Abstract
Micro Raman spectroscopy has been applied very early in environmental analytics. However, until now the field of application is quite limited. The main reasons for the low acceptance are high cost of the method and the low throughput. New developments in technology lead to cheaper instrumentation. Automation of Raman microscopy of particles might be a solution for a higher throughput and a broader application in environmental analytics. A more detailed analysis of aerosols and microplastic is good examples that could benefit from this development.
References
[1] Rosen H, Novakov T. Raman scattering and the characterisation of atmospheric aerosol particles. Nature. 1977;266:708–10.10.1038/266708a0Search in Google Scholar
[2] Sinanis S, Aleksandrova M, Schaber K. Characterization of multicomponent aerosols by Raman spectroscopy. Aerosol Sci Technol. 2011;45:741–7.10.1080/02786826.2011.559494Search in Google Scholar
[3] Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon N Y. 2005;43:1731–42.10.1016/j.carbon.2005.02.018Search in Google Scholar
[4] Grafen M, Schweiger G, Esen C, Ostendorf A. Time-resolved measurement of elemental carbon in urban environment: comparison of Raman backscattering and aethalometer results. J Aerosol Sci. 2018;117:34–43.10.1016/j.jaerosci.2017.12.003Search in Google Scholar
[5] Deng C, Brooks SD, Vidaurre G, Thornton DCO. Using Raman microspectroscopy to determine chemical composition and mixing state of airborne marine aerosols over the pacific ocean. Aerosol Sci Technol. 2014;48:193–206.10.1080/02786826.2013.867297Search in Google Scholar
[6] Gaffney JS, Marley NA, Smith KJ. Characterization of fine mode atmospheric aerosols by Raman microscopy and diffuse reflectance FTIR. J Phys Chem A. 2015;119:4524–32.10.1021/jp510361sSearch in Google Scholar PubMed
[7] Ghosal S, Macher JM, Ahmed K. Raman microspectroscopy-based identification of individual fungal spores as potential indicators of indoor contamination and moisture-related building damage. Environ Sci Technol. 2012;46:6088–95.10.1021/es203782jSearch in Google Scholar PubMed
[8] Guedes A, Ribeiro H, Fernández-González M, Aira MJ, Abreu I. Pollen Raman spectra database: application to the identification of airborne pollen. Talanta. 2014;119:473–8.10.1016/j.talanta.2013.11.046Search in Google Scholar PubMed
[9] Schulte F, Lingott J, Panne U, Kneipp J. Chemical characterization and classification of pollen. Anal Chem. 2008;80:9551–6.10.1021/ac801791aSearch in Google Scholar PubMed
[10] Ronningen TJ, Schuetter JM, Wightman JL, Murdock A, Bartko AP. Raman spectroscopy for biological identification [Internet]. In: Paul Schaudies (ed.). Biological Identification. Elsevier, 2014: 313–33.10.1533/9780857099167.3.313Search in Google Scholar
[11] Vanoni M, Vai M, Popolo L, Alberghina L. Structural heterogeneity in populations of the budding yeast saccharomyces cerevisiae. J Bacteriol. 1983;156:1282–91.10.1128/jb.156.3.1282-1291.1983Search in Google Scholar PubMed
[12] Tripathi A, Jabbour RE, Guicheteau JA, Christesen SD, Emge DK, Fountain AW, et al. Bioaerosol analysis with Raman chemical imaging microspectroscopy. Anal Chem. 2009;81:6981–90.10.1021/ac901074cSearch in Google Scholar PubMed
[13] Sobanska S, Hwang H, Choël M, Jung H, Eom H, Kim H, et al. Investigation of the chemical mixing state of individual Asian dust particles by the combined use of electron probe X-ray microanalysis and Raman microspectrometry. Anal Chem. 2012;84:3145–54.10.1021/ac2029584Search in Google Scholar PubMed
[14] Gibson ER, Hudson PK, Grassian VH. Physicochemical properties of nitrate aerosols: implications for the atmosphere. J Phys Chem A. 2006;110:11785–99.10.1021/jp063821kSearch in Google Scholar PubMed
[15] Hiranuma N, Brooks SD, Gramann J, Auvermann BW. High concentrations of coarse particles emitted from a cattle feeding operation. Atmos Chem Phys. 2011;11:8809–23.10.5194/acp-11-8809-2011Search in Google Scholar
[16] Ivleva NP, McKeon U, Niessner R, Pöschl U. Raman microspectroscopic analysis of size-resolved atmospheric aerosol particle samples collected with an ELPI: soot, humic-like substances, and inorganic compounds. Aerosol Sci Technol. 2007;41:655–71.10.1080/02786820701376391Search in Google Scholar
[17] Ivleva NP, Huckele S, Weinzierl B, Niessner R, Haisch C, Baumann T, et al. Identification and characterization of individual airborne volcanic ash particles by Raman microspectroscopy. Anal Bioanal Chem. 2013;405:9071–84.10.1007/s00216-013-7328-9Search in Google Scholar PubMed
[18] Aggarwal RL, Di Cecca S, Farrar LW, Shabshelowitz A, Jeys TH. Sensitive detection and identification of isovanillin aerosol particles at the pg/cm 3 mass concentration level using Raman spectroscopy. Aerosol Sci Technol. 2015;49:753–6.10.1080/02786826.2015.1065955Search in Google Scholar
[19] Vehring R, Aardahl CL, Schweiger G, Davis EJ. The characterization of fine particles originating from an uncharged aerosol: size dependence and detection limits for Raman analysis. J Aerosol Sci. 1998;29:1045–61.10.1016/S0021-8502(98)80002-5Search in Google Scholar
[20] Pan Y-L, Hill SC, Coleman M. Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra. Opt Express. 2012;20:5325.10.1364/OE.20.005325Search in Google Scholar PubMed
[21] Kalasinsky KS, Hadfield T, Shea AA, Kalasinsky VF, Nelson MP, Neiss J, et al. Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation. Anal Chem. 2007;79:2658–73.10.1021/ac0700575Search in Google Scholar PubMed
[22] Reich S, Thomsen C. Raman spectroscopy of graphite. Philos Trans R Soc A Math Phys Eng Sci. 2004;362:2271–88.10.1098/rsta.2004.1454Search in Google Scholar PubMed
[23] Yan Wang DC. Alsmeyer and RLM. Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater. 1990;2:557–63.10.1021/cm00011a018Search in Google Scholar
[24] Tuinstra F, Koenig JL. Raman spectrum of graphite. J Chem Phys. 1970;53:1126–30.10.1063/1.1674108Search in Google Scholar
[25] Ivar Do Sul JA, Costa MF. The present and future of microplastic pollution in the marine environment. Environ Pollut. 2014;185:352–64.10.1016/j.envpol.2013.10.036Search in Google Scholar PubMed
[26] Gregory MR. Environmental implications of plastic debris in marine settings–entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans R Soc B Biol Sci. 2009;364:2013–25.10.1098/rstb.2008.0265Search in Google Scholar PubMed PubMed Central
[27] Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: A review. Mar Pollut Bull. 2011;62:2588–97.10.1016/j.marpolbul.2011.09.025Search in Google Scholar PubMed
[28] Eerkes-Medrano D, Thompson RC, Aldridge DC. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 2015;75:63–82.10.1016/j.watres.2015.02.012Search in Google Scholar PubMed
[29] Dris R, Imhof H, Sanchez W, Gasperi J, Galgani F, Tassinand B, et al. Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles. Environ Chem. 2015;12:539–50.10.1071/EN14172Search in Google Scholar
[30] Graham ER, Thompson JT. Deposit- and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J Exp Mar Bio Ecol. 2009;368:22–9.10.1016/j.jembe.2008.09.007Search in Google Scholar
[31] Ryan PG, Moore CJ, Van Franeker JA, Moloney CL. Monitoring the abundance of plastic debris in the marine environment. Philos Trans R Soc B Biol Sci. 2009;364:1999–2012.10.1098/rstb.2008.0207Search in Google Scholar PubMed PubMed Central
[32] Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol. 2011;45:9175–9.10.1021/es201811sSearch in Google Scholar PubMed
[33] Nuelle M-T, Dekiff JH, Remy D, Fries E. A new analytical approach for monitoring microplastics in marine sediments. Environ Pollut. 2014;184:161–9.10.1016/j.envpol.2013.07.027Search in Google Scholar PubMed
[34] Tagg AS, Sapp M, Harrison JP, Ojeda JJ. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance Micro-FT-IR imaging. Anal Chem. 2015;87:6032–40.10.1021/acs.analchem.5b00495Search in Google Scholar PubMed
[35] Imhof HK, Laforsch C, Wiesheu AC, Schmid J, Anger PM, Niessner R, et al. Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes. Water Res. 2016;98:64–74.10.1016/j.watres.2016.03.015Search in Google Scholar PubMed
[36] Löder MGJ, Gerdts G. Methodology used for the detection and identification of microplastics—a critical appraisal [Internet]. In: Bergmann M, Gutow L, Klages M. (eds). Marine anthropogenic litter. Cham: Springer International Publishing, 2015: 201–27.10.1007/978-3-319-16510-3_8Search in Google Scholar
[37] Cole M, Webb H, Lindeque PK, Fileman ES, Halsband C, Galloway TS, et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci Rep. 2014;4:4528.10.1038/srep04528Search in Google Scholar PubMed PubMed Central
[38] Remy F, Collard F, Gilbert B, Compère P, Eppe G, Lepoint G, et al. When microplastic is not plastic: the ingestion of artificial cellulose fibers by macrofauna living in seagrass macrophytodetritus. Environ Sci Technol. 2015;49:11158–66.10.1021/acs.est.5b02005Search in Google Scholar PubMed
[39] Enders K, Lenz R, Stedmon CA, Nielsen TG. Abundance, size and polymer composition of marine microplastics ≥10μm in the Atlantic Ocean and their modelled vertical distribution. Mar Pollut Bull. 2015;100:70–81.10.1016/j.marpolbul.2015.09.027Search in Google Scholar PubMed
[40] Lenz R, Enders K, Stedmon CA, MacKenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015;100:82–91.10.1016/j.marpolbul.2015.09.026Search in Google Scholar PubMed
[41] Van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR. Microplastic pollution in deep-sea sediments. Environ Pollut. 2013;182:495–9.10.1016/j.envpol.2013.08.013Search in Google Scholar PubMed
[42] Mikoliunaite L, Rodriguez RD, Sheremet E, Kolchuzhin V, Mehner J, Ramanavicius A. et al. The substrate matters in the Raman spectroscopy analysis of cells. Sci Rep. 2015;5:1–10.10.1038/srep13150Search in Google Scholar PubMed PubMed Central
[43] Domke KF. Surface enhanced Raman spectroscopy. analytical, biophysical and life science applications, 2011. Edited by Sebastian Schlücker. [Internet]. Weinheim: WILEY-VCH.10.1002/anie.201103289Search in Google Scholar
[44] Ramoji A, Galler K, Glaser U, Henkel T, Mayer G, Dellith J, et al. Characterization of different substrates for Raman spectroscopic imaging of eukaryotic cells. J Raman Spectrosc. 2016;47:773–86.10.1002/jrs.4899Search in Google Scholar
[45] Lewis AT, Gaifulina R, Isabelle M, Dorney J, Woods ML, Lloyd GR, et al. Mirrored stainless steel substrate provides improved signal for Raman spectroscopy of tissue and cells. J Raman Spectrosc. 2017;48:119–25.10.1002/jrs.4980Search in Google Scholar PubMed PubMed Central
[46] Oßmann BE, Sarau G, Schmitt SW, Holtmannspötter H, Christiansen SH, Dicke W, et al. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy. Anal Bioanal Chem. 2017;409:4099.10.1007/s00216-017-0358-ySearch in Google Scholar PubMed
[47] Kinnunen H, Hebbink G, Peters H, Huck D, Makein L, Price R, et al. Extrinsic lactose fines improve dry powder inhaler formulation performance of a cohesive batch of budesonide via agglomerate formation and consequential co-deposition. Int J Pharm. 2015;478:53–9.10.1016/j.ijpharm.2014.11.019Search in Google Scholar PubMed
[48] Fischer S, Valet O, Lankers M. Raman Microscopy for characterization of particles. In: Mahler H, Jiskoot W (eds.). Analysis of Aggregates and Particles in Protein Pharmaceuticals 2012.10.1002/9781118150573.ch11Search in Google Scholar
[49] Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn KJ, et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem. 2016;408:8377–91.10.1007/s00216-016-9956-3Search in Google Scholar PubMed
[50] Elert AM, Becker R, Duemichen E, Eisentraut P, Falkenhagen J, Sturm H, et al. Comparison of different methods for MP detection: what can we learn from them, and why asking the right question before measurements matters? Environ Pollut. 2017;231:1256–64.10.1016/j.envpol.2017.08.074Search in Google Scholar PubMed
[51] Cabernard L, Roscher L, Lorenz C, Gerdts G, Primpke S. Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment. Environ Sci Technol. 2018;52:13279–88.10.1021/acs.est.8b03438Search in Google Scholar PubMed
[52] Schymanski D, Goldbeck C, Humpf HU, Fürst P. Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res. 2018;129:154–62.10.1016/j.watres.2017.11.011Search in Google Scholar PubMed
[53] Zada L, Leslie HA, Vethaak AD, Tinnevelt GH, Jansen JJ, de Boer JF, et al. Fast microplastics identification with stimulated Raman scattering microscopy. J Raman Spectrosc. 2018;49:1136–44.10.1002/jrs.5367Search in Google Scholar
[54] Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, et al. Microplastic ingestion by zooplankton. Environ Sci Technol. 2013;47:6646–55.10.1021/es400663fSearch in Google Scholar PubMed
[55] Doughty DC, Hill SC. Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol. J Quant Spectrosc Radiat Transf. 2017;188:103–17.10.1016/j.jqsrt.2016.06.042Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Gas chromatography/mass spectrometry techniques for the characterisation of organic materials in works of art
- Computer-based techniques for lead identification and optimization I: Basics
- 10.1515/psr-2018-0155
- Polyoxometalates in photocatalysis
- A primer on natural product-based virtual screening
- Theoretical principles of Raman spectroscopy
- Secondary metabolites, their structural diversity, bioactivity, and ecological functions: An overview
- Applications in: Environmental Analytics (fine particles)
- Synthesis and characterization of size controlled bimetallic nanosponges
Articles in the same Issue
- Gas chromatography/mass spectrometry techniques for the characterisation of organic materials in works of art
- Computer-based techniques for lead identification and optimization I: Basics
- 10.1515/psr-2018-0155
- Polyoxometalates in photocatalysis
- A primer on natural product-based virtual screening
- Theoretical principles of Raman spectroscopy
- Secondary metabolites, their structural diversity, bioactivity, and ecological functions: An overview
- Applications in: Environmental Analytics (fine particles)
- Synthesis and characterization of size controlled bimetallic nanosponges