Startseite Synthesis and synthetic mechanism of Polylactic acid
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and synthetic mechanism of Polylactic acid

  • Xavier Montané ORCID logo EMAIL logo , Josep M. Montornes , Adrianna Nogalska , Magdalena Olkiewicz , Marta Giamberini , Ricard Garcia-Valls , Marina Badia-Fabregat , Irene Jubany und Bartosz Tylkowski
Veröffentlicht/Copyright: 11. April 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

At present, Polylactic acid (PLA) is one of the most used biodegradable polyesters. The good properties and its biodegradability make that PLA can replace the fossil fuel derived polymers in different applications. PLA can be synthesized by using different methodologies. Among them, the most widely used forms on an industrial scale are the direct polycondensation of Lactic acid and the ring-opening polymerization of cyclic Lactide. The final properties of the obtained PLA are dependent on the used stereoisomers of the raw materials (Lactic acid and/or Lactide) and the conditions employed to polymerize them. Therefore, the comprehension of the synthetic mechanism of PLA is crucial to control the stereoregularity of PLA, which in turn results in an improvement of the polymer properties. So, distinct mechanisms for the synthesis of PLA by ring-opening polymerization using different catalysts systems (organometallic catalysts, cationic catalyst, organic catalyst, bifunctional catalysts) are examined in this review.

Acknowledgements

We acknowledge EURECAT internal research program: Plan of Research and Innovation 2019 (PRI 2019) and ACCIÓ - Regional Agency for the Business Competitiveness of the Generalitat de Catalunya for financial support of Bioplace project.

References

[1] Bastioli C. Starch-based technology. In: Bastioli Catia, editor(s). Handbook of biodegradable polymers. Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK: Rapra Technology Limited, 2005:257–86.Suche in Google Scholar

[2] Zhu Y, Romain C, Williams CK. Sustainable polymers from renewable resources. Nature. 2016;540:354–62.10.1038/nature21001Suche in Google Scholar PubMed

[3] Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed. 2019;58:50–62.10.1002/anie.201805766Suche in Google Scholar PubMed

[4] Lee C, Sungyeap H. Ano overview of the synthesis and synthetic mechanism of poly (Lactic acid). Mod Chem Appl. 2014;2:1–5.Suche in Google Scholar

[5] Bertan LC, Tanada-Palmu PS, Siani AC, Grosso CR. Effect of fatty acids and “Barzilian elemí” on composite films base don gelatin. Food Hydrocoll. 2005;19:73–82.10.1016/j.foodhyd.2004.04.017Suche in Google Scholar

[6] Sabbagh F, Idayu I. Production of poly-hydroxyalkanoate as secondary metabolite with main focus on sustainable energy. Renew Sustain Energy Rev. 2017;72:95–104.10.1016/j.rser.2016.11.012Suche in Google Scholar

[7] Kumar S, Krishnan S, Mohanty S, Nayak SK. Synthesis and characterization of petroleum and biobased epoxy resins: a review. Polym Int. 2018;67:815–39.10.1002/pi.5575Suche in Google Scholar

[8] Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, et al. Recent trends in Lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sc. 2014;7:222–9.10.1016/j.jrras.2014.03.002Suche in Google Scholar

[9] Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advances in Lactic acid production by microbial fermentation processes. Biotechnol Adv. 2013;31:877–902.10.1016/j.biotechadv.2013.04.002Suche in Google Scholar PubMed

[10] Panesar PS, Kennedy JF, Gandhi DN, Bunko K. Bioutilisation of whey for Lactic acid production. Food Chem. 2007;105:1–14.10.1016/j.foodchem.2007.03.035Suche in Google Scholar

[11] Komesu A, Wolf Maciel MR, Maciel Filho R. Separation and purification technologies for Lactic acid – a brief review. Bioresources. 2017;12:6885–901.10.15376/biores.12.3.6885-6901Suche in Google Scholar

[12] Gorrasi G, Pantani R. Hydrolysis and biodegradation of Poly(lactic acid). Adv Polym Sci. 2018;279:119–52.10.1007/12_2016_12Suche in Google Scholar

[13] Thakur KA, Kean RT, Zupfer JM, Buehler NU, Doscotch MA, Munson EJ. Solid state 13C CP-MAS NMR studies of the crystallinity and morphology of poly-(L-lactide). Macromolecules. 1996;29:8841–51.10.1021/ma960828zSuche in Google Scholar

[14] Madhavan Nampoothiri K, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol. 2010;101:8493–501.10.1016/j.biortech.2010.05.092Suche in Google Scholar

[15] Södergard A, Stolt M. Properties of Lactic acid based polymers and their correlation with composition. Pro Polym Sci. 2002;27:1123–63.10.1016/S0079-6700(02)00012-6Suche in Google Scholar

[16] Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4:835–64.10.1002/mabi.200400043Suche in Google Scholar PubMed

[17] Inkinen S, Hakkarainen M, Albertsson AC, Södergård A. From Lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules. 2011;12:523–32.10.1021/bm101302tSuche in Google Scholar PubMed

[18] Hamad K, Kaseem M, Yang HW, Deri F, Ko YG. Properties and medical applications of Polylactic acid: a review. Express Polym Lett. 2015;9:435–55.10.3144/expresspolymlett.2015.42Suche in Google Scholar

[19] Ajioka M, Enemoto K, Suzuki K, Yamaguchi A. Basic properties of Polylactic acid produced by the direct condensation polymerization of Lactic acid. Bull Chem Soc Jpn. 1995;68:2125–31.10.1246/bcsj.68.2125Suche in Google Scholar

[20] Carothers WH, Dorough G, Natta FV. Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. J Am Chem Soc. 1932;54:761–72.10.1021/ja01341a046Suche in Google Scholar

[21] Kricheldorf HR, Berl M, Scharnagl N. Poly(lactones). 9. Polymerization mechanism of metal alkoxide initiated polymerizations of lactide and various lactones. Macromolecules. 1988;21:286–93.10.1021/ma00180a002Suche in Google Scholar

[22] Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide. Chem Rev. 2004;104:6147–76.10.1021/cr040002sSuche in Google Scholar PubMed

[23] Dove AP. Controlled ring-opening polymerisation of cyclic esters: polymer blocks in self-assembled nanostructures. Chem Commun. 2008;48:6446–70.10.1039/b813059kSuche in Google Scholar

[24] Penczek S, Szymanski R, Duda A, Baran J. Living polymerization of cyclic esters – a route to (bio)degradable polymers. Influence of chain transfer to polymer on livingness. Macromol Symp. 2003;201:261–9.10.1002/masy.200351129Suche in Google Scholar

[25] Nuyken O, Pask SD. Ring-opening polymerization – an introductory review. Polymers. 2013;5:361–403.10.3390/polym5020361Suche in Google Scholar

[26] Enemoto K, Ajioka M, Yamaguchi A. Polyhydroxycarboxylic acid and preparation process thereof. US Patent 5.310.865, 1994.Suche in Google Scholar

[27] Masutani K, Kimura Y. PLA synthesis. From the monomer to the polymer. In: Jimenez A, Peltzer M, Ruseckaite R, editor(s). Poly(lactic acid) science and technology: processing, properties, additives and applications. Cambridge: Royal Society of Chemistry, 2015:1–36.Suche in Google Scholar

[28] Kowalski A, Duda A, Penczek S. Mechanism of cyclic ester polymerization initiated with tin(II) octoate 2. Macromolecules fitted with tin(II) alkoxide species observed directly in MALDI-TOF spectra. Macromolecules. 2000;33:689–95.10.1021/ma9906940Suche in Google Scholar

[29] Kowalski A, Duda A, Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octanoate. 3. Polymerizaiton of L,L-dilactide. Macromolecules. 2000;33:7359–70.10.1021/ma000125oSuche in Google Scholar

[30] Drumright RE, Gruber PR. Polylactic acid technology. Adv Mater. 2000;12:1841–6.10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-ESuche in Google Scholar

[31] Byers JA, Biernesser AB, Delle Chiaie KR, Kaur A, Kehl JA. Catalytic systems for the production of Poly(lactic acid). Adv Polym Sci. 2018;279:67–118.10.1007/12_2017_20Suche in Google Scholar

[32] Wu J, Yu T-L, Chen C-T, Lin C-C. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coordin Chem Rev. 2006;250:602–62.10.1016/j.ccr.2005.07.010Suche in Google Scholar

[33] Williams CK, Breyfogle LE, Choi SK, Nam W, Young Jr VG, Hillmyer MA, et al. A highly active Zinc catalyst for the controlled polymerization of Lactide J Am Chem Soc. 2003;125:11350–9.10.1021/ja0359512Suche in Google Scholar

[34] McKeown P, McCormick SN, Mahona MF, Jones MD. Highly active Mg(II) and Zn(II) complexes for the ring opening polymerisation of lactide. Polym Chem. 2018;9:5339–47.10.1039/C8PY01369ASuche in Google Scholar

[35] Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EM, Coates GW. Polymerization of lactide with Zinc and magnesium b-Diiminate complexes: stereocontrol and mechanism. J Am Chem Soc. 2001;123:3229–38.10.1021/ja003851fSuche in Google Scholar

[36] O’Keefe BJ, Monnier SM, Hillmyer MA, Tolman WB. Rapid and controlled polymerization of lactide by structurally characterized ferric alkoxides. J Am Chem Soc. 2000;123:339–40.10.1021/ja003537lSuche in Google Scholar

[37] Hormnirun P, Marshall EL, Gibson VC, White AJ, Williams DJ. Remarkable stereocontrol in the polymerization of racemic lactide using aluminum initiators supported by tetradentate aminophenoxide ligands. J Am Chem Soc. 2004;126:2688–9.10.1021/ja038757oSuche in Google Scholar

[38] Jędrzkiewicz D, Czeluśniak I, Wierzejewska M, Szafert S, Ejfler J. Well-controlled, zinc-catalyzed synthesis of low molecular weight oligolactides by ring opening reaction. J Mol Catal A-Chem. 2015;396:155–63.10.1016/j.molcata.2014.10.007Suche in Google Scholar

[39] Nederberg F, Connor EF, Möller M, Glauser T, Hedrick JL. New paradigms for organic catalysts: the first organocatalytic living polymerization. Angew Chem Int Edit. 2001;40:2712–15.10.1002/1521-3773(20010716)40:14<2712::AID-ANIE2712>3.0.CO;2-ZSuche in Google Scholar

[40] Conner EF, Nyce GW, Myers M, Mock A, Hedrick JL. First example of N-heterocyclic carbenes as catalysts for living polymerization: organocatalytic ring-opening polymerization of cyclic esters. J Am Chem Soc. 2002;124:914–15.10.1021/ja0173324Suche in Google Scholar

[41] Dove AP, Pratt RC, Lohmeijer BG, Waymouth RM, Hedrick JL. Thiourea-based bifunctional organocatalysis: supramolecular recognition for living polymerization. J Am Chem Soc. 2005;127:13798–9.10.1021/ja0543346Suche in Google Scholar

[42] Dijkstra PJ, Du H, Feijen J. Single site catalysts for stereoselective ring-opening polymerization of lactides. Polym Chem. 2011;2:520–7.10.1039/C0PY00204FSuche in Google Scholar

[43] Spassky N, Wisniewski M, Pluta C, Le Borgne A. Highly stereoelective polymerization of rac-(D,L)-lactide with a chiral schiff’s base/aluminium alkoxide initiator. Macromol Chem Phys. 1996;197:2627–37.10.1002/macp.1996.021970902Suche in Google Scholar

[44] Ovitt TM, Coates GW. Stereochemistry of lactide polymerization with chiral catalysts: new opportunities for stereocontrol using polymer exchange mechanisms. J Am Chem Soc. 2002;124:1316–26.10.1021/ja012052+Suche in Google Scholar

Published Online: 2020-04-11

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2019-0102/html?lang=de
Button zum nach oben scrollen