Startseite Controlling of light with electromagnons
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Controlling of light with electromagnons

  • D. Szaller , A. Shuvaev , A. A. Mukhin , A. M. Kuzmenko und A. Pimenov ORCID logo EMAIL logo
Veröffentlicht/Copyright: 31. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Magnetoelectric coupling in multiferroic materials opens new routes to control the propagation of light. The new effects arise due to dynamic magnetoelectric susceptibility that cross-couples the electric and magnetic fields of light and modifies the solutions of Maxwell equations in media. In this paper, two major effects will be considered in detail: optical activity and asymmetric propagation. In case of optical activity the polarization plane of the input radiation rotates by an angle proportional to the magnetoelectric susceptibility. The asymmetric propagation is a counter-intuitive phenomenon and it represents different transmission coefficients for forward and backward directions. Both effects are especially strong close to resonance frequencies of electromagnons, i. e. excitations in multiferroic materials that reveal simultaneous electric and magnetic character.

Acknowledgements

This work was supported by the Russian Science Foundation (16-12-10531) and by the Austrian Science Funds (W 1243, I 2816-N27, I 1648-N27).

References

[1] Smolenskii GA, Chupis IE. Ferroelectromagnets. Sov Phys Usp. 1982;25:475.10.1070/PU1982v025n07ABEH004570Suche in Google Scholar

[2] Krivoruchko VN, Yablonskii DA. Antiferroelectric resonance in noncentrosymmetric multi-sublattice magnets. Sov Phys JETP. 1988;67:1886.Suche in Google Scholar

[3] Eremenko VV, Kharchenko NF, Litvinenko YG, Naumenko VM. Magneto-optics and spectroscopy of antiferromagnets. New York: Springer, 1992.10.1007/978-1-4612-2846-2Suche in Google Scholar

[4] Turov EA. Purely antiferromagnetic oscillatory mode in a two-sublattice ferromagnetic phase. J Exp Theor Phys Lett. 2001;73:87–9.10.1134/1.1358426Suche in Google Scholar

[5] Fiebig M. Revival of the magnetoelectric effect. J Phys D: Appl Phys. 2005;38:R123.10.1088/0022-3727/38/8/R01Suche in Google Scholar

[6] Pimenov A, Mukhin AA, Ivanov VY, Travkin VD, Balbashov AM, Loidl A. Possible evidence for electromagnons in multiferroic manganites. Nat Phys. 2006;2:97.10.1038/nphys212Suche in Google Scholar

[7] Sushkov AB, Valdes Aguilar R, Park S, Cheong S-W, Drew HD. Electromagnons in multiferroic YMn2O5 and TbMn2O5. Phys Rev Lett. 2007;98:027202.10.1103/PhysRevLett.98.027202Suche in Google Scholar PubMed

[8] Takahashi Y, Kida N, Yamasaki Y, Fujioka J, Arima T, Shimano R, et al. Evidence for an electric-dipole active continuum band of spin excitations in multiferroic TbMnO3. Phys Rev Lett. 2008;101:187201.10.1103/PhysRevLett.101.187201Suche in Google Scholar PubMed

[9] Kida N, Ikebe Y, Takahashi Y, He JP, Kaneko Y, Yamasaki Y, et al. Electrically driven spin excitation in the ferroelectric magnet DyMnO3. Phys Rev B. 2008;78:104414.10.1103/PhysRevB.78.104414Suche in Google Scholar

[10] Pimenov A, Loidl A, Mukhin AA, Travkin VD, Ivanov VY, Balbashov AM. Terahertz spectroscopy of electromagnons in Eu1 – xYxMnO3. Phys Rev B. 2008;77:014438.10.1103/PhysRevB.77.014438Suche in Google Scholar

[11] Valdes Aguilar R, Mostovoy M, Sushkov AB, Zhang CL, Choi YJ, Cheong S-W, et al. Origin of electromagnon excitations in multiferroic RMnO3. Phys Rev Lett. 2009;102:047203.10.1103/PhysRevLett.102.047203Suche in Google Scholar PubMed

[12] Tokura Y, Seki Sh, Nagaosa N. Multiferroics of spin origin. Rep Prog Phys. 2014;77:076501.10.1088/0034-4885/77/7/076501Suche in Google Scholar PubMed

[13] Dong Sh, Liu J-M, Cheong S-W, Ren Zh. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv Phys. 2015;64:519–626.10.1080/00018732.2015.1114338Suche in Google Scholar

[14] Kuzmenko AM, Shuvaev A, Dziom V, Pimenov A, Schiebl M, Mukhin AA, et al. Giant gigahertz optical activity in multiferroic ferroborate. Phys Rev B. 2014;89:174407.10.1103/PhysRevB.89.174407Suche in Google Scholar

[15] Katsura H, Nagaosa N, Balatsky AV. Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett. 2005;95:057205.10.1103/PhysRevLett.95.057205Suche in Google Scholar PubMed

[16] Mostovoy M. Ferroelectricity in spiral magnets. Phys Rev Lett. 2006;96:067601.10.1103/PhysRevLett.96.067601Suche in Google Scholar PubMed

[17] Shuvaev A, Dziom V, Pimenov A, Schiebl M, Mukhin AA, Komarek AC, et al. Electric field control of terahertz polarization in a multiferroic manganite with electromagnons. Phys Rev Lett. 2013;111:227201.10.1103/PhysRevLett.111.227201Suche in Google Scholar PubMed

[18] Miyahara S, Furukawa N. Theory of electric field induced one-magnon resonance in cycloidal spin magnets. ArXiv 0811.4082, 2008.Suche in Google Scholar

[19] Mochizuki M, Furukawa N, Nagaosa N. Theory of electromagnons in the multiferroic Mn perovskites: the vital role of higher harmonic components of the spiral spin order. Phys Rev Lett. 2010;104:177206.10.1103/PhysRevLett.104.177206Suche in Google Scholar PubMed

[20] Shuvaev AM, Travkin VD, Ivanov VY, Mukhin AA, Pimenov A. Evidence for electroactive excitation of the spin cycloid in TbMnO3. Phys Rev Lett. 2010;104:097202.10.1103/PhysRevLett.104.097202Suche in Google Scholar PubMed

[21] Szaller D, Bordács S, Kocsis V, Rõõm T, Nagel U, Kézsmárki I. Effect of spin excitations with simultaneous magnetic- and electric-dipole character on the static magnetoelectric properties of multiferroic materials. Phys Rev B. 2014;89:184419.10.1103/PhysRevB.89.184419Suche in Google Scholar

[22] Berreman DW. Optics in stratified and anisotropic media – 4x4-matrix formulation. J Opt Soc Am. 1972;62:502.10.1364/JOSA.62.000502Suche in Google Scholar

[23] Shuvaev AM, Astakhov GV, Brüne C, Buhmann H, Molenkamp LW, Pimenov A. Terahertz magneto-optical spectroscopy in HgTe thin films. Semicond Sci Technol. 2012;27:124004.10.1088/0268-1242/27/12/124004Suche in Google Scholar

[24] Stanislavchuk TN, Kang TD, Rogers PD, Standard EC, Basistyy R, Kotelyanskii AM, et al. Synchrotron radiation-based far-infrared spectroscopic ellipsometer with full Mueller-matrix capability. Rev Sci Instr. 2013;84:023901.10.1063/1.4789495Suche in Google Scholar PubMed

[25] Kuzmenko AM, Dziom V, Shuvaev A, Pimenov A, Schiebl M, Mukhin AA, et al. Large directional optical anisotropy in multiferroic ferroborate. Phys Rev B. 2015;92:184409.10.1103/PhysRevB.92.184409Suche in Google Scholar

[26] Mukhin AA. Unpublished data.Suche in Google Scholar

[27] Vasiliev AN, Popova EA. Rare-earth ferroborates RFe3(BO3)4. Low Temp Phys. 2006;32:735–47.10.1063/1.2219496Suche in Google Scholar

[28] Zvezdin AK, Krotov SS, Kadomtseva AM, Vorob’ev GP, Popov YF, Pyatakov AP, et al. Magnetoelectric effects in gadolinium iron borate GdFe3(BO3)4. JETP Lett. 2005;81:272–6.10.1134/1.1931014Suche in Google Scholar

[29] Zvezdin AK, Vorob’ev GP, Kadomtseva AM, Popov YF, Pyatakov AP, Bezmaternykh LN, et al. Magnetoelectric and magnetoelastic interactions in NdFe3(BO3)4 multiferroics. JETP Lett. 2006;83:509–14.10.1134/S0021364006110099Suche in Google Scholar

[30] Popov AI, Plokhov DI, Zvezdin AK. Quantum theory of magnetoelectricity in rare-earth multiferroics: Nd, Sm, and Eu ferroborates. Phys Rev B. 2013;87:024413.10.1103/PhysRevB.87.024413Suche in Google Scholar

[31] Kuz’menko AM, Mukhin AA, Ivanov VY, Kadomtseva AM, Bezmaternykh LN. Effects of the interaction between R and Fe modes of the magnetic resonance in RFe3(BO3)4 rare-earth iron borates. JETP Lett. 2011;94:294–300.10.1134/S0021364011160119Suche in Google Scholar

[32] Zheludev A, Sato T, Masuda T, Uchinokura K, Shirane G, Roessli B. Spin waves and the origin of commensurate magnetism in Ba2CoGe2O7. Phys Rev B. 2003;68:024428.10.1103/PhysRevB.68.024428Suche in Google Scholar

[33] Hutanu V, Sazonov A, Murakawa H, Tokura Y, Náfrádi B, Chernyshov D. Symmetry and structure of multiferroic Ba2CoGe2O7. Phys. Rev. B 2011;84:212101.10.1103/PhysRevB.84.212101Suche in Google Scholar

[34] Murakawa H, Onose Y, Miyahara S, Furukawa N, Tokura Y. Ferroelectricity induced by spin-dependent metal-ligand hybridization in Ba2CoGe2O7. Phys Rev Lett. 2010;105:137202.10.1103/PhysRevLett.105.137202Suche in Google Scholar PubMed

[35] Murakawa H, Onose Y, Miyahara S, Furukawa N, Tokura Y. Comprehensive study of the ferroelectricity induced by the spin-dependent d-p hybridization mechanism in Ba2XGe2O7 (X = Mn Co and Cu). Phys Rev B. 2012;85:174106.10.1103/PhysRevB.85.174106Suche in Google Scholar

[36] Yi HT, Choi YJ, Lee S, Cheong S-W. Multiferroicity in the square-lattice antiferromagnet of Ba2CoGe2O7. Appl Phys Lett. 2008;92:212904.10.1063/1.2937110Suche in Google Scholar

[37] Yamauchi K, Barone P, Picozzi S. Theoretical investigation of magnetoelectric effects in Ba2CoGe2O7. Phys Rev B. 2011;84:165137.10.1103/PhysRevB.84.165137Suche in Google Scholar

[38] Perez-Mato JM, Ribeiro JL. On the symmetry and the signature of atomic mechanisms in multiferroics: the example of Ba2CoGe2O7. Acta Crystallogr Sect A. 2011;67:264–8.10.1107/S0108767311010282Suche in Google Scholar PubMed

[39] Toledano P, Khalyavin DD, Chapon LC. Spontaneous toroidal moment and field-induced magnetotoroidic effects in Ba2CoGe2O7. Phys Rev B. 2011;84:094421.10.1103/PhysRevB.84.094421Suche in Google Scholar

[40] Arima T. Ferroelectricity induced by proper-screw type magnetic order. J Phys Soc Jpn. 2007;76:073702.10.1143/JPSJ.76.073702Suche in Google Scholar

[41] Bordacs S, Kezsmarki I, Szaller D, Demko L, Kida N, Murakawa H, et al. Chirality of matter shows up via spin excitations. Nat Phys. 2012;8:734–8.10.1038/nphys2387Suche in Google Scholar

[42] Penc K, Romhányi J, Rõõm T, Nagel U, Antal Á, Fehér T, et al. Spin-stretching modes in anisotropic magnets: spin-wave excitations in the multiferroic Ba2CoGe2O7. Phys Rev Lett. 2012;108:257203.10.1103/PhysRevLett.108.257203Suche in Google Scholar PubMed

[43] Stokes GG. On the perfect Blackness of the Central Spot in Newton’s Rings, and on the Verification of Fresnel’s Formula for the intensities of Reflected and Reflacted Rays. In: Cambridge Library Collection – Mathematics vol. 2. Cambridge: Cambridge University Press, 2009:89–103.10.1017/CBO9780511702259.008Suche in Google Scholar

[44] von Helmholtz H. Handbuch der physiologischen Optik, vol. 1, 1st ed. Leipzig: Leopold Voss, 1856.Suche in Google Scholar

[45] Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge: Cambridge University Press, 2000.10.1063/1.1325200Suche in Google Scholar

[46] Kuzmenko AM, Dziom V, Shuvaev A, Pimenov A, Szaller D, Mukhin AA, et al. Sign change of polarization rotation under time or space inversion in magnetoelectric YbAl3(BO3)4. Phys Rev B. 2019;99:224417.10.1103/PhysRevB.99.224417Suche in Google Scholar

[47] Kézsmárki I, Szaller D, Bordács S, Kocsis V, Tokunaga Y, Taguchi Y, et al. One-way transparency of four-coloured spin-wave excitations in multiferroic materials. Nat Commun. 2014;5:3203.10.1038/ncomms4203Suche in Google Scholar PubMed

[48] Kronig RL. On the theory of dispersion of X-rays. J Opt Soc Am. 1926;12:547–57.10.1364/JOSA.12.000547Suche in Google Scholar

[49] Kramers HA. Diffusion of light by atoms. Atti Congr Int Fisici. 1927;2:545–57.Suche in Google Scholar

[50] Arima T. Magneto-electric optics in non-centrosymmetric ferromagnets. J Phys: Condens Matter. 2008;20:434211.10.1088/0953-8984/20/43/434211Suche in Google Scholar

[51] Bordács S, Kocsis V, Tokunaga Y, Nagel U, Rõõm T, Takahashi Y, et al. Unidirectional terahertz light absorption in the pyroelectric ferrimagnet CaBaCo4O7. Phys Rev B. 2015;92:214441.10.1103/PhysRevB.92.214441Suche in Google Scholar

[52] Rikken GL, Raupach E. Observation of magneto-chiral dichroism. Nature. 1997;390:493.10.1038/37323Suche in Google Scholar

[53] Szaller D, Bordács S, Kézsmárki I. Symmetry conditions for nonreciprocal light propagation in magnetic crystals. Phys Rev B. 2013;87:014421.10.1103/PhysRevB.87.014421Suche in Google Scholar

[54] Kocsis V, Penc K, Rõõm T, Nagel U, Vít J, Romhányi J, et al. Identification of antiferromagnetic domains via the optical magnetoelectric effect. Phys Rev Lett. 2018;121:057601.10.1103/PhysRevLett.121.057601Suche in Google Scholar PubMed

[55] Kuzmenko AM, Szaller D, Kain T, Dziom V, Weymann L, Shuvaev A, et al. Switching of magnons by electric and magnetic fields in multiferroic borates. Phys Rev Lett. 2018;120:027203.10.1103/PhysRevLett.120.027203Suche in Google Scholar PubMed

[56] Tokura Y. Multiferroics – toward strong coupling between magnetization and polarization in a solid. J Magn Magn Mater. 2007;310:1145–50.10.1016/j.jmmm.2006.11.198Suche in Google Scholar

[57] Kézsmárki I, Kida N, Murakawa H, Bordács S, Onose Y, Tokura Y. Enhanced directional dichroism of terahertz light in resonance with magnetic excitations of the multiferroic Ba2CoGe2O7 oxide compound. Phys Rev Lett. 2011;106:057403.10.1103/PhysRevLett.106.057403Suche in Google Scholar PubMed

[58] Viirok J, Nagel U, Rõõm T, Farkas DG, Balla P, Szaller D, et al. Directional dichroism in the paramagnetic state of multiferroics: A case study of infrared light absorption in Sr2CoSi2O7 at high temperatures. Phys Rev B. 2019;99:014410.10.1103/PhysRevB.99.014410Suche in Google Scholar

[59] Kézsmárki I, Nagel U, Bordács S, Fishman RS, Lee JH, Yi HT, et al. Optical diode effect at spin-wave excitations of the room-temperature multiferroic BiFeO3. Phys Rev Lett. 2015;115:127203.10.1103/PhysRevLett.115.127203Suche in Google Scholar PubMed

Published Online: 2019-10-31

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2019-0055/pdf?lang=de
Button zum nach oben scrollen