants for competitive inhibition of α4β2 nicotinic acetylcholine receptors. Mol Pharmacol 2010;78:366–75. https://doi.org/10.1124/mol.110.065490.Suche in Google Scholar PubMed PubMed Central

66. Setti-Perdigão, P, Serrano, MAR, Flausino, OAJr, Bolzani, VS, Guimarães, MZP, Castro, NG. Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells. PLoS One 2013;8:1–5. https://doi.org/10.1371/journal.pone.0082726.Suche in Google Scholar PubMed PubMed Central

67. Callejon, DR, Riul, TB, Feitosa, LGP, Guaratini, T, Silva, DB, Adhikari, A, et al.. Leishmanicidal evaluation of tetrahydroprotoberberine and spirocyclic erythrina-alkaloids. Mol.2014;19:5692−703. https://doi.org/10.3390/molecules19055692.Suche in Google Scholar PubMed PubMed Central

68. Lamchouri, H, Toufik, SM, Bouzzine, M, Hamidi, M, Bouachrine, M. Experimental and computational study of biological activities of alkaloids isolated from Peganum harmala seeds. J Mater Environ Sci. 2010;1:343−52.Suche in Google Scholar

69. Zaheer-ul-Haq, Wellenzohn, B, Liedl, KR, Rode, BM. Molecular docking studies of natural cholinesterase-inhibiting steroidal alkaloids from Sarcococca saligna. J Med Chem 2003;46:5087–90. https://doi.org/10.1021/jm0309194.Suche in Google Scholar PubMed

70. Mammino, L, Kabanda, MM. Considering the medium when studying biologically active molecules: motivations, options and challenges. In: Zaheer uI-Haq, Madura, JD. Editors. Frontiers in computational chemistry. Sharjah: Bentham Sciences Publishers; 2014:197−256 pp.10.2174/9781608058648115010008Suche in Google Scholar

71. Mitchell, HH, Hamilton, TS, Steggerda, IR, Bean, HW. The chemical composition of the adult human body and its bearing on the biochemistry of growth. J Biol Chem. 1945;158:625−37.10.1016/S0021-9258(19)51339-4Suche in Google Scholar

72. Olsen, RA, Borchardt, D, Mink, L, Agarwal, A, Mueller, LJ, Zaera, F. Molecular properties of cinchona alkaloids: a theoretical approach. J Am Chem Soc. 2006;128:15594−5. https://doi.org/10.1021/ja066989s.Suche in Google Scholar PubMed

73. Weselucha-Birczynska, A. FT-Raman study of quinine aqueous solutions with varying pH: 2D correlation study. J Mol Struct. 2007;826:96−103.10.1016/j.molstruc.2006.04.039Suche in Google Scholar

74. Sen, A, Bouchet, A, Lepère, V, Barbu-Debus, KL, Scuderi, D, Piuzzi, F, et al.. Conformational analysis of quinine and its pseudo enantiomer quinidine: a combined jet-cooled spectroscopy and vibrational circular dichroism study. J Phys Chem A. 2012;116:8334−44. https://doi.org/10.1021/jp3047888.Suche in Google Scholar PubMed

75. Burgi, T, Baiker, A. Conformational behaviour of cinchonidine in different solvents: a combined NMR and ab initio investigation. J Am Chem Soc. 1998;120:920−12926. https://doi.org/10.1021/ja982466b.Suche in Google Scholar

76. Prelog, U, Wilhelm, MU. Untersuchungen überasymmetrische Synthesen VI. Der Reaktionsmechanismus und der sterische Verlauf der asymmetrischen – Synthese. Hetv Chira Acta. 1954;37:1634−60. https://doi.org/10.1002/hlca.19540370608.Suche in Google Scholar

77. Dijkstra, GDH, Kellogg, RM, Wynberg, H. Conformational analysis of some chiral catalysts of the cinchona and ephedra family. The alkaloid catalyzed addition of aromatic thiols to cyclic alpha, beta-unsaturated ketones. Rec Trav Chim Pays-Bas 1989;108:195−204. https://doi.org/10.1002/recl.19891080507.Suche in Google Scholar

78. Dijkstra, GDH, Kellogg, RM, Wynberg, H, Svendsen, IM, Sharpless, KB. Conformational study of cinchona alkaloids. A combined NMR, molecular mechanics and X-ray approach. J Am Chem Soc. 1989;111:8069−76. https://doi.org/10.1021/ja00203a001.Suche in Google Scholar

79. Dijkstra, GDH, Kellogg, RM, Wynberg, H. Conformational study of cinchona alkaloids – a combined NMR and molecular-orbital approach. J Org Chem. 1990;55:6121−31. https://doi.org/10.1021/jo00312a017.Suche in Google Scholar

80. Silva, THA, Oliveira, AB, De Almeida, WB. Conformational analysis of the antimalarial agent quinine. Struct Chem 1997;8:95–107. https://doi.org/10.1007/bf02262845.Suche in Google Scholar

81. Karle, JM, Bhattacharjee, AK. Stereoelectronic features of the cinchona alkaloids determine their differential antimalarial activity. Bioorg Med Chem. 1999;7:1769−74. https://doi.org/10.1016/s0968-0896(99)00120-0.Suche in Google Scholar PubMed

82. PCMODEL Serena Software. The force field used in PCMODEL is called MMX and is derived from the MM2 (QCPE-395, 1977) force field of N. L, Allinger with the pi-VESCF routines taken from MMPI (QPCE-318), also by N. L. Allinger, 1st ed.; 1993.Suche in Google Scholar

83. MM3, Allinger, NL, Fan, YJ. Molecular mechanics calculations (MM3) on sulfones. Comput Chem 1993;14:655–66. (and references therein). https://doi.org/10.1002/jcc.540140605.Suche in Google Scholar

84. Oleksyn, BJ, Suszko-Purzycka, A, Dive, G, Lamotte-Brasseur, J. Molecular properties of cinchona alkaloids: a theoretical approach. J Pharm Sci. 1992;81:122−127. https://doi.org/10.1002/jps.2600810204.Suche in Google Scholar PubMed

85. Pniewska, B, Suszko-Purzycka, A. Structure of quinine monohydrate toluene solvate. Acta Cryst C. 1989;45:638−42. https://doi.org/10.1107/s0108270188013204.Suche in Google Scholar

86. AMI: Dewar, MJS, Zoebisch, EG, Healy, EF, Stewart, JJP. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc. 1985;107:3902−9. https://doi.org/10.1021/ja00299a024.Suche in Google Scholar

87. PM3: Stewart, JJP. Optimization of parameters for semi empirical methods. J Comput Chem. 1989;10:209−20.10.1002/jcc.540100208Suche in Google Scholar

88. Berg, U, Aune, M, Matsson, O. Dihydroquinidine conformation revisited. Variable temperature NMR and CD spectroscopy, and molecular mechanics computations. Tetra Lett. 1995;36:2137−40. https://doi.org/10.1016/0040-4039(95)00195-i.Suche in Google Scholar

89. Caner, H, Biedermann, APU, Agranat, I. Conformational spaces of cinchona alkaloids. Chiral 2003;15:637–45. https://doi.org/10.1002/chir.10265.Suche in Google Scholar PubMed

90. Heimstra, H, Wynberg, H. Addition of aromatic thiols to conjugated cycloalkenones, catalysed by chiral beta-hydroxylamines. A mechanistic study of homogeneous catalytic asymmetric synthesis. J Am Chem Soc 1981;103:417–30.10.1021/ja00392a029Suche in Google Scholar

91. Schürch, M, Schwalm, O, Mallat, T, Weber, J, Baiker, AJ. Enantioselective hydrogenation of ketopantolactone. Catal 1997;169:275–86. https://doi.org/10.1006/jcat.1997.1674.Suche in Google Scholar

92. Urakawa, A, Meier, DM, Ruegger, H, Baiker, A. Conformational behavior of cinchonidine revisited: a combined theoretical and experimental study. J Phys Chem A 2008;112:7250–5. https://doi.org/10.1021/jp803185j.Suche in Google Scholar PubMed

93. Onsager, LJ. Electric moments of molecules in liquids. Am Chem Soc. 1936;58:1486−93. https://doi.org/10.1021/ja01299a050.Suche in Google Scholar

94. Ryan, AO, Borchardt, D, Mink, L, Agarwal, A, Mueller, LJ, Zaera, F. Effect of protonation on the conformation of cinchonidine. J Am Chem Soc. 2006;128:15594−15595. https://doi.org/10.1021/ja066989s.Suche in Google Scholar PubMed

95. Radna, RJ, Beveridge, DL, Bender, AL. Structural chemistry of cholinergic neural transmission systems II. Quantum theoretical study of the molecular electronic structure of muscarine, nicotine, acetyl-alpha-methylcholine, acetyl-beta-methylcholine, acetyl-a, beta-dimethylcholine, and further studies on acetylcholine. J Am Chem Soc 1973;95:3831–42. https://doi.org/10.1021/ja00793a002.Suche in Google Scholar PubMed

96. Kier, LBA. Molecular orbital calculation of the preferred conformation of nicotine. J Mol Pharmacol 1968;4:70–6.Suche in Google Scholar

97. Pullman, B, Courrière, P, Coubeils, JL. Quantum mechanical study of the conformational and electronic properties of acetylcholine and its agonists muscarine and nicotine. J Mol Pharmacol 1971;7:397–405.Suche in Google Scholar

98. Berthelot, M, Decouzon, M, Gal, JF, Laurence, C, Le Questel, JV, Maria, PC, et al.. Gas-phase basicity and site of protonation of polyfunctional molecules of biological interest: FT-ICR experiments and AM1 calculations on nicotines, nicotinic acid derivatives, and related compounds. J Org Chem 1991;56:4490–4. https://doi.org/10.1021/jo00014a031.Suche in Google Scholar

99. Elmore, DE, Dougherty, DA. A Computational study of nicotine conformations in the gas phase and in water. J Org Chem 2000;65:742–7. https://doi.org/10.1021/jo991383q.Suche in Google Scholar PubMed

100. Graton, J, Berthelot, M, Gal, JF, Girard, S, Laurence, C, Lebreton, J, et al.. Site of protonation of nicotine and nornicotine in the gas phase: pyridine or pyrrolidine nitrogen? J Am Chem Soc 2002;124:10552–62. https://doi.org/10.1021/ja017770a.Suche in Google Scholar PubMed

101. Takeshima, T, Fukumoto, R, Egawa, T, Konata, S. Molecular structure of nicotine as studied by gas electron diffraction combined with theoretical calculations. J Phys Chem A 2002;106:8734–40. https://doi.org/10.1021/jp020328+.10.1021/jp020328+Suche in Google Scholar

102. Mora, M, Castro, ME, Nino, A, Melendez, FJ, Munoz-Caro, C. Analysis of B3LYP and MP2 conformational population distributions in trans-nicotine acetylcholine, and ABT-594. Int J Quant Chem 2005;103:25–33. https://doi.org/10.1002/qua.20475.Suche in Google Scholar

103. Yoshida, T, Farone, WA, Xantheas, SS. Isomers and conformational barriers of gas- phase nicotine, nornicotine, and their protonated forms. J Phys Chem B. 2014;118:8273−85. https://doi.org/10.1021/jp501646p.Suche in Google Scholar PubMed

104. Eddy, C, Roland, C, Eisner, A. Infrared spectra of nicotine and some of its derivatives. Anal Chem 1954;26:1428–31. https://doi.org/10.1021/ac60093a011.Suche in Google Scholar

105. Dezelic, M, Branko, N. Determination of structure of some salts of nicotine, pyridine and N-methylpyrrolidine on the basis of their infra-red spectra. Spectrochim Acta 1967;23:1149–53.10.1016/0584-8539(67)80037-0Suche in Google Scholar

106. Seydou, M, Gregoire, G, Liquier, J, Lemaire, J, Schermann, JP, Desfrancois, C. Experimental observation of the transition between gas-phase and aqueous solution structures for acetylcholine nicotine, and muscarine ions. J Am Chem Soc 2008;130:4187–95. https://doi.org/10.1021/ja710040p.Suche in Google Scholar PubMed

107. JU, Grabow, Mata, S, Alonso, JL, Pena, I, Blanco, S, Lopez, JC, et al.. Rapid probe of the nicotine spectra by high-resolution rotational spectroscopy. Phys Chem Chem Phys 2011;13:21063–9. https://doi.org/10.1039/c1cp22197c.Suche in Google Scholar PubMed

108. Hammond, PS, Wu, Y, Harris, R, Minehardt, TJ, Car, R, Schmitt, JD. Protonation- induced stereoisomerism in nicotine: conformational studies using classical (AMBER) and ab initio (Car–Parrinello) molecular dynamics. J Comput Aid Mol Des 2005;19:1–15. https://doi.org/10.1007/s10822-005-0096-7.Suche in Google Scholar PubMed

109. Koné, M, Illien, B, Laurence, C, Gal, J-F, María, P-C. Are nicotinoids protonated on the pyridine or the amino nitrogen in the gas phase? J Phys Org Chem 2006;19:104–114. https://doi.org/10.1002/poc.1006.Suche in Google Scholar

110. Schmitt, JD, Sharples, CGV, Caldwel, WS. Molecular recognition in nicotinic acetylcholine receptors: the importance of π-cation interactions. J Med Chem 1999;42:3066–74. https://doi.org/10.1021/jm990093z.Suche in Google Scholar PubMed

111. Tsetlin, V, Hucho, F. Nicotinic acetylcholine receptors at atomic resolution. Curr Opin Pharmacol 2009;9:306–10. https://doi.org/10.1016/j.coph.2009.03.005.Suche in Google Scholar PubMed

112. Beene, DL, Brandt, GS, Zhong, WG, Zacharias, NM, Lester, HA, Dougherty, DA. Cation- interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine. Biochem 2002;41:10262–10269. https://doi.org/10.1021/bi020266d.Suche in Google Scholar PubMed

113. Barlow, RB, Howard, JAK, Johnson, O. Structures of nicotine monomethyl iodide and nicotine monohydrogen iodide. Acta Crystallogr C. 1986;42:853−6. https://doi.org/10.1107/s0108270186094301.Suche in Google Scholar

114. Koo, CH, Kim, HS. The crystal structure of nicotine dihydroiodide. Daehan Hwahak Hwoejee. 1965;9:134−41.Suche in Google Scholar

115. Koo, CH, Kim, HS. Chem Abstr 1966;64:6431e.Suche in Google Scholar

116. Chynoweth, KR, Ternai, B, Simeral, LS, Maciel, GE. Nuclear magnetic resonance studies of the conformation and electron distributions in nicotine and in acetylcholine. Mol Pharmacol. 1973;9:144−51.Suche in Google Scholar

117. Whidby, JF, Seeman, JIJ. The configuration of nicotine. A nuclear magnetic resonance study. Org Chem. 1976;41:1585−90. https://doi.org/10.1021/jo00871a022.Suche in Google Scholar PubMed

118. Pitner, TP, Edwards, WBIII, Bassfield, RL, Whidby, JFJ. The solution conformation of nicotine. A 1H and 2H nuclear magnetic resonance investigation. Am Chem Soc. 1978;100:246−51. https://doi.org/10.1021/ja00469a041.Suche in Google Scholar

119. Seeman, JI. Recent studies in nicotine chemistry: conformational analysis, chemical reactivity studies, and theoretical modeling. Heterocyc. 1984;22:165−93.10.1002/chin.198428367Suche in Google Scholar

120. Whidby, JF, Edwards, WBIII, Pitner, TPJ. Isomeric nicotines. Their solution conformation and proton, deuterium, carbon-13, and nitrogen-15 nuclear magnetic resonance. Org Chem. 1979;44:794−8. https://doi.org/10.1021/jo01319a028.Suche in Google Scholar

121. Cox, RH, Kao, J, Secor, HV, Seeman, JIJ. Assessment of isolated electronic effects on conformation. NMR analysis of nicotine and related compounds and ab initio studies of model compounds. Mol Struct. 1986;140:93−106. https://doi.org/10.1016/0022-2860(86)80151-x.Suche in Google Scholar

122. Hacksell, U, Mellin, C. Stereoselectivity of nicotinic receptors. Prog Brain Res.1989;79:95−100. https://doi.org/10.1016/s0079-6123(08)62468-1.Suche in Google Scholar PubMed

123. SPARTAN Version 5.0 Wavefunction, Inc, 18401 Von Karman Ave. Irvine, CA 922612. Suite 370.Suche in Google Scholar

124. Jorgensen, WL, Maxwell, DS, Tirado-Rives, JJ. Development and testing of the OPLS all- atom force field on conformational energetics and properties of organic liquids. Am Chem Soc. 1996;118:11225−36. https://doi.org/10.1021/ja9621760.Suche in Google Scholar

125. Li, J, Hawkins, GD, Cramer, CJ, Truhlar, DGJ. Universal reaction field model based on ab initio Hartree–Fock theory. Chem Phys Lett. 1998;288:293−8. https://doi.org/10.1016/s0009-2614(98)00194-8.Suche in Google Scholar

126. Zhu, T, Li, JB, Hawkins, GD, Cramer, CJ, Truhlar, DGJ. Density functional solvation model based on CM2 atomic charges. Chem Phys. 1998;109:9117−33. https://doi.org/10.1063/1.476521.Suche in Google Scholar

127. Sheridan, RP, Nilakantan, R, Dixon, JS, Venkataraghavan, RJ. The ensemble approach to distance geometry: application to the nicotinic pharmacophore. MedChem. 1986;29:899−906. https://doi.org/10.1021/jm00156a005.Suche in Google Scholar PubMed

128. Wada, E, Yamasaki, K, Lida, M, Saito, K, Nakayama, Y. Tobacco alkaloids. Infrared absorption spectra of the tobacco alkaloids and some related compounds. Kenkyu Hokoku – Nippon Senbai Kosha Chuo Kenkyusho 1957;97:27–39.Suche in Google Scholar

129. Ortega, PGR, Montejo, M, Márquez, F, González, JJ. Conformational properties of chiral tobacco alkaloids by DFT calculations and vibrational circular dichroism: (−)-S- anabasine. J Mol Grap Mod 2015;60:169–79.10.1016/j.jmgm.2015.05.011Suche in Google Scholar PubMed

130. Reed, AE, Weinhold, F. Natural bond orbital analysis of near-Hartree-Fock water dimer. J Chem Phys 1983;78:4066–74. https://doi.org/10.1063/1.445134.Suche in Google Scholar

131. Reed, AE, Weinstock, RB, Weinhold, F. Natural population analysis. J Chem Phys 1985;83:735–47. https://doi.org/10.1063/1.449486.Suche in Google Scholar

132. Reed, AE, Weinhold, F. Natural localized molecular orbitals. J Chem Phys 1985;83:1736–41. https://doi.org/10.1063/1.449360.Suche in Google Scholar

133. Reed, AE, Curtiss, LA, Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 1988;88:899–926. https://doi.org/10.1021/cr00088a005.Suche in Google Scholar

134. Carpenter, JE, Weinhold, F. Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins’’ natural bond orbital procedure. J Mol Struc (Theochem) 1988;169:41–62. https://doi.org/10.1016/0166-1280(88)80248-3.Suche in Google Scholar

135. Barone, V, Cossi, MA. New definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 1997;107:3210–21. https://doi.org/10.1063/1.474671.Suche in Google Scholar

136. Cancès, E, Mennucci, B, Tomasi, JA. New integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys. 1997;107:3032−41. https://doi.org/10.1063/1.474659.Suche in Google Scholar

137. Barone, V, Cossi, M, Tomasi, J. Geometry optimization of molecular structures in solution by the polarizable continuum model. J Comput Chem. 1998;19:404−17. https://doi.org/10.1002/(sici)1096-987x(199803)19:4<404::aid-jcc3>3.0.co;2-w.10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-WSuche in Google Scholar

138. Tomasi, J, Mennucci, B, Cancès, E. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct 1999;464:211. https://doi.org/10.1016/s0166-1280(98)00553-3.Suche in Google Scholar

139. Cossi, M, Scalmani, G, Rega, N, Barone, V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys. 2002;117:43−54. https://doi.org/10.1063/1.1480445.Suche in Google Scholar

140. Tomasi, J, Mennucci, B, Cammi, R. Quantum mechanical continuum solvation models. Chem Rev 2005;105:2999–3093. https://doi.org/10.1021/cr9904009.Suche in Google Scholar

141. Mennucci, B. Continuum solvation models: what else can we learn from them?. J Phys Chem Lett 2010;1:1669–74. https://doi.org/10.1021/jz100506s.Suche in Google Scholar

142. Mifundu, N. Etude in vitro de l’activité antipaludique des alcaloïdes de Newboldia laevis. Kinshasa: Thesis. University of Kinshasa; 2011.Suche in Google Scholar

143. Lämmerhofer, M, Lindner, W. Quinine and quinidine derivatives as chiral selectors. Brush type chiral stationary phases for high performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers. J Chromatogr A 1996;741:33–48. https://doi.org/10.1016/0021-9673(96)00137-9.Suche in Google Scholar

144. Lämmerhofer, M, Maier, N, Lindner, W. Chiral anion exchange type stationary phases based on chinchona alkaloids: effective tool for the separation of the enantiomers of chiral acids. Am Lab 1998;30:71–8.Suche in Google Scholar

145. Lämmerhofer, M, Lindner, W. High-efficiency chiral separations of N derivatized amino acids by packed-capillary electrochromatography with a quinine based chiral anion exchange type stationary phase. J Chromtogr A 1998;829:115–25. https://doi.org/10.1016/s0021-9673(98)00824-3.Suche in Google Scholar

146. Schefzick, A, Lindner, W, Lipkowitz, KB, Jalaie, M. Enantiodiscrimination by a quinine-based chiral stationary phase: a computational study. Chiral 2000;12:7–15. https://doi.org/10.1002/(sici)1520-636x(2000)12:1<7::aid-chir3>3.0.co;2-q.10.1002/(SICI)1520-636X(2000)12:1<7::AID-CHIR3>3.0.CO;2-QSuche in Google Scholar

147. Mohamadi, F, Richards, NGJ, Guida, WC, Liskamp, R, Lipton, M, Caufield, C, et al.. Macro model—an integrated software system for modeling organic and bioinorganic molecules using molecular mechanics. J Comput Chem 1990;11:440–67. https://doi.org/10.1002/jcc.540110405.Suche in Google Scholar

148. Di, YT, He, HP, Wang, YS, Li, LB, Lu, Y, Gong, JB, et al.. Isolation, X-ray crystallography, and computational studies of calydaphninone, a new alkaloid from Daphniphyllum calycillum. Org Lett. 2007;9:1355−8. https://doi.org/10.1021/ol070218r.Suche in Google Scholar

149. Morita, H, Yoshida, N, Kobayashi, J. Rapid interconversion between conformers at room temperature was also observed in other Daphniphyllum alkaloids. J Org Chem. 2000;65:3553−63. https://doi.org/10.1021/jo000004m.Suche in Google Scholar

150. Morita, H, Ishioka, N, Takatsu, H, Kobayashi, J. Daphmanidins C and D, novel pentacyclic alkaloids from Daphniphyllum teijsmanii. J Org Lett. 2005;7:459−62. https://doi.org/10.1021/ol047641+.10.1021/ol047641+Suche in Google Scholar

151. Beltrán, OG, Soto-Delgado, J, Iturriaga-Vásquez, P, Areche, C, Cassels, BK. Structural reassignment of epierythratidine, an alkaloid from Erythrina fusca, based on NMR studies and computational methods, J Chil Chem Soc. 2012;57:1323−7.10.4067/S0717-97072012000300027Suche in Google Scholar

152. Chawla, A, Chunchatprasert, S, Jackson, A. Erythrina alkaloids. Org Magn Reson 1984;21:39.10.1016/B978-0-08-042089-9.50010-3Suche in Google Scholar

153. Amer, M, Shamma, M, Freyer, A. The tetracyclic Erythrina alkaloids. J Nat Prod 1991;54:329. https://doi.org/10.1021/np50074a001.Suche in Google Scholar

154. Chini, MG, Jones, CR, Zampella, A, Da Auria, MV, Renga, B, Fiorucci, S, et al.. Quantitative NMR-Derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts in the stereochemical determination of conicasterol. J Org Chem 2012;77:1489. https://doi.org/10.1021/jo2023763.Suche in Google Scholar PubMed

155. Lamchouri, F. Thèse de Doctorat Es-Sciences Physiologie-Pharmacologie. Maroc: Sidi Mohamed Ben Abdellah University of Fez; 2000.Suche in Google Scholar

156. Bushelyev, SN, Stepanov, NF. Elektronnaya Struktura y Biologhicheskaya Aktivnost Molecul. Khimiya. Moscow: Snanye; 1989.Suche in Google Scholar

157. Bringmann, G, Fayez, S, Shamburger, W, Feineis, D, Winiarczyk, S, Janecki, R, et al.. Naphthylisoquinoline alkaloids and their synthetic analogs as potent novel inhibitors against Babesia canis in vitro. Vet Parasitol 2020;283:109177. https://doi.org/10.1016/j.vetpar.2020.109177.Suche in Google Scholar PubMed

158. Fayez, S, Bruhn, T, Feineis, D, Aké Assi, L, Awale, S, Bringmann, G. Seco- naphthylisoquinoline alkaloids from the roots of Ancistrocladus abbreviatus, with apoptosis-inducing potential against HeLa cancer cells.J Nat Prod. 2020;83:1139−51. https://doi.org/10.1021/acs.jnatprod.9b01168.Suche in Google Scholar PubMed

159. Fayez, S, Feineis, D, Aké Assi, L, Seo, E-J, Efferth, T, Bringmann, G. Ancistrobreveines A-D and related dehydrogenated naphthylisoquinoline alkaloids with antiproliferative activities against leukemia cells, from the west african liana Ancistrocladus abbreviatus. RSC Adv 2019;9:15738–48. https://doi.org/10.1039/c9ra03105g.Suche in Google Scholar PubMed PubMed Central

160. Mufusama, J-P, Feineis, D, Mudogo, V, Kaiser, M, Brun, R, Bringmann, G. Antiprotozoal dimeric naphthylisoquinolines, mbandakamines B3 and B4 and related 5,8’-coupled monomeric alkaloids, ikelacongolines A-D, from a Congolese Ancistrocladus liana, RSC Adv. 2019;9:12034−46. https://doi.org/10.1039/c9ra01784d.Suche in Google Scholar PubMed PubMed Central

161. Fayez, S, Feineis, D, Aké Assi, L, Kaiser, M, Brun, R, Awale, S, et al.. Ancistrobrevines E-J and related naphthylisoquinoline alkaloids from the West African liana Ancistrocladus abbreviatus with inhibitory activities against Plasmodium falciparum and PANC-1human pancreatic cancer cells. Fitoter 2018;131:245–59. https://doi.org/10.1016/j.fitote.2018.11.006.Suche in Google Scholar PubMed

162. Fayez, S, Feineis, D, Mudogo, V, Seo, E-J, Efferth, T, Bringmann, G. Ancistrolikokine I and further 5,8′-coupled naphthylisoquinoline alkaloids from the Congolese liana Ancistrocladus and their cytotoxic activities against drug-sensitive and multidrug resistant human leukemia cells. Fitoter 2018;129:114–25. https://doi.org/10.1016/j.fitote.2018.06.009.Suche in Google Scholar PubMed

163. Kavatsurwa, SM, Lombe, BK, Feineis, D, Dibwe, DF, Maharaj, V, Awale, S, et al.. Ancistroyafungines A-D, 5,8′- and 5,1′-coupled naphthylisoquinoline alkaloids from a Congolese Ancistrocladus species, with antiausterity activities against human PANC-1 pancreatic cancer cells. Fitoter 2018;130:6–16. https://doi.org/10.1016/j.fitote.2018.07.017.Suche in Google Scholar PubMed

Published Online: 2020-12-11

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2019-0132/html?lang=de
Button zum nach oben scrollen