Startseite Advanced cell culture techniques for cancer research
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Advanced cell culture techniques for cancer research

  • Karolina Balik , Karolina Matulewicz , Paulina Modrakowska , Jolanta Kozłowska , Xavier Montane ORCID logo , Bartosz Tylkowski und Anna Bajek EMAIL logo
Veröffentlicht/Copyright: 4. Dezember 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The incessant increase number of cancer cases, motivates scientists to constantly develop and search for new therapies. Along with the dynamic development of anti-cancer drugs and therapies, we are witnessing huge progress in the world of science - the development of personalized medicine. An inseparable element is also a very strong trend in the development of new in vitro animal models for chemotherapeutic research. Cell cultures are commonly undertaken by research models before animal testing. They are the basis for the development of new diagnostic and cancer treatments. It should be emphasized that basic research is a strong foundation for any therapy introduced. This chapter provides an overview of the modern cell culture techniques that are currently developing, which allow the introduction of modern models that reflect the organs and physiological system. Currently available cell culture methods are a key aspect of studying these interactions, however, a method that eliminates the limitations of standard methods is still being sought.


Corresponding author: Anna Bajek, Department of Tissue Engineering Chair of Urology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Robert, C, Thomas, L, Bondarenko, I, O’Day, S, Weber, J, Garbe, C, et al.. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011;364:2517–26. https://doi.org/10.1056/nejmoa1104621.Suche in Google Scholar PubMed

2. Leach, DR, Krummel, MF, Allison, JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271:1734–6. https://doi.org/10.1126/science.271.5256.1734.Suche in Google Scholar PubMed

3. Hoos, A, Ibrahim, R, Korman, A, Abdallah, K, Berman, D, Shahabi, V, et al.. Development of ipilimumab: contribution to a new paradigm for cancer immunotherapy. Semin Oncol 2010;37:533–46. https://doi.org/10.1053/j.seminoncol.2010.09.015.Suche in Google Scholar PubMed

4. Freeman, GJ, Long, AJ, Iwai, Y, Bourque, K, Chernova, T, Nishimura, H, et al.. Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000;192:1027–34. https://doi.org/10.1084/jem.192.7.1027.Suche in Google Scholar PubMed PubMed Central

5. Ishida, Y, Agata, Y, Shibahara, K, Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992;11:3887–95. https://doi.org/10.1002/j.1460-2075.1992.tb05481.x.Suche in Google Scholar PubMed PubMed Central

6. Brahmer, J, Reckamp, KL, Baas, P, Crinò, L, Eberhardt, WEE, Poddubskaya, E, et al.. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015;373:123–35. https://doi.org/10.1056/nejmoa1504627.Suche in Google Scholar

7. Topalian, SL, Hodi, FS, Brahmer, JR, Gettinger, SN, Smith, DC, McDermott, DF, et al.. Safety, activity, and immune-correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:2443–54. https://doi.org/10.1056/NEJMoa1200690.Suche in Google Scholar PubMed PubMed Central

8. Robert, C, Long, GV, Brady, B, Dutriaux, C, Maio, M, Mortier, L, et al.. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015;372:320–30. https://doi.org/10.1056/nejmoa1412082.Suche in Google Scholar PubMed

9. Kong, YM, Flynn, JC. Opportunistic autoimmune disorders potentiated by immune-checkpoint inhibitors anti-CTLA-4 and anti-PD-1. Front Immunol 2014;5:206. https://doi.org/10.3389/fimmu.2014.00206.Suche in Google Scholar PubMed PubMed Central

10. Gettinger, SN, Horn, L, Gandhi, L, Spigel, DR, Antonia, SJ, Rizvi, NA, et al.. Overall survival and long-term safety of nivolumab (Anti–Programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non–small-cell lung cancer. J Clin Oncol 2015;33:2004–12. https://doi.org/10.1200/jco.2014.58.3708.Suche in Google Scholar

11. McDermott, D, Haanen, J, Chen, TT, Lorigan, P, O’Day, S. Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase III trial (MDX010-20). Ann Oncol 2013;24:2694–8. https://doi.org/10.1093/annonc/mdt291.Suche in Google Scholar PubMed

12. Wang, M, Zhao, J, Zhang, L, Wei, F, Lian, Y, Wu, Y, et al.. Role of tumor microenvironment in tumorigenesis. J Canc 2017;8:761–73. https://doi.org/10.7150/jca.17648.Suche in Google Scholar PubMed PubMed Central

13. Crinier, A, Vivier, E, Blery, M. Helper-like innate lymphoid cells and cancer immunotherapy. Semin Immunol 2019;41:101274. https://doi.org/10.1016/j.smim.2019.04.002.Suche in Google Scholar PubMed

14. Lazennec, G, Lam, PY. Recent discoveries concerning the tumor – mesenchymal stem cell interactions. Biochim Biophys Acta 2016;1866:290–9. https://doi.org/10.1016/j.bbcan.2016.10.004.Suche in Google Scholar PubMed

15. Kim, IS, Gao, Y, Welte, T, Wang, H, Liu, J, Janghorban, M, et al.. Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat Cell Biol 2019;21:1113–26. https://doi.org/10.1038/s41556-019-0373-7.Suche in Google Scholar PubMed PubMed Central

16. Seo, J, Shin, JY, Leijten, J, Jeon, O, Camci-Unal, G, Dikina, AD, et al.. High-throughput approaches for screening and analysis of cell behaviors. Biomaterials 2018;153:85–101. https://doi.org/10.1016/j.biomaterials.2017.06.022.Suche in Google Scholar PubMed PubMed Central

17. Rothbauer, M, Zirath, H, Ertl, P. Recent advances in microfluidic technologies for cell-to-cell interaction studies. Lab Chip 2018;18:249–70. https://doi.org/10.1039/c7lc00815e.Suche in Google Scholar PubMed

18. Maltman, DJ, Przyborski, SA. Developments in three-dimensional cell culture technology aimed at improving the accuracy of in vitro analyses. Biochem Soc Trans 2010;38:1072–5. https://doi.org/10.1042/bst0381072.Suche in Google Scholar

19. Duval, K, Grover, H, Han, LH, Mou, Y, Pegoraro, AF, Fredberg, J, et al.. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda) 2017;32:266–77. https://doi.org/10.1152/physiol.00036.2016.Suche in Google Scholar PubMed PubMed Central

20. Whitesides, GM. The origins and the future of microfluidics. Nature 2006;442:368–73. https://doi.org/10.1038/nature05058.Suche in Google Scholar PubMed

21. Ma, H, Liu, T, Qin, J, Lin, B. Characterization of the interaction between fibroblasts and tumor cells on a microfluidic co‐culture device. Electrophoresis 2010;31:1599–605. https://doi.org/10.1002/elps.200900776.Suche in Google Scholar PubMed

22. Agliari, E, Biselli, E, De Ninno, A, Schiavoni, G, Gabriele, L, Gerardino, A, et al.. Cancer-driven dynamics of immune cells in a microfluidic environment. Sci Rep 2014;4:6639. doi:https://doi.org/10.1038/srep06639.Suche in Google Scholar PubMed PubMed Central

23. Liu, PF, Cao, YW, Zhang, SD, Zhao, Y, Liu, X-g, Shi, H-q, et al.. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget 2015;6:37695–705. https://doi.org/10.18632/oncotarget.6070.Suche in Google Scholar PubMed PubMed Central

24. Liu, T, Lin, B, Qin, J. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device. Lab Chip 2010;10:1671–7. https://doi.org/10.1039/c000022a.Suche in Google Scholar PubMed

25. Wong, AD, Searson, PC. Live-cell imaging of invasion and intravasation in an artificial microvessel platform. Canc Res 2014;74:4937–45. https://doi.org/10.1158/0008-5472.can-14-1042.Suche in Google Scholar PubMed PubMed Central

26. Bauer, M, Su, G, Beebe, DJ, Friedl, A. 3D microchannel co-culture: method and biological validation. Integr Biol (Camb) 2010;2:371–8. https://doi.org/10.1039/c0ib00001a.Suche in Google Scholar PubMed PubMed Central

27. Zervantonakis, IK, Hughes-Alford, SK, Charest, JL, Condeelis, JS, Gertler, FB, Kamm, RD. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci USA 2012;109:13515–20. https://doi.org/10.1073/pnas.1210182109.Suche in Google Scholar PubMed PubMed Central

28. Koh, S, Shimasaki, N, Suwanarusk, R, Ho, ZZ, Chia, A, Banu, N, et al.. A practical approach to immunotherapy of hepatocellular carcinoma using T cells redirected against hepatitis B virus. Mol Ther Nucleic Acids 2013;2:e114. https://doi.org/10.1038/mtna.2013.43.Suche in Google Scholar PubMed PubMed Central

29. Pavesi, A, Tan, AT, Koh, S, Chia, A, Colombo, M, Antonecchia, E, et al.. A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. JCI Insight 2017;2:e89762. https://doi.org/10.1172/jci.insight.89762.Suche in Google Scholar PubMed PubMed Central

30. Parlato, S, De Ninno, A, Molfetta, R, Toschi, E, Salerno, D, Mencattini, A, et al.. 3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. Sci Rep 2017;7:1093. https://doi.org/10.1038/s41598-017-01013-x.Suche in Google Scholar PubMed PubMed Central

31. Brown, VT, Cho, V, Parkey, S. Analysis of FDA approvals of targeted anticancer combination regimens. Am J Health Syst Pharm 2017;74:1938–42. https://doi.org/10.2146/ajhp170029.Suche in Google Scholar

32. Esch, MB, King, TL, Shuler, ML. The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng 2010;13:55–72.10.1146/annurev-bioeng-071910-124629Suche in Google Scholar

33. Bhatt, DL, Mehta, C. Adaptive designs for clinical trials. N Engl J Med 2016;375:65–74. https://doi.org/10.1056/nejmra1510061.Suche in Google Scholar

34. Sant, S, Johnston, PA. The production of 3D tumor spheroids for cancer drug. Drug Discov Today Technol 2017;23:27–36. https://doi.org/10.1016/j.ddtec.2017.03.002.Suche in Google Scholar

35. Shuler, ML, Ghanem, A, Quick, D, Wong, MC, Miller, P. A self‐regulating cell culture analog device to mimic animal and human toxicological responses. Biomed Technol 1996;52:45–60. https://doi.org/10.1002/(sici)1097-0290(19961005)52:1<45::aid-bit5>3.0.co;2-z.10.1002/(SICI)1097-0290(19961005)52:1<45::AID-BIT5>3.0.CO;2-ZSuche in Google Scholar

36. Shida, S. Organs-on-a-chip: current applications and consideration points for in vitro ADME-Tox studies. Drug Metabol Pharmacokinet 2017;33:49–54.10.1016/j.dmpk.2018.01.003Suche in Google Scholar

37. Bronzino, JD, Peterson, DR. Tissue engineering and artificial organs. Boca Raton; 2006. 9780429123054.Suche in Google Scholar

38. Bal-Öztürk, A, Miccoli, B, Avci-Adali, M, Mogtader, F, Sharifi, F, Çeçen, B, et al.. Current strategies and future perspectives of skin-on-a-chip platforms: innovations, technical challenges and commercial outlook. Curr Pharmaceut Des 2018;24:5437–57.10.2174/1381612825666190206195304Suche in Google Scholar

39. Abaci, HE, Shuler, ML. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr Biol 2015;7:383–91. https://doi.org/10.1039/c4ib00292j.Suche in Google Scholar

40. Kratochvil, MJ, Seymour, AJ, Li, TJ, Pasca, SP, Kuo, CJ, Heilshorn, SC. Engineered materials for organoid systems. Nature Reviews Materials 2019;4:606–22. https://doi.org/10.1038/s41578-019-0129-9.Suche in Google Scholar

41. Wimmer, AR, Leopoldi, A, Aichinger, M, Wick, N, Hantusch, B, Novatchkova, M, et al.. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 2019;565:505–10. https://doi.org/10.1038/s41586-018-0858-8.Suche in Google Scholar

42. Mansour, AAF, Gonçalves, JT, Bloyd, CW, Li, H, Fernandes, S, Quang, D, et al.. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 2018;36:432–41. https://doi.org/10.1038/nbt.4127.Suche in Google Scholar

43. Ham, O, Jin, YB, Kim, J, Lee, M-O. Blood vessel formation in cerebral organoids formed from human embryonic stem cells. Biochem Biophys Res Commun 2020;521:84–90. https://doi.org/10.1016/j.bbrc.2019.10.079.Suche in Google Scholar PubMed

44. Vyas, D, Baptista, PM, Brovold, M, Moran, E, Gaston, B, Booth, C, et al.. Self‐assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. Hepatology 2018;67:750–61. https://doi.org/10.1002/hep.29483.Suche in Google Scholar PubMed PubMed Central

45. Saheli, M, Sepantafar, M, Pournasr, S, Farzaneh, Z, Vosough, M, Piryaei, A, et al.. Three‐dimensional liver‐derived extracellular matrix hydrogel promotes liver organoids function. Jurnal of Cellular Biochemistry 2018;119:4320–33. https://doi.org/10.1002/jcb.26622.Suche in Google Scholar PubMed

46. Takasato, M, Er, P, Chiu, H, Little, MH. Generation of kidney organoids from human pluripotent stem cells. Nat Protoc 2016;11:1681–92. https://doi.org/10.1038/nprot.2016.098.Suche in Google Scholar PubMed PubMed Central

47. Clevers, H. Modeling development and disease with organoids. Cell 2016;165:1586–97. https://doi.org/10.1016/j.cell.2016.05.082.Suche in Google Scholar PubMed

48. Consortium International. Human Genome Sequencing, Finishing the euchromatic sequence of the human genome. Nature 2004;431:931–45.10.1038/nature03001Suche in Google Scholar PubMed

49. Slatko, BE, Gardner, AF, Ausubel, FM. Overview of Next generation sequencing technologies. Curr Protoc Mol Biol 2018;122. https://doi.org/10.1002/cpmb.59.Suche in Google Scholar PubMed PubMed Central

50. Lowe, R, Shirley, N, Bleackley, M, Dolan, S, Shafee, T. Transcriptomics technologies. PLoS Comput Biol 2017;13:e1005457. https://doi.org/10.1371/journal.pcbi.1005457.Suche in Google Scholar PubMed PubMed Central

51. Aslam, B, Basit, M, Nisar, MA, Khurshid, M, Rasool, MH. Proteomics: technologies and their application. J Chromatogr Sci 2019;55:182–796.10.1093/chromsci/bmw167Suche in Google Scholar PubMed

52. Johnson, CH, Ivanisevic, J, Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 2016;17:451–9. https://doi.org/10.1038/nrm.2016.25.Suche in Google Scholar PubMed PubMed Central

53. Lindon, JC, Holmes, E, Nicholson, JK. So what’s the deal with metabonomics?. Anal Chem 2003;75:384A–91A. https://doi.org/10.1021/ac031386+.10.1021/ac031386+Suche in Google Scholar PubMed

54. Dudley, E, Yousef, M, Wang, Y, Griffiths, WJ. Targeted metabolomics and mass spectrometry. Adv Protein Chem Struct Biol 2010;80:45–83. https://doi.org/10.1016/b978-0-12-381264-3.00002-3.Suche in Google Scholar

55. Vinayavekhin, N, Saghatelian, A. Untargeted metabolomics. Curr Protoc Mol Biol 2010:Chapter 30:Unit 30.2.1–24. https://doi.org/10.1002/0471142727.mb3001s90.Suche in Google Scholar PubMed

56. Segers, K, Declerck, S, Mangelings, D, Heyden, YV, Eeckhaut, AV. Analytical techniques for metabolomic studies: a review. Bioanalysis 2019;11:2297–318. https://doi.org/10.4155/bio-2019-0014.Suche in Google Scholar PubMed

57. Zhang, F, Zhang, Y, Zhao, W, Deng, K, Wang, Z, Yang, C, et al.. Metabolomics for biomarker discovery in the diagnosis, prognosis, survival and recurrence of colorectal cancer: a systematic review. Oncotarget 2017;8:35460–72. https://doi.org/10.18632/oncotarget.16727.Suche in Google Scholar PubMed PubMed Central

58. Phan, LM, Yeung, S-CJ, Lee, M-H. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med 2014;11:1–19. https://doi.org/10.7497/j.issn.2095-3941.2014.01.001.Suche in Google Scholar PubMed PubMed Central

59. Wise, DR, Thompson, CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 2010;35:427–33. https://doi.org/10.1016/j.tibs.2010.05.003.Suche in Google Scholar PubMed PubMed Central

60. Muschet, C, Möller, GM, Prehn, C. Removing the bottlenecks of cell culture metabolomics: fast normalization procedure, correlation of metabolites to cell number, and impact of the cell harvesting method. Metabolomics 2016;12:151. https://doi.org/10.1007/s11306-016-1104-8.Suche in Google Scholar PubMed PubMed Central

61. Hofmann, U, Maier, K, Niebel, A, Vacun, G, Reuss, M, Mauch, K. Identifi cation of metabolic fluxes in hepatic cells from transient 13C-labeling experiments: Part I, Experimental observations. Biotechnol Bioeng 2008;100:344–54. https://doi.org/10.1002/bit.21747.Suche in Google Scholar PubMed

62. Sellick, CA, Hansen, R, Maqsood, AR, Dunn, WB, Stephens, GM, Goodacre, R, et al.. Effective quenching processes for physiologically valid metabolite profiling of suspension cultured Mammalian cells. Anal Chem 2009;81:174–83. https://doi.org/10.1021/ac8016899.Suche in Google Scholar PubMed

63. Teng, Q, Huang, H, Collette, TW, Ekman, DR, Tan, C. A direct cell quenching method for cell-culture based metabolomics. Metabolomics 2009;5:199–208. https://doi.org/10.1007/s11306-008-0137-z.Suche in Google Scholar

64. Kapoore, RV, Coyle, R, Staton, CA, Brown, NJ, Vaidyanathan, S. Influence of washing and quenching in profiling the metabolome of adherent mammalian cells: a case study with the metastatic breast cancer cell line MDA-MB-213. Analyst 2017;142:2038–49. https://doi.org/10.1039/c7an00207f.Suche in Google Scholar PubMed

65. Dietmair, S, Timmins, NE, Gray, PP, Nielsen, LK, Krömer, JO. Towards quantitative metabolomics of mammalian cells – development of a metabolite extraction protocol. Anal Biochem 2010;404:155–64. https://doi.org/10.1016/j.ab.2010.04.031.Suche in Google Scholar PubMed

66. Lorenz, MA, Burant, CF, Kennedy, RT. Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics. Anal Chem 2010;83:3406.10.1021/ac103313xSuche in Google Scholar PubMed PubMed Central

67. Jaroch, K, Boyaci, E, Pawliszyn, J, Bojko, B. The use of solid phase microextraction for metabolomic analysis of non-small cell lung carcinoma cell line (A549) after administration of combretastatin A4. Sci Rep 2019;9:402. https://doi.org/10.1038/s41598-018-36481-2.Suche in Google Scholar PubMed PubMed Central

68. Schallschmidt, K, Becker, R, Junga, C, Rolff, J, Fichtner, I. Investigation of cell culture volatilomes using solid phase micro extraction: options and pitfalls exemplified with adenocarcinoma cell lines. J Chromatogr B 2016;1006:158–66.10.1016/j.jchromb.2015.10.004Suche in Google Scholar PubMed

69. Mathon, C, Bovard, D, Dutertre, Q, Sendyk, S, Bentley, M, Hoeng, J, et al.. Impact of sample preparation upon intracellular metabolite measurements in 3D cell culture systems. Metabolomics 2019;15:92. https://doi.org/10.1007/s11306-019-1551-0.Suche in Google Scholar PubMed PubMed Central

70. Rusz, M, Rampler, E, Keppler, BK, Jakupec, MA, Koellensperger, G. Single spheroid metabolomics: optimizing sample preparation of three-dimensional multicellular tumor spheroids. Metabolites 2019;9:304. https://doi.org/10.3390/metabo9120304.Suche in Google Scholar PubMed PubMed Central

71. Lin, L, Lin, J-M. Development of cell metabolite analysis on microfluidic platform. J Pharm Anal 2015;5:337–47. https://doi.org/10.1016/j.jpha.2015.09.003.Suche in Google Scholar PubMed PubMed Central

Published Online: 2020-12-04

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2019-0059/html
Button zum nach oben scrollen