Startseite Structural peculiarities? Aperiodic crystals, modulated phases, composite structures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structural peculiarities? Aperiodic crystals, modulated phases, composite structures

  • Andreas Schönleber ORCID logo EMAIL logo
Veröffentlicht/Copyright: 31. Mai 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

According to a general understanding, a crystal structure is defined by a lattice and the content of the unit cell of this lattice. As consequence a crystal exhibits three-dimensional periodicity with respect to the atoms. However, an increasing number of known crystal structures does not follow this idea of periodicity, but shows an aperiodic arrangement of its atoms. This group of so-called “aperiodic crystals” contains quasicrystals, modulated phases and composite structures. The latter two can be properly described within the higher-dimensional superspace approach to enable an accurate crystal-chemical analysis. Here the superspace is a mathematical tool, in which periodicity can be recovered in a higher-dimensional space. In the first part of this review the basic concept of periodic and aperiodic crystals is presented and similarities and differences of modulated phases, composite structures and quasicrystals are discussed. In a second part the higher-dimensional superspace approach is introduced in reciprocal and in direct space and the implementation of symmetry in superspace is reviewed. In the last part representative examples and the origin of aperiodicity in the crystal structures are discussed.


Corresponding author: Andreas Schönleber, Laboratory of Crystallography, University of Bayreuth, 95447 Bayreuth, Germany, E-mail:

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Aroyo, MI, editor. International tables for crystallography, volume A – space group symmetry. Chester: International Union of Crystallography; 2016.10.1107/97809553602060000114Suche in Google Scholar

2. Pérez-Mato, JM, Chapuis, G, Farkas-Jahnke, M, Senechal, ML, Steurer, W. Ad interim commission on aperiodic crystals, international union of crystallography, report of the executive committee for 1991. Acta Crystallogr A 1992;48:922–46. https://doi.org/10.1107/S0108767392008328.Suche in Google Scholar

3. Chapuis, G, editor. IUCr online dictionary of crystallography. Chester: International Union of Crystallography; 2018. Available from: https://reference.iucr.org/dictionary.Suche in Google Scholar

4. Janssen, T, Chapuis, G, de Boissieu, M. Aperiodic crystals: from modulated phases to quasicrystals, volume 20 of IUCr monographs on crystallography. Oxford: Oxford University Press; 2007.10.1093/acprof:oso/9780198567776.001.0001Suche in Google Scholar

5. Janssen, T, Janner, A, Looijenga-Vos, A, Maarten de Wolff, P. International tables for crystallography, volume C – mathematical, physical and chemical tables, chapter 9.8 incommensurate and commensurate modulated structures. Chester: International Union of Crystallography; 2006:907–55 pp.10.1107/97809553602060000624Suche in Google Scholar

6. van Smaalen, S. Symmetry of composite crystals. Phys Rev B 1991;43:11330–41. https://doi.org/10.1103/PhysRevB.43.11330.Suche in Google Scholar

7. Tolédano, J-C, Berry, RS, Brown, PJ, Glazer, AM, Metselaar, R, Pandey, D, et al.. Nomenclature of magnetic, incommensurate, composition-changed morphotropic, polytype, transient-structural and quasicrystalline phases undergoing phase transitions. II. Report of an IUCr working group on phase transition nomenclature. Acta Crystallogr A 2001;57:614–26. https://doi.org/10.1107/S0108767301006821.Suche in Google Scholar

8. Yamamoto, A. Crystallography of quasiperiodic crystals. Acta Crystallogr A 1996;52:509–60. https://doi.org/10.1107/S0108767396000967.Suche in Google Scholar

9. Janssen, T, Janner, A. Incommensurability in crystals. Adv Phys 1987;36:519–624. https://doi.org/10.1080/00018738700101052.Suche in Google Scholar

10. Brouns, E, Visser, JW, de Wolff, PM. An anomaly in the crystal structure of Na2CO3. Acta Crystallogr 1964;17:614. https://doi.org/10.1107/S0365110X64001426.Suche in Google Scholar

11. de Wolff, PM. The pseudo-symmetry of modulated crystal structures. Acta Crystallogr A 1974;30:777–85. https://doi.org/10.1107/S0567739474010710.Suche in Google Scholar

12. van Aalst, W, den Hollander, J, Peterse, WJAM, de Wolff, PM. The modulated structure of γ-Na2CO3 in a harmonic approximation. Acta Crystallogr B 1976;32:47–58. https://doi.org/10.1107/S056774087600229X.Suche in Google Scholar

13. Brock, CP. High-Z′ structures of organic molecules: their diversity and organizing principles. Acta Crystallogr B 2016;72:807–21. https://doi.org/10.1107/S2052520616017297.Suche in Google Scholar PubMed

14. Steed, KM, Steed, JW. Packing problems: high Z′ crystal structures and their relationship to cocrystals, inclusion compounds, and polymorphism. Chem Rev 2015;115:2895–933. https://doi.org/10.1021/cr500564z.Suche in Google Scholar PubMed

15. Schönleber, A. Organic molecular compounds with modulated crystal structures. Z Kristallogr 2011;226:499–517. https://doi.org/10.1524/zkri.2011.1372.Suche in Google Scholar

16. Schönleber, A, Chapuis, G. Quininium (R)–mandelate, a structure with large Z′ described as an incommensurately modulated structure in (3+1)-dimensional superspace. Acta Crystallogr B 2004;60:108–20. https://doi.org/10.1107/S0108768103027605.Suche in Google Scholar PubMed

17. Völlenkle, H, Preisinger, A, Nowotny, H, Wittmann, A. Die Kristallstrukturen von Cr11Ge19, Mo13Ge23 und V17Ge31. Z Kristallogr 1967;124:9–25. https://doi.org/10.1524/zkri.1967.124.1-2.9.Suche in Google Scholar

18. Jeitschko, W, Parthé, E. The crystal structure of Rh17Ge22, an example of a new kind of electron compound. Acta Crystallogr 1967;22:417–30. https://doi.org/10.1107/S0365110X67000799.Suche in Google Scholar

19. Shechtman, D, Blech, I, Gratias, D, Cahn, JW. Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 1984;53:1951–3. https://doi.org/10.1103/PhysRevLett.53.1951.Suche in Google Scholar

20. Steurer, W. Quasicrystals: what do we know? What do we want to know? What can we know? Acta Crystallogr A 2018;74:1–11. https://doi.org/10.1107/S2053273317016540.Suche in Google Scholar PubMed PubMed Central

21. Lifshitz, R, Diamant, H. Soft quasicrystals – why are they stable? Phil Mag 2007;87:3021–30. https://doi.org/10.1080/14786430701358673.Suche in Google Scholar

22. Steurer, W, Deloudi, S. Crystallography of quasicrystals: concepts, methods and structures, volume 126 of springer series in materials science. Heidelberg: Springer; 2009.Suche in Google Scholar

23. Schönleber, A, Pattison, P, Chapuis, G. The (3 + 1)-dimensional superspace description of the commensurately modulated structure of p-chlorobenzamide (α-form) and its relation to the γ-form. Z Kristallogr 2003;218:507–13. https://doi.org/10.1524/zkri.218.7.507.20713.Suche in Google Scholar

24. Palatinus, L, Schönleber, A, van Smaalen, S. The twofold superstructure of titanium(III) oxybromide at T = 17.5K. Acta Crystallogr C 2005;61:i47–8. https://doi.org/10.1107/S010827010500867X.Suche in Google Scholar PubMed

25. Wagner, T, Schönleber, A. A non-mathematical introduction to the superspace description of modulated structures. Acta Crystallogr B 2009;65:249–68. https://doi.org/10.1107/S0108768109015614.Suche in Google Scholar PubMed

26. de Wolff, PM, Janssen, T, Janner, A. The superspace groups for incommensurate crystal structures with a one-dimensional modulation. Acta Crystallogr A 1981;37:625–36. https://doi.org/10.1107/S0567739481001447.Suche in Google Scholar

27. Stokes, HT, Campbell, BJ, van Smaalen, S. Generation of (3 + d)-dimensional superspace groups for describing the symmetry of modulated crystalline structures. Acta Crystallogr A 2011;67:45–55. https://doi.org/10.1107/S0108767310042297.Suche in Google Scholar PubMed

28. van Smaalen, S, Campbell, BJ, Stokes, HT. Equivalence of superspace groups. Acta Crystallogr A 2013;69:75–90. https://doi.org/10.1107/S0108767312041657.Suche in Google Scholar PubMed PubMed Central

29. Dusek, M, Chapuis, G, Meyer, M, Petricek, V. Sodium carbonate revisited. Acta Crystallogr B 2003;59:337–52. https://doi.org/10.1107/S0108768103009017.Suche in Google Scholar

30. van Smaalen, S. Incommensurate crystallography, volume 21 of IUCr monographs on crystallography. Oxford: Oxford University Press; 2007.10.1093/acprof:oso/9780198570820.001.0001Suche in Google Scholar

31. Janssen, T. Aperiodic crystals: a contradictio in terminis. Phys Rep 1988;168:55–113. https://doi.org/10.1016/0370-1573(88)90017-8.Suche in Google Scholar

32. van Smaalen, S. Incommensurate crystal structures. Crystallogr Rev 1995;4:79–202. https://doi.org/10.1080/08893119508039920.Suche in Google Scholar

33. Maciá, E. The role of aperiodic order in science and technology. Rep Prog Phys 2006;69:397–441. https://doi.org/10.1088/0034-4885/69/2/R03.Suche in Google Scholar

34. Bolotina, NB. X-ray diffraction analysis of modulated crystals: review. Crystallogr Rep 2006;51:647–58. https://doi.org/10.1134/S1063774507040128.Suche in Google Scholar

35. Christensen, J. Layers of order – the past, present and future of superspace crystallography. Crystallogr Rev 2010;16:105–14. https://doi.org/10.1080/08893110903428035.Suche in Google Scholar

36. Aroyo, MI, Pérez-Mato, JM, Capillas, C, Kroumova, E, Ivantchev, S, Madariaga, G, et al.. Bilbao crystallographic server I: databases and crystallographic computing programs. Z Kristallogr 2006;221:15–27. https://doi.org/10.1524/zkri.2006.221.1.15.Suche in Google Scholar

37. Pinheiro, CB, Abakumov, AM. Superspace crystallography: a key to the chemistry and properties. IUCrJ 2015;2:137–54. https://doi.org/10.1107/S2052252514023550.Suche in Google Scholar PubMed PubMed Central

38. Lovelace, JJ, Murphy, CR, Daniels, L, Narayan, K, Schutt, CE, Lindberg, U, et al.. Protein crystals can be incommensurately modulated. J Appl Crystallogr 2008;41:600–5. https://doi.org/10.1107/S0021889808010716.Suche in Google Scholar

39. Ukei, K, Yamamoto, A, Watanabe, Y, Shishido, T, Fukuda, T. Structure of the incommensurate composite crystal [Ba]x[(Pt,Cu)O3]. Acta Crystallogr B 1993;49:67–72. https://doi.org/10.1107/S0108768192007183.Suche in Google Scholar

40. Castillo-Martinez, E, Schönleber, A, van Smaalen, S, Arevalo-Lopez, AM, Alario-Franco, MA. Structure and microstructure of the high pressure synthesised misfit layer compound [Sr2O2] [CrO2]1.85. J Solid State Chem 2008;181:1840–7. https://doi.org/10.1016/j.jssc.2008.03.033.Suche in Google Scholar

41. Schönleber, A, Zuniga, FJ, Perez-Mato, JM, Darriet, J, zur Loye, H-C. Description of Ba1+xNixRh1−xO3 with x = 0.1170 (5) in superspace: modulated composite versus modulated-layer structure. Acta Crystallogr B 2006;62:197–204. https://doi.org/10.1107/S0108768105039212.Suche in Google Scholar PubMed

42. Becker, H, Leineweber, A. Atomic channel occupation in disordered η-Al5Fe2 and in two of its low-temperatures phases, η″ and η. Intermetallics 2018;93:251–62. https://doi.org/10.1016/j.intermet.2017.09.021.Suche in Google Scholar

43. Chapuis, G. Modulated structures induced by phase transformations. Crystallogr Rev 1996;5:109–28. https://doi.org/10.1080/08893119608035389.Suche in Google Scholar

44. Schönleber, A, van Smaalen, S, Larsen, FK. Orientational disorder in Λ-cobalt(III) sepulchrate trinitrate. Acta Crystallogr C 2010;66:m107–9. https://doi.org/10.1107/S0108270110005755.Suche in Google Scholar PubMed

45. Dey, S, Schönleber, A, Mondal, S, Prathapa, SJ, Smaalen, S, Larsen, FK. The Z′ = 12 superstructure of Λ-cobalt(III) sepulchrate trinitrate governed by C–H…O hydrogen bonds. Acta Crystallogr B 2016;72:372–80. https://doi.org/10.1107/S2052520616005503.Suche in Google Scholar PubMed PubMed Central

46. Goldsztaub, S. Structure cristalline de l’oxychlorure de fer. C R Hebd Séances Acad Sci 1934;198:667–9.Suche in Google Scholar

47. Goldsztaub, S. Structure de l’oxychlorure de fer. Bull Soc Fr Mineral 1935;58:49–53.10.3406/bulmi.1935.4363Suche in Google Scholar

48. van Smaalen, S, Palatinus, L, Schönleber, A. Incommensurate interactions and nonconventional spin-Peierls transition in TiOBr. Phys Rev B 2005;72:020105(R). https://doi.org/10.1103/PhysRevB.72.020105.Suche in Google Scholar

49. Seidel, A, Marianetti, CA, Chou, FC, Ceder, G, Lee, PA. S = 1/2 chains and spin–Peierls transition in TiOCl. Phys Rev B 2003;67:020405. https://doi.org/10.1103/PhysRevB.67.020405.Suche in Google Scholar

50. Shaz, M, van Smaalen, S, Palatinus, L, Hoinkis, M, Klemm, M, Horn, S, et al.. Spin–peierls transition in TiOCl. Phys Rev B 2005;71:100405(R). https://doi.org/10.1103/PhysRevB.71.100405.Suche in Google Scholar

51. Schönleber, A, van Smaalen, S, Palatinus, L. Structure of the incommensurate phase of the quantum magnet TiOCl. Phys Rev B 2006;73:214410. https://doi.org/10.1103/PhysRevB.73.214410.Suche in Google Scholar

52. Schönleber, A, Shcheka, G, van Smaalen, S. Normal-to-incommensurate phase transition in the spin-Peierls compound TiOCl: an X-ray diffraction study. Phys Rev B 2008;77:094117. https://doi.org/10.1103/PhysRevB.77.094117.Suche in Google Scholar

53. Komarek, AC, Taetz, T, Fernández-Díaz, MT, Trots, DM, Möller, A, Braden, M. Strong magnetoelastic coupling in VOCl: neutron and synchrotron powder x-ray diffraction study. Phys Rev B 2009;79:104425. https://doi.org/10.1103/PhysRevB.79.104425.Suche in Google Scholar

54. A Schönleber, J Angelkort, S van Smaalen, L Palatinus, A Senyshyn, W Morgenroth. Phase transition, crystal structure and magnetic order in VOCl. Phys Rev B 2009;80:064426. https://doi.org/10.1103/PhysRevB.80.064426.Suche in Google Scholar

55. M Ekholm, A Schönleber, S van Smaalen. The role of magnetic order in VOCl. J Phys Condens Matter 2019;31:325502 https://doi.org/10.1088/1361-648X/ab1eff.Suche in Google Scholar PubMed

56. Christensen, AN, Johansson, T, Quézel, S. Preparation and magnetic properties of CrOCl. Acta Chem Scand 1974;28:1171–4. https://doi.org/10.3891/acta.chem.scand.28a-1171.Suche in Google Scholar

57. Angelkort, J, Wölfel, A, Schönleber, A, van Smaalen, S, Kremer, RK. Observation of strong magnetoelastic coupling in a first-order phase transition of CrOCl. Phys Rev B 2009;80:144416. https://doi.org/10.1103/PhysRevB.80.144416.Suche in Google Scholar

58. Grant, RW. Magnetic structure of FeOCl. J Appl Phys 1971;42:1619–20. https://doi.org/10.1063/1.1660366.Suche in Google Scholar

59. Adam, A, Buisson, G. Structure magnétique cycloïdale de FeOCl. Phys Status Solidi 1975;30:323–9. https://doi.org/10.1002/pssa.2210300133.Suche in Google Scholar

60. Zhang, J, Wölfel, A, Li, L, van Smaalen, S, Williamson, HL, Kremer, RK. Magnetoelastic coupling in the incommensurate antiferromagnetic phase of FeOCl. Phys Rev B 2012;86:134428. https://doi.org/10.1103/PhysRevB.86.134428.Suche in Google Scholar

61. Petricek, V, Fuksa, J, Dusek, M. Magnetic space and superspace groups, representation analysis: competing or friendly concepts? Acta Crystallogr A 2010;66:649–55. https://doi.org/10.1107/S0108767310030527.Suche in Google Scholar PubMed

62. Perez-Mato, JM, Ribeiro, JL, Petricek, V, Aroyo, MI. Magnetic superspace groups and symmetry constraints in incommensurate magnetic phases. J Phys Condens Matter 2012;24:163201. https://doi.org/10.1088/0953-8984/24/16/163201.Suche in Google Scholar PubMed

63. Gallego, SV, Pérez-Mato, JM, Elcoro, L, Tasci, ES, Hanson, RM, Momma, K, et al.. Koichi momma, mois ilia aroyo, and gotzon madariaga. MAGNDATA: towards a database of magnetic structures. I. The commensurate case. J Appl Crystallogr 2016;49:1750–76. https://doi.org/10.1107/S1600576716012863.Suche in Google Scholar

64. Gallego, SV, Pérez-Mato, JM, Elcoro, L, Tasci, ES, Hanson, RM, Aroyo, MI, et al.. Mois Ilia Aroyo, and Gotzon Madariaga. MAGNDATA: towards a database of magnetic structures. II. The incommensurate case. J Appl Crystallogr 2016;49:1941–56. https://doi.org/10.1107/S1600576716015491.Suche in Google Scholar

65. Fawcett, E. Spin-density-wave antiferromagnetism in chromium. Rev Mod Phys 1988;60:209–83. https://doi.org/10.1103/RevModPhys.60.209.Suche in Google Scholar

66. van Smaalen, S. The Peierls transition in low-dimensional electronic crystals. Acta Crystallogr A 2005;61:51–61. https://doi.org/10.1107/S0108767304025437.Suche in Google Scholar PubMed

67. Monceau, P. Electronic crystals: an experimental overview. Adv Phys 2012;61:325–581. https://doi.org/10.1080/00018732.2012.719674.Suche in Google Scholar

68. Wölfel, A, Li, L, Shimomura, S, Onodera, H, van Smaalen, S. Commensurate charge-density wave with frustrated interchain coupling in SmNiC2. Phys Rev B 2010;82:054120. https://doi.org/10.1103/PhysRevB.82.054120.Suche in Google Scholar

69. Schönleber, A, van Smaalen, S, Weiss, H-C, Kesel, AJ. N−H⋯O and C−H⋯F hydrogen bonds in the incommensurately modulated crystal structure of adamantan−1 − ammonium 4 − fluorobenzoate. Acta Crystallogr B 2014;70:652–9. https://doi.org/10.1107/S2052520614007707.Suche in Google Scholar PubMed

Received: 2019-05-25
Accepted: 2023-04-25
Published Online: 2023-05-31

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2018-0140/html
Button zum nach oben scrollen