Startseite From natural products to drugs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

From natural products to drugs

  • David J. Newman EMAIL logo
Veröffentlicht/Copyright: 20. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

It is frequently assumed, particularly in the last 15 plus years, that “Natural Product Structures” are no longer a source of drugs in the twenty-first century. In fact, this is not at all true. Even today, in the search for novel agents against manifold diseases, natural product structures, some quite old and some quite recent, are behind the compounds that are either recently (last 5–10 years) approved or that are now in clinical trials against manifold diseases of man. This chapter will cover agents approved since 2010 to the end of 2017 by the US FDA and its equivalent in other countries, plus selected agents that have entered clinical trials against major diseases such as cancer and infections that have “in their chemical pedigree” a natural product structure, even if the final product may be totally synthetic in nature.

References

[1] Newman DJ, Cragg GM. Natural products as sources of new drugs 1981 to 2014. J Nat Prod. 2016;79:629–61.10.1021/acs.jnatprod.5b01055Suche in Google Scholar PubMed

[2] Nakajima H, Kim YB, Terano H, Yoshida M, Horinouchi S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res. 1998;241:126–33.10.1006/excr.1998.4027Suche in Google Scholar PubMed

[3] Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Revs Drug Discov. 2010;9:883–97.10.1038/nrd3248Suche in Google Scholar PubMed

[4] Strader CR, Pearce CJ, Oberlies NH. Fingolimod (FTY720): A recently approved multiple sclerosis drug based on a fungal secondary metabolite. J Nat Prod. 2011;74:900–07.10.1021/np2000528Suche in Google Scholar PubMed

[5] Dyckman AJ. Modulators of sphingosine-1-phosphate pathway biology: recent advances of sphingosine-1-phosphate receptor 1 (S1P1) agonists and future perspectives. J Med Chem. 2017;60:5267–89.10.1021/acs.jmedchem.6b01575Suche in Google Scholar PubMed

[6] Hou X, Zhang H, Chen B-C, Guo Z, Singh A, Goswami A, et al. Regioselective epoxide ring opening for the stereospecific scale-up synthesis of BMS-960, a potent and selective isoxazole-containing S1P1 receptor agonist. Org Process Res Dev. 2017;21:200−207.10.1021/acs.oprd.6b00366Suche in Google Scholar

[7] Pan S, Gray NS, Gao W, Mi Y, Fan Y, Wang X, et al. Discovery of BAF312 (siponimod), a potent and selective S1P receptor modulator. ACS Med Chem Lett. 2013;4:333−337.10.1021/ml300396rSuche in Google Scholar PubMed PubMed Central

[8] Yu MJ, Kishi Y, Littlefield BA. Discovery of E7389, a fully synthetic macrocyclic ketone analog of Halichondrin B. In: Cragg GM, Kingston DGI, Newman DJ, editor(s). Anticancer agents from natural products, 1st ed. Boca Raton: Taylor and Francis, 2005:267–280.Suche in Google Scholar

[9] Wang Y, Serradell N, Bolos J, Rosa E. Eribulin mesilate. Drugs Fut. 2007;32:681–98.10.1358/dof.2007.032.08.1127245Suche in Google Scholar

[10] Jackson KL, Henderson JA, Phillips AJ. The halichondrins and E7389. Chem Rev. 2009;109:3044–79.10.1021/cr900016wSuche in Google Scholar PubMed

[11] Twelves C, Cortes J, Vahdat LT, Wanders J, Akerele C, Kaufman PA. Phase III trials of Eribulin Mesylate (E7389) in extensively pretreated patients with locally recurrent or metastatic breast cancer. Clin Breast Can. 2010;10:160–63.10.3816/CBC.2010.n.023Suche in Google Scholar PubMed

[12] Mcalpine JB. The ups and downs of drug discovery: the early history of Fidaxomicin. J Antibiot (Tokyo). 2017;70:492–94.10.1038/ja.2016.157Suche in Google Scholar PubMed

[13] Ding HX, Liu KK-C, Sakya SM, Flick AC, O’donnell CJ. Synthetic approaches to the 2011 new drugs. Bioorg Med Chem. 2013;21:2795–825.10.1016/j.bmc.2013.02.061Suche in Google Scholar PubMed

[14] Newman DJ, Cragg GM. Drug candidates from marine sources: an assessment of the current “state of play. Planta Medica. 2016;82:775–89.10.1055/s-0042-101353Suche in Google Scholar PubMed

[15] Weedon D, Chick J. Home treatment of basal cell carcinoma. Med J Aust. 1976;1:928.10.5694/j.1326-5377.1976.tb141173.xSuche in Google Scholar PubMed

[16] Appendino G, Tron GC, Cravotto G, Palmisano G, Jakupovic J. An expeditious procedure for the isolation of ingenol from the seeds of Euphorbia lathyris. J Nat Prod. 1999;62:76–79.10.1021/np980218nSuche in Google Scholar PubMed

[17] Liang X, Grue-Sorensen G, Petersen AK, Hogberg T. Semisynthesis of ingenol 3-angelate (PEP005): efficient stereoconservative angeloylation of alcohols. Synlett. 2012;23:2647–52.10.1055/s-0032-1317415Suche in Google Scholar

[18] Jørgensen L, Mckerrall SJ, Kuttruff CA, Ungeheuer F, Felding J, Baran PS. 14-Step synthesis of (+)-Ingenol from (+)-3-Carene. Science. 2013;341:878–82.10.1126/science.1241606Suche in Google Scholar PubMed

[19] Luo D, Callari R, Hamberger B, Wubshet SG, Nielsen MT, Andersen-Ranberg J, et al. Oxidation and cyclization of casbene in the biosynthesis of Euphorbia factors from mature seeds of Euphorbia lathyris L. Proc Natl Acad Sci USA. 2016;113:E5082–E5089.10.1073/pnas.1607504113Suche in Google Scholar PubMed PubMed Central

[20] Michaudel Q, Ishihara Y, Baran PS. Academia−Industry symbiosis in organic chemistry. Acc Chem Res. 2015;48:712–21.10.1021/ar500424aSuche in Google Scholar PubMed PubMed Central

[21] Mckerrall SJ, Jørgensen L, Kuttruff CA, Ungeheuer F, Baran PS. Development of a concise synthesis of (+)-Ingenol. J Am Chem Soc. 2014;136:5799−5810.10.1021/ja501881pSuche in Google Scholar PubMed

[22] Newman DJ. Developing natural product drugs: supply problems and how they have been overcome. Pharmacol Therap. 2016;162:1–9.10.1016/j.pharmthera.2015.12.002Suche in Google Scholar

[23] Powell RD, Weisleder D, Smith Jr CR, Rohwedder WK. Structures of harringtonine, isoharringtonine, and homoharringtonine. Tet Letts. 1970;11:815–18.10.1016/S0040-4039(01)97839-6Suche in Google Scholar

[24] Smith Jr CR, Powell RG, Mikolajczak KL. The genus Cephalotaxus: source of homoharringtonine and related anticancer alkaloids. Cancer Treat Rep. 1976;60:1157–70.Suche in Google Scholar PubMed

[25] Zhang ZY. Clinical analysis of the therapeutic effect of semisynthetic harringtonine in treating 55 cases of nonlymphocytic leukemia. Zhonghua Nei Ke Za Zhi [Chinese Journal of Internal Medicine]. 1981;20:667–69.Suche in Google Scholar

[26] O’Dwyer PJ, King SA, Hoth DF, Suffness M, Leyland-Jones B. Homoharringtonine–perspectives on an active new natural product. J Clin Oncol. 1986;4:1563–68.10.1200/JCO.1986.4.10.1563Suche in Google Scholar PubMed

[27] Kantarjian HM, O’Brien S, Cortes J. Homoharringtonine/Omacetaxine Mepesuccinate: the long and winding road to food and drug administration approval. Clin Lymph Myel Leuk. 2013;13:530–33.10.1016/j.clml.2013.03.017Suche in Google Scholar PubMed PubMed Central

[28] Liu Y, Liu S-X, Li Y-C, Li C-F. Optimization of homoharringtonine fermentation conditions for Alternaria tenuissima CH1307, an endophytical fungus of Cephalotaxus mannii Hook F. J Trop Med. 2012;3:236–42.Suche in Google Scholar

[29] Zhang Y. Farnesoid X receptor: acting through bile acids to treat metabolic disorders. Drugs Fut. 2010;35:635–41.10.1358/dof.2010.035.08.1520865Suche in Google Scholar PubMed PubMed Central

[30] Sanchez LM, Cheng AT, Warner CJA, Townsley L, Peach KC, Navarro G, et al. Biofilm formation and detachment in Gram-negative pathogens Is modulated by select bile acids. PLoS ONE. 2016;11:e0149603.10.1371/journal.pone.0149603Suche in Google Scholar PubMed PubMed Central

[31] Kusari S, Lamshoft M, Kusari P, Gottfried S, Zuhlke S, Louven K, et al. Endophytes are hidden producers of maytansine in Putterlickia roots. J Nat Prod. 2014;77:2577–84.10.1021/np500219aSuche in Google Scholar PubMed

[32] Masters JC, Nickens DJ, Xuan D, Shazer RJ, Amantea M. Clinical toxicity of antibody drug conjugates: a meta-analysis of payloads. Invest New Drugs. 2018;36:121–35.10.1007/s10637-017-0520-6Suche in Google Scholar PubMed

[33] Malabarba A, Ciabatti R, Scotti R, Goldstein BP, Ferrari P, Kurz M, et al. New semisynthetic glycopeptides MDL 63,246 and MDL 63,042, and other amide derivatives of antibiotic A-40,926 active against highly glycopeptide-resistant VanA enterococci. J Antibiot (Tokyo). 1995;48:869–83.10.7164/antibiotics.48.869Suche in Google Scholar PubMed

[34] Garnock-Jones KP. Single-dose dalbavancin: A review in acute bacterial skin and skin structure infections. Drugs. 2017;77:75–83.10.1007/s40265-016-0666-0Suche in Google Scholar PubMed

[35] Omura S, Iwai Y, Hiroano A, Nakagawa A, Awaya J, Tsuchiya H, et al. A new alkaloid AM-2282 of Streptomyces origin, taxonomy, fermetnation, isolation and preliminary characteristics. J Antibiot (Tokyo). 1977;30:275–82.10.7164/antibiotics.30.275Suche in Google Scholar

[36] Amon U, Von Stebut E, Subramanian N, Wolff HH. CGP 41251, a novel protein kinase inhibitor with in vitro selectivity for protein kinase C, strongly inhibits immunological activation of human skin mast cells and human basophils. Pharmacol. 1993;47:200–08.10.1159/000139098Suche in Google Scholar

[37] Caravatti G, Meyer T, Fredenhagen A, Trinks U, H. M, Fabbro D. Inhibitory activity and selectivity of staurosporine derivatives towards protein kinase C. Bioorg Med Chem Letts. 1994;4:399–404.10.1016/0960-894X(94)80004-9Suche in Google Scholar

[38] Stansfield LC, Pollyea DA. Midotaurin: A new oral agent targeting FMS-like tyrosine kinase 3-mutant acute myeloid leukemia. Pharmacother. 2017;31:1586–99.10.1002/phar.2039Suche in Google Scholar PubMed

[39] Hashimoto S. K-252a, a potent protein kinase inhibitor, blocks nerve growth factor-induced neurite outgrowth and changes in the phosphorylation of proteins in PC12h cells. J Cell Biol. 1988;107:1531–39.10.1083/jcb.107.4.1531Suche in Google Scholar PubMed PubMed Central

[40] Newman DJ, Cragg GM. Current status of marine-derived compounds as warheads in anti-tumor drug candidates. Mar Drugs. 2017;15:99.10.3390/md15040099Suche in Google Scholar PubMed PubMed Central

[41] Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Revs Drug Discov. 2017;16:315–37.10.1038/nrd.2016.268Suche in Google Scholar PubMed

[42] Mantaj J, Jackson PJM, Rahman KM, Thurston DE. From anthramycin to pyrrolobenzodiazepine (PBD) containing antibody–drug conjugates (ADCs). Angew Chem Int Ed. 2017;56:462–88.10.1002/anie.201510610Suche in Google Scholar PubMed PubMed Central

[43] Prota AE, Bargsten K, Fernando Diaz J, Marsh M, Cuevas C, Liniger M, et al. A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc Natl Acad Sci USA. 2014;111:13817–21.10.1073/pnas.1408124111Suche in Google Scholar PubMed PubMed Central

[44] Martín MJ, Coello L, Fernández R, Reyes F, Rodríguez A, Murcia C, et al. Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds. J Am Chem Soc. 2013;135:10164–71.10.1021/ja404578uSuche in Google Scholar PubMed

[45] Pera B, Barasoain I, Pantazopoulou A, Canales A, Matesanz R, Rodriguez-Salarichs J, et al. New interfacial microtubule inhibitors of marine origin, PM050489/PM060184, with potent antitumor activity and a distinct mechanism. ACS Chem Biol. 2013;8:2084–94.10.1021/cb400461jSuche in Google Scholar

[46] Aviles PM, Guillen MJ, Dominguez JM, Muñoz-Alonso MJ, Garcia-Fernandez LF, Garranzo M, et al. MI130004, an antibody-drug conjugate including a novel payload of marine origin: evidences of in vivo activity. Europ J Cancer. 2014;50:502.10.1016/S0959-8049(14)70628-8Suche in Google Scholar

[47] ANON. NK-104. Drugs Fut. 1998;23:847–59.10.1358/dof.1998.023.08.468504Suche in Google Scholar

[48] Fabbro D, Cowan-Jacob SW, Moebitz H. Ten things you should know about protein kinases: IUPHAR Review 14. Brit J Pharmacol. 2015;172:2675–700.10.1111/bph.13096Suche in Google Scholar

[49] Rask-Andersen M, Zhang J, Fabbro D, Schioth HB. Advances in kinase targeting: current clinical use and clinical trials. Trends Pharmacol Sci. 2014;35:604–20.10.1016/j.tips.2014.09.007Suche in Google Scholar PubMed

[50] Fabbro D, Ruetz S, Buchdunger E, Cowan-Jacob SW, Fendrich G, Liebetanz J, et al. Protein kinases as targets for anticancer agents: from inhibitors to useful drugs. Pharmacol Therap. 2002;93:79–98.10.1016/S0163-7258(02)00179-1Suche in Google Scholar

Published Online: 2018-11-20

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 5.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2018-0111/html?lang=de
Button zum nach oben scrollen