Abstract
The most important types of non-collinear magnetic orders that are realized in simple perovskite oxides are outlined in relation to multiferroicity. These orders are classified and rationalized in terms of a mimimal spin Hamiltonian, based on which the notion of spin-driven ferroelectricity is illustrated. These concepts find direct application in reference materials such as BiFeO3, GdFeO3 and TbMnO3 whose multiferroic properties are briefly reviewed.
References
[1] Arima T-h. Spin-Driven Ferroelectricity and Magneto-Electric Effects in Frustrated Magnetic Systems. J Phys Soc Japan. 2011;80:052001.10.1143/JPSJ.80.052001Search in Google Scholar
[2] Bousquet E. Cano A. Non-collinear magnetism in multiferroic perovskites. J Phys: Condens Matter. 2016;28:123001.10.1088/0953-8984/28/12/123001Search in Google Scholar PubMed
[3] Davydova MD, Zvezdin KA, Mukhin AA, Zvezdin AK. Spin dynamics, antiferrodistortion and magnetoelectric interaction in multiferroics. The case of BiFeO3. Phys Sci Rev. 2020:20190070.10.1515/psr-2019-0070Search in Google Scholar
[4] Dong S, Liu J-M. Recent progress of multiferroic perovskite manganites. Mod Phys Lett B. 2012;26:30004.10.1142/S0217984912300049Search in Google Scholar
[5] Evans DM, Garcia V, Meier D, Bibes M. Domains and domain walls in multiferroics. Phys Sci Rev. 2020;5:20190067.10.1515/psr-2019-0067Search in Google Scholar
[6] Fiebig M, Lottermoser T, Meier D, Trassin M. The evolution of multiferroics. Nat Rev Mater. 2016;1:16046.10.1038/natrevmats.2016.46Search in Google Scholar
[7] Fontcuberta J. Multiferroic RMnO3 thin films. C R Phys. 2015;16:204–26.10.1016/j.crhy.2015.01.012Search in Google Scholar
[8] Krohns S, Lunkenheimer P. Ferroelectric polarization in multiferroics. Phys Sci Rev. 2019;4:20190015.10.1515/psr-2019-0015Search in Google Scholar
[9] Kurumaji T. Spiral spin structures and skyrmionsin multiferroics. Phys Sci Rev. 2019;5:20190016.10.1515/psr-2019-0016Search in Google Scholar
[10] Lottermoser T, Meier D. A short history of multiferroics. Phys Sci Rev. 2020, 000010151520200032, eISSN 2365-659X, ISSN 2365-6581, DOI: https://doi.org/10.1515/psr-2020-0032.10.1515/psr-2020-0032Search in Google Scholar
[11] Pyatakov AP, Zvezdin AK. Magnetoelectric and multiferroic media. Phys Uspekhi. 2012;55:557–81.10.3367/UFNe.0182.201206b.0593Search in Google Scholar
[12] Szaller D, Shuvaev A, Mukhin AA, Kuzmenko AM, Pimenov A. Controlling of light with electromagnons. Phys Sci Rev. 2019;5:20190055.10.1515/psr-2019-0055Search in Google Scholar
[13] Tokura Y, Seki S, Nagaosa N. Multiferroics of spin origin. Rep Prog Phys. 2014;77:076501.10.1088/0034-4885/77/7/076501Search in Google Scholar PubMed
[14] Varignon J, Bristowe NC, Bousquet E, Ghosez P. Magneto-electric multiferroics: designing new materials from first-principles calculations. Phys Sci Rev. 2019;5:20190069.Search in Google Scholar
[15] Sosnowska I, Neumaier TP, Steichele E. Spiral magnetic ordering in bismuth ferrite. J Phys C: Solid State Phys. 1982;15:4835–4846.10.1088/0022-3719/15/23/020Search in Google Scholar
[16] Johnson RD, Terada N, Radaelli PG. Comment on “spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3”. Phys Rev Lett. 2012;108:219701.10.1103/PhysRevLett.108.219701Search in Google Scholar PubMed
[17] Yamaguchi T, Tsushima K. Magnetic symmetry of rare-earth orthochromites and orthoferrites. Phys Rev B. 1973;8:5187–98.10.1103/PhysRevB.8.5187Search in Google Scholar
[18] Zvezdin A, Mukhin A. Magnetoelectric interactions and phase transitions in a new class of multiferroics with improper electric polarization. JETP Lett. 2008;88:505–10.10.1134/S0021364008200083Search in Google Scholar
[19] Holmes LM, Van Uitert LG. Magnetoelectric effect and metamagnetic transitions in dy alo3. Phys Rev B. 1972;5:147–153.10.1103/PhysRevB.5.147Search in Google Scholar
[20] Velleaud G, Mercier M. A new magnetoelectric compound: DyCoO3. Solid State Commun. 1975;17:237–9.10.1016/0038-1098(75)90051-4Search in Google Scholar
[21] Sergienko IA, S,en C, Dagotto E. Ferroelectricity in the magnetic e-phase of orthorhombic perovskites. Phys Rev Lett. 2006;97:227204.10.1103/PhysRevLett.97.227204Search in Google Scholar PubMed
[22] Lorenz B, Wang Y-Q, Chu C-W. Ferroelectricity in perovskite HoMno3 and YMno3. Phys Rev B. 2007;76:104405.10.1103/PhysRevB.76.104405Search in Google Scholar
[23] Kaplan TA. Frustrated classical Heisenberg model in one dimension with nearest-neighbor biquadratic exchange: exact solution for the groundstate phase diagram. Phys Rev B. 2009;80:012407.10.1103/PhysRevB.80.012407Search in Google Scholar
[24] Mochizuki M, Furukawa N, Nagaosa N. Spin model of magnetostrictions in multiferroic Mn perovskites. Phys Rev Lett. 2010;105:037205.10.1103/PhysRevLett.105.037205Search in Google Scholar PubMed
[25] Mochizuki M, Furukawa N, Nagaosa N. Theory of spin-phonon coupling in multiferroic manganese perovskites RMnO3. Phys Rev B. 2011;84:144409.10.1103/PhysRevB.84.144409Search in Google Scholar
[26] Cano A, Levanyuk AP. Pseudoproper ferroelectricity in thin films. Phys Rev B. 2010;81:172105.10.1103/PhysRevB.81.172105Search in Google Scholar
[27] Tolédano P. Pseudo-proper ferroelectricity and magnetoelectric effects in TbMnO3. Phys Rev B. 2009;79:094416.10.1103/PhysRevB.79.094416Search in Google Scholar
[28] Weingart C, Spaldin N, Bousquet E. Noncollinear magnetism and singleion anisotropy in multiferroic perovskites. Phys Rev B. 2012;86:094413.10.1103/PhysRevB.86.094413Search in Google Scholar
[29] Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids. 1958;4:241–55.10.1016/0022-3697(58)90076-3Search in Google Scholar
[30] Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev. 1960;120:91–8.10.1103/PhysRev.120.91Search in Google Scholar
[31] Sergienko IA, Dagotto E. Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys Rev B. 2006;73:094434.10.1103/PhysRevB.73.094434Search in Google Scholar
[32] Katsura H, Nagaosa N, Balatsky AV. Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett. 2005;95:057205.10.1103/PhysRevLett.95.057205Search in Google Scholar PubMed
[33] Bar’yakhtar VG, L’Vov VA, Yablonskiˇi DA. Inhomogeneous magnetoelectric effect. Sov J Exp Theor Phys Lett. 1983;37:673.Search in Google Scholar
[34] Cano A. Kats EI. Electromagnon excitations in modulated multiferroics. Phys Rev B. 2008;78:012104.10.1103/PhysRevB.78.012104Search in Google Scholar
[35] Mostovoy M. Ferroelectricity in spiral magnets. Phys Rev Lett. 2006;96:067601.10.1103/PhysRevLett.96.067601Search in Google Scholar PubMed
[36] Harris AB. Landau analysis of the symmetry of the magnetic structure and magnetoelectric interaction in multiferroics. Phys Rev B. 2007;76:054447.10.1103/PhysRevB.76.054447Search in Google Scholar
[37] Kaplan TA, Mahanti SD. Canted-spin-caused electric dipoles: a local symmetry theory. Phys Rev B. 2011;83:174432.10.1103/PhysRevB.83.174432Search in Google Scholar
[38] Cano A. Theory of electromagnon resonances in the optical response of spiral magnets. Phys Rev B. 2009;80:180416.10.1103/PhysRevB.80.180416Search in Google Scholar
[39] Cazayous M, Gallais Y, Sacuto A, de Sousa R, Lebeugle D, Colson D. Possible observation of cycloidal electromagnons in BiFeO3. Phys Rev Lett. 2008;101:037601.10.1103/PhysRevLett.101.037601Search in Google Scholar PubMed
[40] Katsura H, Balatsky AV, Nagaosa N. Dynamical magnetoelectric coupling in helical magnets. Phys Rev Lett. 2007;98:027203.10.1103/PhysRevLett.98.027203Search in Google Scholar PubMed
[41] Pimenov A, Mukhin AA, Ivanov VY, Travkin VD, Balbashov AM, Loidl A. Possible evidence for electromagnons in multiferroic manganites. Nat Phys. 2006;2:97–100.10.1038/nphys212Search in Google Scholar
[42] Valdés Aguilar R, Mostovoy M, Sushkov AB, Zhang CL, Choi YJ, Cheong S-W, et al. Origin of electromagnon excitations in multiferroic rMnO3. Phys Rev Lett. 2009;102:047203.10.1103/PhysRevLett.102.047203Search in Google Scholar PubMed
[43] Juraschek DM, Fechner M, Balatsky AV, Spaldin NA. Dynamical multiferroicity. Phys Rev Mater. 2017a;1:014401.Search in Google Scholar
[44] Narayan A, Cano A, Balatsky AV, Spaldin NA. Multiferroic quantum criticality. Nat Mater. 2019;18:223–8.10.1038/s41563-018-0255-6Search in Google Scholar PubMed
[45] Khomskii D. Classifying multiferroics: mechanisms and effects. Phys Online J. 2009;2:20.10.1103/Physics.2.20Search in Google Scholar
[46] Fishman RS. Field dependence of the spin state and spectroscopic modes of multiferroic BiFeO3. Phys Rev B. 2013;87:224419.10.1103/PhysRevB.87.224419Search in Google Scholar
[47] Lebeugle D, Colson D, Forget A, Viret M, Bataille AM, Gukasov A. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys Rev Lett. 2008;100:227602.10.1103/PhysRevLett.100.227602Search in Google Scholar PubMed
[48] Nagel U, Fishman RS, Katuwal T, Engelkamp H, Talbayev D, Yi HT, et al. Terahertz spectroscopy of spin waves in multiferroic BiFeO3 in high magnetic fields. Phys Rev Lett. 2013;110:257201.10.1103/PhysRevLett.110.257201Search in Google Scholar PubMed
[49] Rahmedov D, Wang D, Íñniguez J, Bellaiche L. Magnetic cycloid of BiFeO3 from atomistic simulations. Phys Rev Lett. 2012;109: 037207.10.1103/PhysRevLett.109.037207Search in Google Scholar PubMed
[50] Ramazanoglu M, Laver M, Ratcliff W, Watson SM, Chen WC, Jackson A, et al. Local weak ferromagnetism in single-crystalline ferroelectric BiFeO3. Phys Rev Lett. 2011;107:207206.10.1103/PhysRevLett.107.207206Search in Google Scholar PubMed
[51] Zvezdin AK, Pyatakov AP. On the problem of coexistence of the weak ferromagnetism and the spin flexoelectricity in multiferroic bismuth ferrite. EPL (Europhys Lett) 2012;99:57003–.10.1209/0295-5075/99/57003Search in Google Scholar
[52] Moubah R, Elzo M, El Moussaoui S, Colson D, Jaouen N, Belkhou R, et al. Direct imaging of both ferroelectric and antiferromagnetic domains in multiferroic BiFeO3 single crystal using x-ray photoemission electron microscopy. Appl Phys Lett. 2012;100:042406.10.1063/1.3679101Search in Google Scholar
[53] Moskvin AS, Bostrem IG. Special features of the exchange interactions in orthoferrite–orthochromites. Fiz Tverd Tela (Leningrad) 1977;19:2616–26.Search in Google Scholar
[54] Moskvin AS, Sinitsyn EV. Antisymmetric exchange and four-sublattice model of orthoferrites. Fiz Tverd Tela. 1975;17:2495–7.Search in Google Scholar
[55] Catalan G, Scott JF. Physics and applications of bismuth ferrite. Adv Mater. 2009;21:2463–85.10.1002/adma.200802849Search in Google Scholar
[56] Ruette B, Zvyagin S, Pyatakov AP, Bush A, Li JF, Belotelov VI, et al. Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys Rev B. 2004;69:064114.10.1103/PhysRevB.69.064114Search in Google Scholar
[57] Sando DE. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat Mat. 2013;12:641.10.1038/nmat3629Search in Google Scholar PubMed
[58] Chen P, Grisolia MN, Zhao HJ, González-Vázquez OE, Bellaiche L, Bibes M, et al. Energetics of oxygen-octahedra rotations in perovskite oxides from first principles. Phys Rev B. 2018;97:024113.10.1103/PhysRevB.97.024113Search in Google Scholar
[59] Bertaut EF. Symetrie cristalline et faible ferromagnetisme. J Phys Radium. 1961;22:839–41.10.1051/jphysrad:019610022012083901Search in Google Scholar
[60] Bertaut EF. Magnetism, vol. 3. Academic Press Inc, 1963.Search in Google Scholar
[61] Bousquet E, Spaldin NA, Induced magnetoelectric response in pnma perovskites. Phys Rev Lett. 2011;107:197603.10.1103/PhysRevLett.107.197603Search in Google Scholar PubMed
[62] Günter T, Bousquet E, David A, Boullay P, Ghosez P, Prellier W, et al. Incipient ferroelectricity in 2.3% tensile-strained CaMnO3 films. Phys Rev B. 2012;85:214120.10.1103/PhysRevB.85.214120Search in Google Scholar
[63] Zhao HJ, Grisolia MN, Yang Y, Íñiguez J, Bibes M, Chen XM, et al. Magnetoelectric effects via pentalinear interactions. Phys Rev B. 2015;92:235133.10.1103/PhysRevB.92.235133Search in Google Scholar
[64] Varignon J, Bristowe N, Bousquet E, Ghosez P. Magneto-electric multiferroics: Designing new materials from first-principles calculations. Phys Sci Rev. 2020;5 (2), 2365–659X, DOI: https://doi.org/10.1515/psr-2019-0069.10.1515/psr-2019-0069Search in Google Scholar
[65] Benedek NA, Fennie CJ. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys Rev Lett. 2011;106:107204.10.1103/PhysRevLett.106.107204Search in Google Scholar PubMed
[66] Benedek NA, Mulder AT, Fennie CJ. Polar octahedral rotations: a path to new multifunctional materials. J Solid State Chem. 2012;195:11–20. Polar Inorganic Materials: Design Strategies and Functional Properties.10.1016/j.jssc.2012.04.012Search in Google Scholar
[67] Bristowe NC, Varignon J, Fontaine D, Bousquet E, Ghosez P. Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites. Nat Commun. 2015;6:6677.10.1038/ncomms7677Search in Google Scholar PubMed PubMed Central
[68] Song N, Rondinelli JM, Kim BG. Noncentrosymmetric structural transitions in ultrashort ferroelectric aGaO3~A'GaO3 superlattices. Phys Rev B. 2015;91:134104.10.1103/PhysRevB.91.134104Search in Google Scholar
[69] Rondinelli JM, Fennie CJ. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv. Mater. 2012;24: 1961–8.10.1002/adma.201104674Search in Google Scholar PubMed
[70] Zanolli Z, Wojde l JC, Íñiguez J, Ghosez P. Electric control of the magnetization in BiFeO3/LaFeO3 superlattices. Phys Rev B. 2013;88:060102.10.1103/PhysRevB.88.060102Search in Google Scholar
[71] Xu B, Wang D, Zhao HJ, Íñiguez J, Chen XM, Bellaiche L. Hybrid improper ferroelectricity in multiferroic superlattices: finite-temperature properties and electric-field-driven switching of polarization and magnetization. Adv Funct Mater 2015;25:3626–33.10.1002/adfm.201501113Search in Google Scholar
[72] Zhao HJ, Bellaiche L, Chen XM, Íñiguez J. Improper electric polarization in simple perovskite oxides with two magnetic sublattices. Nat Commun. 2017;8:1–11.10.1038/ncomms14025Search in Google Scholar PubMed PubMed Central
[73] Treves D. Studies on orthoferrites at the Weizmann Institute of Science. J Appl Phys. 1965;36:1033–9.10.1063/1.1714088Search in Google Scholar
[74] Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima T-H, Tokura Y. Composite domain walls in a multiferroic perovskite ferrite. Nat Mater. 2009;8:558–62.10.1038/nmat2469Search in Google Scholar PubMed
[75] Panchwanee A, Upadhyay SK, Lalla NP, Sathe VG, Gupta A, Reddy VR. Low-temperature Raman, high magnetic field 57Fe Mössbauer, and X-ray diffraction study of magnetodielectric coupling in polycrystalline GdFeO3. Phys Rev B. 2019;99:064433.10.1103/PhysRevB.99.064433Search in Google Scholar
[76] Gorodetsky G, Sharon B, Shtrikman S. Magnetic properties of an antiferromagnetic orthoferrite. J Appl Phys. 1968;39:1371–2.10.1063/1.1656309Search in Google Scholar
[77] Morin FJ. Magnetic susceptibility of αFe2O3 and αFe2O3 with added titanium. Phys Rev. 1950;78:819–20.10.1103/PhysRev.78.819.2Search in Google Scholar
[78] Zhao HJ,WRen, Y Yang,Íñiguez J, Chen XM, Bellaiche L., Near room-temperature multiferroic materials with tunable ferromagnetic and electrical properties, Nat Commun. 2014;5:4021.10.1038/ncomms5021Search in Google Scholar PubMed
[79] Tokunaga Y, Iguchi S, Arima T, Tokura Y. Magnetic-field-induced ferroelectric state in DyFeO3. Phys Rev Lett. 2008;101:097205.10.1103/PhysRevLett.101.097205Search in Google Scholar PubMed
[80] Johnson C, Prelorendjo L, Thomas M. Field induced spin reorientation in orthoferrites DyFeO3, HoFeO3 and ErFeO3. J Magn Magn Mater. 1980;15–18:557–8.10.1016/0304-8853(80)90662-9Search in Google Scholar
[81] Stroppa A, Marsman M, Kresse G, Picozzi S. The multiferroic phase of DyFeO3: an ab initio study. New J Phys. 2010;12:093026.10.1088/1367-2630/12/9/093026Search in Google Scholar
[82] Khim T-Y, Eom MJ, Kim JS, Park B-G, Kim J-Y, Park J-H. Strain control spin reorientation transition in DyFeO3/SrTiO3 epitaxial film. Appl Phys Lett. 2011;99:072501.10.1063/1.3623756Search in Google Scholar
[83] Rajeswaran B, Khomskii DI, Zvezdin AK, Rao CNR, Sundaresan A. Fieldinduced polar order at the néel temperature of chromium in rare-earth orthochromites: interplay of rare-earth and CR magnetism. Phys Rev B. 2012;86:214409.10.1103/PhysRevB.86.214409Search in Google Scholar
[84] Sahu JR, Serrao CR, Ray N, Waghmare UV, Rao CN. Rare earth chromites: a new family of multiferroics. J Mater Chem. 2007;17:42–4.10.1039/B612093HSearch in Google Scholar
[85] Serrao CR, Kundu AK, Krupanidhi SB,Waghmare UV, Rao CN. Biferroic YCro3. Phys Rev B. 2005;72:220101.10.1103/PhysRevB.72.220101Search in Google Scholar
[86] Ghosh A, Dey K, Chakraborty M, Majumdar S, Giri S. Polar octahedral rotations, cation displacement and ferroelectricity in multiferroic Sm- CrO3. EPL (Europhys Lett) 2014;107:47012.10.1209/0295-5075/107/47012Search in Google Scholar
[87] Saha R, Sundaresan A, Rao CN. Novel features of multiferroic and magnetoelectric ferrites and chromites exhibiting magnetically driven ferroelectricity. Mater. Horiz. 2014;1:20–31.10.1039/C3MH00073GSearch in Google Scholar
[88] Mercy A, Bieder J, Iniguez J, Ghosez P. Structurally triggered metalinsulator transition in rare-earth nickelates. Nat Commun 2017;8:1677.10.1038/s41467-017-01811-xSearch in Google Scholar PubMed PubMed Central
[89] Zhang Y, Schmitt MM, Mercy A, Wang J, Ghosez P. From charge- to orbital-ordered metal-insulator transition in alkaline-earth ferrites. Phys Rev B. 2018;98:081108.10.1103/PhysRevB.98.081108Search in Google Scholar
[90] Hepting M, Minola M, Frano A, Cristiani G, Logvenov G, Schierle E, et al. Tunable charge and spin order in PrNiO3 thin films and superlattices. Phys. Rev. Lett. 2014;113:227206.10.1103/PhysRevLett.113.227206Search in Google Scholar PubMed
[91] Catalan G. Progress in perovskite nickelate research. Phase Transitions. 2008;81:729–49.10.1080/01411590801992463Search in Google Scholar
[92] Giovannetti G, Kumar S, Khomskii D, Picozzi S, van den Brink J. Multiferroicity in rare-earth nickelates rNiO3. Phys. Rev. Lett. 2009;103:156401.10.1103/PhysRevLett.103.037601Search in Google Scholar PubMed
[93] Kumar D, Rajeev KP, Alonso JA, Martínez-Lope MJ. Spin-canted magnetism and decoupling of charge and spin ordering in NdNiO3. Phys Rev B. 2013;88:014410.10.1103/PhysRevB.88.014410Search in Google Scholar
[94] da Silveira Lacerda LH, de Lazaro SR. Improvement of multiferroic property and change of magnetic ordering in new ANiO3 (A=Ti, Ge, Zr, Sn, Hf and Pb). Comput Mater Sci. 2018;153:228–34.10.1016/j.commatsci.2018.06.040Search in Google Scholar
[95] Ding L, Manuel P, Khalyavin DD, Orlandi F, Kumagai Y, Oba F, et al. Unusual magnetic structure of the high-pressure synthesized perovskites ACrO3 (A=Sc, In, Tl). Phys Rev B. 2017;95:054432.10.1103/PhysRevB.95.054432Search in Google Scholar
[96] Wang S,Wu X,Wang T, Zhang J, Zhang C, Yuan L, et al. Mild hydrothermal crystallization of heavy rare-earth chromite ReCrO3 (Re= Er, Tm, Yb, Lu) perovskites and magnetic properties. Inorg Chem. 2019;58:2315– 29.10.1021/acs.inorgchem.8b02596Search in Google Scholar PubMed
[97] Zákutná D, Vlček J, Fitl P, Nemkovski K, Honecker D, Niiòanský D, et al. Noncollinear magnetism in nanosized cobalt chromite. Phys Rev B. 2018;98:064407.10.1103/PhysRevB.98.064407Search in Google Scholar
[98] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. Magnetic control of ferroelectric polarization. Nature (London) 2003;426:55.10.1038/nature02018Search in Google Scholar PubMed
[99] Mochizuki M, Furukawa N. Theory of magnetic switching of ferroelectricity in spiral magnets. Phys Rev Lett. 2010;105:187601.10.1103/PhysRevLett.105.187601Search in Google Scholar PubMed
[100] Goto T, Yamasaki Y, Watanabe H, Kimura T, Tokura Y. Anticorrelation between ferromagnetism and ferroelectricity in perovskite manganites. Phys Rev B. 2005;72:220403.10.1103/PhysRevB.72.220403Search in Google Scholar
[101] Harris AB. Ferroelectricity induced by incommensurate magnetism (invited). J Appl Phys. 99, 08E303 (2006).10.1063/1.2177392Search in Google Scholar
[102] Kenzelmann M, Harris AB, Jonas S, Broholm C, Schefer J, Kim SB, Zhang CL, Cheong SW, Vajk OP, Lynn JW. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. Phys Rev Lett. 2005;95:087206.10.1103/PhysRevLett.95.087206Search in Google Scholar PubMed
[103] Ribeiro JL, Vieira LG. Landau model for the phase diagrams of the orthorhombic rare-earth manganites rMnO3 (r = Eu, Gd, Tb, Dy, Ho). Phys Rev B. 2010;82:064410.10.1103/PhysRevB.82.064410Search in Google Scholar
[104] Furukawa N, Mochizuki M. Roles of bond alternation in magnetic phase diagram of RMnO3. J Phys Soc J. 2010;79:033708.10.1143/JPSJ.79.033708Search in Google Scholar
[105] Hu CD. Relationship between ferroelectricity and Dzyaloshinskii–Moriya interaction in multiferroics and the effect of bond-bending. Phys Rev B. 2008;77:174418.10.1103/PhysRevB.77.174418Search in Google Scholar
[106] Mochizuki M, Furukawa N. Mechanism of lattice-distortion-induced electric-polarization flop in the multiferroic perovskite manganites. J Phys Soc Japan 2009a;78:053704.10.1143/JPSJ.78.053704Search in Google Scholar
[107] Mochizuki M, Furukawa N. Microscopic model and phase diagrams of the multiferroic perovskite manganites. Phys Rev B. 2009b;80:134416.10.1103/PhysRevB.80.134416Search in Google Scholar
[108] Fedorova NS, Ederer C, Spaldin NA, Scaramucci A. Biquadratic and ring exchange interactions in orthorhombic perovskite manganites. Phys Rev B. 2015;91:165122.10.1103/PhysRevB.91.165122Search in Google Scholar
[109] Malashevich A, Vanderbilt D. First principles study of improper ferroelectricity in TbMnO3. Phys Rev Lett. 2008;101:037210.10.1103/PhysRevLett.101.037210Search in Google Scholar PubMed
[110] Malashevich A, Vanderbilt D. Dependence of electronic polarization on octahedral rotations in TbMnO3 from first principles. Phys Rev B. 2009;80:224407.10.1103/PhysRevB.80.224407Search in Google Scholar
[111] Xiang HJ, Wei S-H, Whangbo M-H, Da Silva JL. Spin–orbit coupling and ion displacements in multiferroic TbMnO3. Phys Rev Lett. 2008;101:037209.10.1103/PhysRevLett.101.037209Search in Google Scholar PubMed
[112] Levanyuk AP, Sannikov DG. Reviews of topical problems: improper ferroelectrics. Sov Phys Uspekhi. 1974;17:199–214.10.1070/PU1974v017n02ABEH004336Search in Google Scholar
[113] Aliouane N, Prokhnenko O, Feyerherm R, Mostovoy M, Strempfer J, Habicht K, Rule KC, et al. Magnetic order and ferroelectricity in RmnO3 multiferroic manganites: coupling between R- and MN-spins. J Phys: Condens Matter 2008;20:434215.10.1088/0953-8984/20/43/434215Search in Google Scholar
[114] Kajimoto R, Yoshizawa H, Shintani H, Kimura T, Tokura Y. Magnetic structure of TbMnO3 by neutron diffraction. Phys Rev B. 2004;70:012401.10.1103/PhysRevB.70.219904Search in Google Scholar
[115] Quezel S, Tcheou F, Rossat-Mignod J, Quezel G, Roudaut E. Magnetic structure of the perovskite-like compound TbMnO3. Phys B+C 1977;86:916–8.10.1016/0378-4363(77)90740-9Search in Google Scholar
[116] Jang H, Lee J-S, Ko K-T, Noh W-S, Koo TY, Kim J-Y, et al. Coupled magnetic cycloids in multiferroic TbMnO3 and Eu3~4Y1~4MnO3. Phys Rev Lett. 2011;106:047203.10.1103/PhysRevLett.106.047203Search in Google Scholar PubMed
[117] Mannix D, McMorrow DF, Ewings RA, Boothroyd AT, Prabhakaran D, Joly Y, et al. X-ray scattering study of the order parameters in multiferroic TbMno3. Phys Rev B. 2007;76:184420.10.1103/PhysRevB.76.184420Search in Google Scholar
[118] Wilkins SB, Forrest TR, Beale TA, Bland SR, Walker HC, Mannix D, et al. Nature of the magnetic order and origin of induced ferroelectricity in TbMnO3. Phys Rev Lett. 2009;103:207602.10.1103/PhysRevLett.103.207602Search in Google Scholar PubMed
[119] Walker HC, Fabrizi F, Paolasini L, de Bergevin F, Herrero-Martin J, Boothroyd AT, et al. Femtoscale magnetically induced lattice distortions in multiferroic TbMnO3. Science 2011;333:1273–6.10.1126/science.1208085Search in Google Scholar PubMed
[120] Aliouane N, Argyriou DN, Strempfer J, Zegkinoglou I, Landsgesell S, Zimmermann MV. Field-induced linear magnetoelastic coupling in multiferroic tbmno3. Phys Rev B 2006;73:020102.10.1103/PhysRevB.73.020102Search in Google Scholar
[121] Aliouane N, Schmalzl K, Senff D, Maljuk A, Prokeš K, Braden M. Flop of electric polarization driven by the flop of the mn spin cycloid in multiferroic TbMnO3. Phys Rev Lett. 2009;102:207205.10.1103/PhysRevLett.102.207205Search in Google Scholar PubMed
[122] Argyriou DN, Aliouane N, Strempfer J, Zegkinoglou I, Bohnenbuck B, Habicht K, Zimmermann MV. Melting of incommensurate-ferroelectric phase with magnetic field in multiferroic TbMnO3. Phys Rev B. 2007;75:020101.10.1103/PhysRevB.75.020101Search in Google Scholar
[123] Kimura T, Lawes G, Goto T, Tokura Y, Ramirez AP. Magnetoelectric phase diagrams of orthorhombic rMnO3 (r = Gd, Tb, and Dy). Phys Rev B. 2005;71:224425.10.1103/PhysRevB.71.224425Search in Google Scholar
[124] Aoyama T, Yamauchi K, Iyama A, Picozzi S, Shimizu T, Kimura K. Giant spin-driven ferroelectric polarization in TbMnO3 under high pressure. Nat Commun. 2014;5:4927.10.1038/ncomms5927Search in Google Scholar PubMed
[125] Aupiais I, Mochizuki M, Sakata H, Grasset R, Gallais Y, Sacuto A, et al. Colossal electromagnon excitation in the non-cycloidal phase of TbMnO3 under pressure. NPJ Q Mater. 2018;3:60.10.1038/s41535-018-0130-3Search in Google Scholar
[126] Goto T, Kimura T, Lawes G, Ramirez AP, Tokura Y. Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys Rev Lett. 2004;92:257201.10.1103/PhysRevLett.92.257201Search in Google Scholar PubMed
[127] Feyerherm R, Dudzik E, Aliouane N, Argyriou DN. Commensurate dy magnetic ordering associated with incommensurate lattice distortion in multiferroic DyMnO3. Phys Rev B. 2006;73:180401.10.1103/PhysRevB.73.180401Search in Google Scholar
[128] Prokhnenko O, Feyerherm R, Dudzik E, Landsgesell S, Aliouane N, Chapon LC, et al. Enhanced ferroelectric polarization by induced dy spin order in multiferroic DyMnO3. Phys Rev Lett. 2007;98:057206.10.1103/PhysRevLett.98.057206Search in Google Scholar PubMed
[129] Feyerherm R, Dudzik E, Prokhnenko O, Argyriou DN. Rare earth magnetism and ferroelectricity in rMnO3. J Phys: Conf Ser. 2010;200:012032.10.1088/1742-6596/200/1/012032Search in Google Scholar
[130] Lu C, Dong S, Xia Z, Luo H, Yan Z, Wang H, et al. Polarization enhancement and ferroelectric switching enabled by interacting magnetic structures in DyMnO3 thin films. Sci Rep. 2013;3:3374.10.1038/srep03374Search in Google Scholar PubMed PubMed Central
[131] Zhang N, Dong S, Liu J-M. Ferroelectricity generated by spin-orbit and spin-lattice couplings in multiferroic DyMnO3. Front Phys. 2012;7:408–17.10.1007/s11467-011-0225-9Search in Google Scholar
[132] Aoyama T, Iyama A, Shimizu K, Kimura T. Multiferroicity in orthorhombic rMnO3 (r = Dy, Tb, and Gd) under high pressure. Phys Rev B 2015;91:081107.10.1103/PhysRevB.91.081107Search in Google Scholar
[133] Arima T, Goto T, Yamasaki Y, Miyasaka S, Ishii K, Tsubota M, Inami T, Murakami Y, Tokura Y. Magnetic-field-induced transition in the lattice modulation of colossal magnetoelectric GdMnO3 and TbMnO3 compounds. Phys Rev B. 2005;72:100102.10.1103/PhysRevB.72.100102Search in Google Scholar
[134] Ferreira WS, Agostinho Moreira J, Almeida A, Chaves MR, Aráujo JP, Oliveira JB, et al. Spin–phonon coupling and magnetoelectric properties: EuMnO3 versus GdMnO3. Phys Rev B. 2009;79:054303.10.1103/PhysRevB.79.054303Search in Google Scholar
[135] Feyerherm R, Dudzik E, Wolter AU, Valencia S, Prokhnenko O, Maljuk A, et al. Magnetic-field induced effects on the electric polarization in rMnO3(r = Dy,Gd). Phys Rev B. 2009;79:134426.10.1103/PhysRevB.79.134426Search in Google Scholar
[136] Skaugen A, Shukla DK, Feyerherm R, Dudzik E, Islam Z, Strempfer J. Magnetic order in GdMnO3 in magnetic fields. J Phys: Conf Ser. 2014;519:012007.10.1088/1742-6596/519/1/012007Search in Google Scholar
[137] Yamasaki Y, Sagayama H, Abe N, Arima T, Sasai K, Matsuura M, et al. Cycloidal spin order in the a-axis polarized ferroelectric phase of orthorhombic perovskite manganite. Phys Rev Lett. 2008;101:097204.10.1103/PhysRevLett.101.097204Search in Google Scholar PubMed
[138] Hemberger J, Schrettle F, Pimenov A, Lunkenheimer P, Ivanov VY, Mukhin AA, et al. Multiferroic phases of Eu1−xYxMnO3. Phys Rev B. 2007;75:035118.10.1103/PhysRevB.75.035118Search in Google Scholar
[139] Ivanov VY, Mukhin AA, Travkin VD, Prokhorov AS, Kadomtseva AM, Popov YF, et al. Magnetic, dielectric and magnetoelectric properties of new family of orthorhombic multiferroic Eu1−xYxMNO3 manganites. J Magn Magn Mater. 2006;300:130.10.1016/j.jmmm.2005.10.165Search in Google Scholar
[140] Tokunaga M, Yamasaki Y, Onose Y, Mochizuki M, Furukawa N, Tokura Y. Novel multiferroic state of Eu1−xyxMnO3 in high magnetic fields. Phys Rev Lett. 2009;103:187202.10.1103/PhysRevLett.103.187202Search in Google Scholar PubMed
[141] Kadomtseva A, Popov Y, Vorobev G, Ivanov V, Mukhin A, Balbashov A. Specific features of the magnetic field-induced orientational transition in EuMnO3. J Exp Theor Phys Lett. 2005;81:590–3.10.1134/1.2029951Search in Google Scholar
[142] Qiu R, Bousquet E, Cano A. Pressure-induced insulator–metal transition in EuMnO3. J Phys: Condens Matter. 2017;29:305801.10.1088/1361-648X/aa75beSearch in Google Scholar PubMed
[143] Chen CT, Lin BN, Hsu YY, Liao JD, Cheng WH, Lin CY, et al. Anomalous variation of a-type antiferromagnetic order and two-dimensional ferromagnetic fluctuation in orbital-ordered La1−xEuxMnO3. Phys Rev B. 2003;67:214424.10.1103/PhysRevB.67.214424Search in Google Scholar
[144] Danjoh S, Jung J-S, Nakamura H, Wakabayashi Y, Kimura T. Anomalous induction of ferroelectric polarization by magnetization reversal in the phase-separated multiferroic manganite Eu0.8Y0.2MnO3. Phys Rev B. 2009;80:180408.10.1103/PhysRevB.80.180408Search in Google Scholar
[145] Ishiwata S, Kaneko Y, Tokunaga Y, Taguchi Y, Arima T-h, Tokura Y. Perovskite manganites hosting versatile multiferroic phases with symmetric and antisymmetric exchange strictions. Phys Rev B. 2010;81:100411.10.1103/PhysRevB.81.100411Search in Google Scholar
[146] Ivanov VY, Mukhin AA, Glushkov VV, Balbashov AM. Spontaneous reorientation of the electric polarization in Eu1−xHoxMnO3 multiferroics. Sov J Exp Theor Phys Lett. 2013;97:28–33.10.1134/S0021364013010037Search in Google Scholar
[147] Kalvius GM, Litterst FJ, Hartmann O, Wäppling R, Krimmel A, Mukhin AA, Balbashov AM, Loidl A. Magnetic properties of the multiferroic compounds Eu1−xYxMnO3 (x = 0.2 and 0.3). J Phys Conf Ser. 2014;551:012014.10.1088/1742-6596/551/1/012014Search in Google Scholar
[148] Ku H, Chen C, Lin B. A-type antiferromagnetic order, 2d ferromagnetic fluctuation and orbital order in stoichiometric La1−xEuxMnO3. J Magn Magn Mater. 2004;272 276:85–87. Proceedings of the International Conference on Magnetism (ICM 2003).10.1016/j.jmmm.2003.11.091Search in Google Scholar
[149] Moreira JA, Almeida A, Ferreira WS, Chaves MR, Kundys B, Ranjith R. Polar properties of Eu0.6Y0.4MnO3 ceramics and their magnetic field dependence. J Phys: Condens Matter 2009;21:446002.10.1088/0953-8984/21/44/446002Search in Google Scholar PubMed
[150] Noda K, Akaki M, Kikuchi T, Akahoshi D, Kuwahara H. Magneticfield- induced switching between ferroelectric phases in orthorhombicdistortion- controlled RMnO3. J Appl Phys. 2006;99:080000.10.1063/1.2177207Search in Google Scholar
[151] Oliveira J, Moreira JA, Almeida A, Chaves MR, da Silva JM, Oliveira JB, et al. Phase diagram of the orthorhombic, lightly lutetium doped EuMnO3 magnetoelectric system. Phys Rev B. 2011;84:094414.10.1103/PhysRevB.84.094414Search in Google Scholar
[152] Pimenov A, Loidl A, Mukhin AA, Travkin VD, Ivanov VY, Balbashov AM. Terahertz spectroscopy of electromagnons in Eu1−xYxMnO3. Phys Rev B. 2008;77:014438.10.1103/PhysRevB.77.014438Search in Google Scholar
[153] Tadokoro Y, Shan YJ, Nakamura T, Nakamura S. Crystal structure and characterizations of perovskite oxides (Eu1−xSrx)MnO3 (0.0≤x≤0.5). Solid State Ionics. 1998;108:261–7.10.1016/S0167-2738(98)00048-4Search in Google Scholar
[154] Tokunaga M, Katakura I, Yamasaki Y, Onose Y, Tokura Y. High-field study of multiferroic properties in orthorhombic Eu1−xYxMnO3. J Phys: Conf Ser. 2009;150:042212.10.1088/1742-6596/150/4/042212Search in Google Scholar
[155] Troyanchuk I, Samsonenko N, Szymczak H, Nabialek A. Magnetic study of the Ca1−xEuxMnO3(0≤x≤1) perovskites. J Solid State Chem. 1997;131:144–9.10.1006/jssc.1997.7369Search in Google Scholar
[156] Yamasaki Y, Miyasaka S, Goto T, Sagayama H, Arima T, Tokura Y. Ferroelectric phase transitions of 3d-spin origin in Eu1−xYxMnO3. Phys Rev B. 2007;76:184418.10.1103/PhysRevB.76.184418Search in Google Scholar
[157] Issing S, Pimenov A, Ivanov VY, Mukhin AA, Geurts J. Compositiondependent spin-phonon coupling in mixed crystals of the multiferroic manganite Eu1−xYxMnO3 (0 ≤ x ≤ 0.5) studied by raman spectroscopy. Phys Rev B. 2010;81: 024304.10.1103/PhysRevB.81.024304Search in Google Scholar
[158] Murakawa H, Onose Y, Kagawa F, Ishiwata S, Kaneko Y, Tokura Y. Rotation of an electric polarization vector by rotating magnetic field in cycloidal magnet Eu0.55Y0.45MnO3. Phys Rev Lett. 2008;101:197207.10.1103/PhysRevLett.101.197207Search in Google Scholar PubMed
[159] Skaugen A, Schierle E, van der Laan G, Shukla DK, Walker HC, Weschke E, et al. Long-range antiferromagnetic order of formally nonmagnetic Eu3+ van vleck ions observed in multiferroic Eu1−xYxMnO3. Phys Rev B. 2015;91:180409.10.1103/PhysRevB.91.180409Search in Google Scholar
[160] Lorenz B, Wang YQ, Sun YY, Chu CW. Large magnetodielectric effects in orthorhombic HoMnO3 and YMnO3. Phys Rev B. 2004;70:212412.10.1103/PhysRevB.70.212412Search in Google Scholar
[161] Muñoz A, Casáis MT, Alonso JA, Martínez-Lope MJ, Martínez JL, Fernández-Díaz MT. Complex magnetism and magnetic structures of the metastable HoMnO3 perovskite. Inorg Chem. 2001;40:1020–8.10.1021/ic0011009Search in Google Scholar
[162] Feng SM, Chai YS, Zhu JL, Manivannan N, Oh YS, Wang LJ, et al. Determination of the intrinsic ferroelectric polarization in orthorhombic HoMnO3. New J Phys. 2010;12:073006.10.1088/1367-2630/12/7/073006Search in Google Scholar
[163] Okamoto H, Imamura N, Hauback BC, Karppinen M, Yamauchi H, Fjellvåg H. Neutron powder diffraction study of crystal and magnetic structures of orthorhombic LuMnO3. Solid State Commun. 2008;146:152–6.10.1016/j.ssc.2008.01.036Search in Google Scholar
[164] Pomjakushin VY, Kenzelmann M, Dönni A, Harris AB, Nakajima T, Mitsuda S, et al. Evidence for large electric polarization from collinear magnetism in TmMnO3. New J Phys. 2009;11:043019.10.1088/1367-2630/11/4/043019Search in Google Scholar
[165] Garganourakis M, Bodenthin Y, de Souza RA, Scagnoli V, Dönni A, Tachibana M, et al. Magnetic and electronic orderings in orthorhombic rMnO3 (r = Tm, Lu) studied by resonant soft x-ray powder diffraction. Phys Rev B. 2012;86:054425.10.1103/PhysRevB.86.054425Search in Google Scholar
[166] Glavic A, Becher C, Voigt J, Schierle E, Weschke E, Fiebig M, et al. Stability of spin-driven ferroelectricity in the thin-film limit: coupling of magnetic and electric order in multiferroic TbMnO3 films. Phys Rev B. 2013;88:054401.10.1103/PhysRevB.88.054401Search in Google Scholar
[167] Glavic A, Voigt J, Persson J, Su Y, Schubert J, de Groot J, et al. High quality TbMnO3 films deposited on YAlO3. J Alloys Compd. 2011;509:5061–3.10.1016/j.jallcom.2011.03.015Search in Google Scholar
[168] Mukherjee S, Shimamoto K, Windsor YW, Ramakrishnan M, Parchenko S, Staub U, et al. Multiferroic phase diagram of e-type rMnO3 films studied by neutron and x-ray diffraction. Phys Rev B. 2018;98:174416.10.1103/PhysRevB.98.174416Search in Google Scholar
[169] Li X, Lu C, Dai J, Dong S, Chen Y, Hu N, et al. Novel multiferroicity in GdMnO3 thin films with self-assembled nano-twinned domains. Sci Rep. 2014;4:7019.10.1038/srep07019Search in Google Scholar PubMed PubMed Central
[170] Fina I, Fàbrega L, Martí X, Sánchez F, Fontcuberta J. Magnetic switch of polarization in epitaxial orthorhombic YMnO3 thin films. Appl Phys Lett. 2010;97:232905.10.1063/1.3523352Search in Google Scholar
[171] Jiménez-Villacorta F, Gallastegui JA, Fina I, Marti X, Fontcuberta J. Strain-driven transition from E-type to A-type magnetic order in YMnO3 epitaxial films. Phys Rev B. 2012;86:024420.10.1103/PhysRevB.86.024420Search in Google Scholar
[172] Hou YS, Yang JH, Gong XG, Xiang HJ. Prediction of a multiferroic state with large electric polarization in tensile-strained TbMnO3. Phys Rev B. 2013;88:060406.10.1103/PhysRevB.88.060406Search in Google Scholar
[173] Shimamoto K, Mukherjee S, Bingham NS, Suszka AK, Lippert T, Niedermayer C, et al. Single-axis-dependent structural and multiferroic properties of orthorhombic rMno3(r = Gd–Lu). Phys Rev B. 2017;95:184105.10.1103/PhysRevB.95.184105Search in Google Scholar
[174] Afanasiev D, Hortensius JR, Ivanov B, Sasani A, Bousquet E, Blanter Y, et al. Light-driven ultrafast phonomagnetism. arXiv:1912.01938v1.Search in Google Scholar
[175] Disa A, Fechner M, Nova T, Liu B, Först M, Prabhakaran D, et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat Phys. 2020;16:937.10.1038/s41567-020-0936-3Search in Google Scholar
[176] Fechner M, Sukhov A, Chotorlishvili L, Kenel C, Berakdar J, Spaldin NA. Magnetophononics: ultrafast spin control through the lattice. Phys. Rev. Mate. 2018;2:064401.10.1103/PhysRevMaterials.2.064401Search in Google Scholar
[177] Gu M, Rondinelli JM. Nonlinear phononic control and emergent magnetism in Mott insulating titanates. Phys Rev B. 2018;98:024102.10.1103/PhysRevB.98.024102Search in Google Scholar
[178] Juraschek DM, Fechner M, Balatsky AV, Spaldin NA. Dynamical multiferroicity. Phys Rev Mater. 2017b;1:014401.10.1103/PhysRevMaterials.1.014401Search in Google Scholar
[179] Juraschek DM, Fechner M, Spaldin NA. Ultrafast structure switching through nonlinear phononics. Phys Rev Lett. 2017;118:054101.10.1103/PhysRevLett.118.054101Search in Google Scholar PubMed
[180] Khalsa, G, Benedek N. Ultrafast optically induced ferromagnetic/antiferromagnetic phase transition in GdTiO3 from first principles. NPJ Quantum Mater. 2018;3:15.10.1038/s41535-018-0086-3Search in Google Scholar
[181] Nova TF, Cartella A, Cantaluppi A, Först M, Bossini D, Mikhaylovskiy RV, et al. An effective magnetic field from optically driven phonons. Nat Phys. 2017;13:132.10.1038/nphys3925Search in Google Scholar
[182] Radaelli PG. Breaking symmetry with light: ultrafast ferroelectricity and magnetism from three-phonon coupling. Phys Rev B. 2018;97:085145.10.1103/PhysRevB.97.085145Search in Google Scholar
[183] Gong C, Kim EM, Wang Y, Lee G, Zhang X. Multiferroicity in atomic van der Waals heterostructures. Nat Commun. 2019;10:2657.10.1038/s41467-019-10693-0Search in Google Scholar PubMed PubMed Central
[184] Liu F, You L, Seyler KL, Li X, Yu P, Lin J, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun. 2016;7:1–6.10.1038/ncomms12357Search in Google Scholar PubMed PubMed Central
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Non-collinear magnetism & multiferroicity: the perovskite case
- Fluorescent styryl chromophores with rigid (pyrazole) donor and rigid (benzothiophenedioxide) acceptor – complete density functional theory (DFT), TDDFT and nonlinear optical study
- Investigating the biological actions of some Schiff bases using density functional theory study
- Traditional uses, biological activities, and phytochemicals of Lecaniodiscus cupanioides: a review
- Protein modeling
- Advancements in cancer chemotherapy
- Synthesis of magnetic ferrogels: a tool-box approach for finely tuned magnetic- and temperature-dependent properties
Articles in the same Issue
- Frontmatter
- Reviews
- Non-collinear magnetism & multiferroicity: the perovskite case
- Fluorescent styryl chromophores with rigid (pyrazole) donor and rigid (benzothiophenedioxide) acceptor – complete density functional theory (DFT), TDDFT and nonlinear optical study
- Investigating the biological actions of some Schiff bases using density functional theory study
- Traditional uses, biological activities, and phytochemicals of Lecaniodiscus cupanioides: a review
- Protein modeling
- Advancements in cancer chemotherapy
- Synthesis of magnetic ferrogels: a tool-box approach for finely tuned magnetic- and temperature-dependent properties