Abstract
Natural products are also called secondary metabolites to distinguish them from the primary metabolites, i.e. those natural compounds like glucose, amino acids, etc. that are present in every living cell and are used and required in the essential life processes of cells. Natural products are classified according to their metabolic building blocks into alkaloids, fatty acids, polyketides, phenyl propanoids and aromatic polyketides, and terpenoids. The structural diversity of natural products is explored using the scaffold approach focusing on the characteristic carbon frameworks. Aside from discussing specific alkaloids that are either pharmacologically (e.g. boldine, berberine, galantamine, etc.) or historically (caffeine, atropine, lobeline, etc.) important alkaloids, a single chart is presented which shows the typical scaffolds of the most important subclasses of alkaloids. How certain classes of natural products are formed in nature from simple biochemical ‘building blocks’ are shown using graphical schemes. This has been done for a typical tetra-ketide (6-methylsalicylic acid) from acetyl coenzyme A, or in general to all the major subclasses of terpenes. An important aspect of understanding the structural diversity of natural products is to recognize how some compounds can be visualized as key intermediates for enzyme mediated transformation to several other related structures. This is seen in the case of how arachidonic acid can transform into prostaglandins, or geranyl diphosphate to various monoterpenes, or squalene epoxide to various pentacyclic triterpenes, or cholesterol transforming to sex hormones, bile acids and the cardioactive cardenolides and bufadienolides. These are presented in carefully designed schemes and charts that are appropriately placed in the relevant sections of the narrative texts. The ecological functions and pharmacological properties of natural products are also presented showing wherever possible how the chemical scaffolds have led to developing drugs as well as commercial products like sweeteners.
Funding statement: The authors gratefully acknowledge the University of Johannesburg and the National Research Foundation (NRF) of South Africa for funding the project and to Prof. S. A. Khalid and Dr Tarekegn G. Yesus for reading the manuscript and making useful comments and improvements.
References
[1] Marais J, Du Toit P. Monofluoroacetic acid, the toxic principle of “gifblaar”, Dichapetalum cymosum (Hook) Engl. Onderstepoort. J Vet Sci Anim Ind. 1944;20:67–73.Search in Google Scholar
[2] Wall ME, Wani MC, Brown DM, Fullas F, Olwaldi JB, Josephson FF, et al. Effect of tannins on screening of plant extracts for enzyme inhibitory activity and techniques for their removal. Phytomedicine. 1996;3:281–5.10.1016/S0944-7113(96)80067-5Search in Google Scholar PubMed
[3] Picker P, Vogl S, McKinnon R, Mihaly-Bison J, Binder M, Atanasov AG, et al. Plant extracts in cell-based anti-inflammatory assays—pitfalls and considerations related to removal of activity masking bulk components. Phytochem Lett. 2014;10.10.1016/j.phytol.2014.04.001Search in Google Scholar
[4] Harvey A, Edrada-Ebel RQ, Quinn RJ. The reemergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;1–19.10.1038/nrd4510Search in Google Scholar PubMed
[5] Koch MA, Schuffenhauer A, Scheck M, Wetzel S, Casaulta M, Odermatt A, et al. Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci (PNAS). 2005;102:17272–7.10.1073/pnas.0503647102Search in Google Scholar PubMed PubMed Central
[6] Khanna V, Ranganathan S. Structural diversity of biologically interesting datasets: a scaffold analysis approach. J Cheminform. 2011;3:1–14.10.1186/1758-2946-3-30Search in Google Scholar PubMed PubMed Central
[7] Schäfer T, Kriege N, Humbeck L, Klein K, Koch O, Mutzel P. Scaffold Hunter: a comprehensive visual analytics framework for drug discovery. J Cheminform. 2017;9:1–18.10.1186/s13321-017-0213-3Search in Google Scholar PubMed PubMed Central
[8] Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016;8:531–541.10.1038/nchem.2479Search in Google Scholar PubMed
[9] Skinnider MA, Dejong CA, Franczak BC, McNicholas PD, Magarvey NA. Comparative analysis of chemical similarity methods for modular natural products with a hypothetical structure enumeration algorithm. J Cheminform. 2017;9:1–15.10.1186/s13321-017-0234-ySearch in Google Scholar PubMed PubMed Central
[10] Amirkia V, Heinrich M. Alkaloids as drug leads – a predictive structural and biodiversity-based analysis. Phytochem Lett. 2014;1010.1016/j.phytol.2014.06.015Search in Google Scholar
[11] Yusuf M, Firdaus AR, Supratman U. Computational study of bufadienolides from Indonesia’s Kalanchoe pinnata as Na+/K+-ATPase inhibitor for anticancer agent. J Young Pharmacists. 2017;9:475–9.10.5530/jyp.2017.9.93Search in Google Scholar
[12] Al B. The source-synthesis- history and use of atropine. J Acad Emergency Med. 2014;13:2–3.10.5152/jaem.2014.1120141Search in Google Scholar
[13] Willstätter R. Umwandlung von tropidin in tropin. Berichte der Deutschen Chemischen Gesellschaft, 1901;34:3163–5.10.1002/cber.190103402289Search in Google Scholar
[14] Felpin F-X, Leberton J. History, chemistry and biology of alkaloids from Lobelia inflata. Tetrahedron. 2004;60:10127–53.10.1016/S0040-4020(04)01294-3Search in Google Scholar
[15] Henkin R, Velicu I, Schmidt L. An open-label controlled trial of theophylline for treatment of patients with hyposmia. Am J Med Sci. 2009;337:396–406.10.1097/MAJ.0b013e3181914a97Search in Google Scholar PubMed
[16] Barnes PJ. Theophylline. Pharmaceuticals. 2010;3:725–47.10.3390/ph3030725Search in Google Scholar PubMed PubMed Central
[17] Kossel A. Über eine neue base aus dem pflanzenreich. Ber Dtsch Chem Ges. 1888;21:2164–7.10.1002/cber.188802101422Search in Google Scholar
[18] Hiroshi A, Hiromi K. Biosynthesis of purine alkaloids in Camellia plants. Plant Cell Physiol. 1987;28:535–9.Search in Google Scholar
[19] Alexander J, Benford D, Cockburn A, Cravedi J-P, Dogliotti E. Theobromine as undesirable substances in animal feed: scientific opinion of the panel on contaminants in the food chain. Eur Food Saf Authority. 2008;725:1–66.Search in Google Scholar
[20] Abusnina A, Lugnier C. Therapeutic potentials of natural compounds acting on cyclic nucleotide phosphodiesterase families. Cell Signal. 2017;39:55–65.10.1016/j.cellsig.2017.07.018Search in Google Scholar PubMed
[21] Turano A, Scura G, Caruso A, Bonfanti C, Luzzati R, Bassetti D, et al. Inhibitory effect of papaverine on HIV replication in vitro. AIDS Res Hum Retroviruses. 1989;5:183–92.10.1089/aid.1989.5.183Search in Google Scholar PubMed
[22] Gates M, Tschudi G. The synthesis of morphine. J Am Chem Society. 1956;78:1380–4.10.1021/ja01588a033Search in Google Scholar
[23] Barber RB, Rapoport H. Conversion of thebaine to codeine. J Med Chem. 1976;19:1175–80.10.1021/jm00232a002Search in Google Scholar PubMed
[24] Fairbairn JW, Hakim F. Papaver bracteaturn Lindl.-a new plant source of opiates. J Pharm Pharmac. 1973;25:353–8.10.1111/j.2042-7158.1973.tb10028.xSearch in Google Scholar PubMed
[25] Han Z, Zheng Y, Chen N, Luan L, Zhou C, Gan L, et al. Simultaneous determination of four alkaloids in Lindera aggregata by ultra-high-pressure liquid chromatography–tandem mass spectrometry. J Chromatogr. 2008;1212:76–81.10.1016/j.chroma.2008.10.017Search in Google Scholar PubMed
[26] O’Brien P, Carrasco-Pozo C, Speisky H. Boldine and its antioxidant or health-promoting properties. Chem Biol Interact. 2006;159:1–17.10.1016/j.cbi.2005.09.002Search in Google Scholar PubMed
[27] Tietjen I, Ntie-Kang F, Mwimanzi P, Onguéné PA, Scull MA, Idowu TO, et al. Screening of the Pan-African Natural Product Library identifies ixoratannin A-2 and boldine as novel HIV-1 inhibitors. PLoS One. 2015;10(4):1–19.10.1371/journal.pone.0121099Search in Google Scholar PubMed PubMed Central
[28] Kumar A, Ekavali KC, Mukherjee M, Pottabathini R, Dhull DK. Current knowledge and pharmacological profile of berberine: an update. Eur J Pharmacol. 2015;761:288–97.10.1016/j.ejphar.2015.05.068Search in Google Scholar PubMed
[29] Perkin WH, Robinson R. Strychnine, berberine, and allied alkaloids. J Chem Society, Trans. 1910;97:305–23.10.1039/CT9109700305Search in Google Scholar
[30] Kametani T, Noguchi I, Saito K, Kaneda S. Studies on the syntheses of heterocyclic compounds. Part CCCII. Alternative total syntheses of nandinine, canadine, and berberine iodide. J Chem Society. C. 1969:2036–8.10.1039/J39690002036Search in Google Scholar
[31] Janssen B, Schäfer B. Galantamine. ChemTexts. 2017;3:1–21.10.1007/s40828-017-0043-ySearch in Google Scholar
[32] Indu TH, Raja D, Manjunathai D, Ponnusankar S. Can galantamine act as an antidote for organophosphate poisoning? A review. Indian J Pharm Sci. 2016;78:428–35.10.4172/pharmaceutical-sciences.1000136Search in Google Scholar
[33] Barton DHR, Kirby GW. 153. Phenol oxidation and biosynthesis. Part V. The synthesis of galantamine. J Chem Soc (Resumed). 1962;806– DOI: 10.1039/JR9620000806.Search in Google Scholar
[34] Kresge N, Simoni RD, Hill RL. The Prostaglandins, Sune Bergström and Bengt Samuelsson. J Bio Chem. 2016;28:e9–e11.10.1016/S0021-9258(19)76743-XSearch in Google Scholar
[35] Abegaz B, Atnafu G, Duddeck H, Snatzke G. Macrocyclic pyrrolizidine alkaloids of Crotalaria rosenii. Tetrahedron. 1987;43:3263–8.10.1016/S0040-4020(01)90294-7Search in Google Scholar
[36] Dubost C, Marko IE, Ryckmans T. A concise total synthesis of the lichen macrolide (+)-aspicilin. J Am Chem Soc. 2006;8:5137–40.10.1021/ol0620287Search in Google Scholar
[37] Prestwich GD, Collins MS. Macrocyclic lactones as the defense substances of termite genus Armitermes. Tetrahedron Lett. 1981;22:4587–90.10.1016/S0040-4039(01)82988-9Search in Google Scholar
[38] Hayakawa Y, Shin-Ya K, Furihata K, Seto H. Structure of a vovel 60-membered macrolide, quinolidomicin A. J Am Chem Soc. 1993;115:3014–5.10.1021/ja00060a075Search in Google Scholar
[39] Dewick PM. Medicinal natural products: a biosynthetic approach. Chichester: John Wiley & Sons Ltd, 2009.10.1002/9780470742761Search in Google Scholar
[40] Mizuuchi Y, Shi SP, Wanibuchi K, Noguchi H, Abe I. Novel type III polyketide synthases from Aloe arborescens. FEBS J. 2009;276:2391–401.10.1111/j.1742-4658.2009.06971.xSearch in Google Scholar PubMed
[41] Alemayehu A. Bianthraquinones and a spermidine alkaloid from Cassia floribunda. Phytochemistry. 1988;27:3255–8.10.1016/0031-9422(88)80037-2Search in Google Scholar
[42] Bringmann G, Menche D. First atropo-enantioselective total synthesis of the axially chiral phenylanthraquinone and 6’-O-methylknipholone. Angew Chem Int Ed. 2001;40:1687–90.10.1002/1521-3773(20010504)40:9<1687::AID-ANIE16870>3.0.CO;2-6Search in Google Scholar
[43] Sridhar J, Liu J, Foroozesh M, Stevens CL. Inhibition of cytochrome P450 enzymes by quinones and anthraquinones. Chem Res Toxicol. 2011;25:357365.10.1021/tx2004163Search in Google Scholar
[44] Tong X, Mao M, Xie J, Zhang K, Xu D. Insights into the interactions between tetracycline, its degradation products and bovine serum albumin. SpringerPlus. 2016 5:. DOI: 10.1186/s40064-016-2349-4.Search in Google Scholar PubMed
[45] Petersena M, Simmonds MS. Rosmarinic acid. Phytochemistry. 2003;62:121–5.10.1016/S0031-9422(02)00513-7Search in Google Scholar PubMed
[46] Jiang J, Bi H, Zhuang Y, Liu S, Ma Y. Engineered synthesis of rosmarinic acid in Escherichia coli resulting production of a new intermediate, caffeoyl-phenyllactate. Biotechnol Lett. 2016;38:81–8.10.1007/s10529-015-1945-7Search in Google Scholar PubMed
[47] Ardalani H, Avan A, Ghayour-Mobarhan M. Podophyllotoxin: a novel potential natural anticancer agent. Avicenna J. Phytomedicine. 2017;7:285–94.Search in Google Scholar
[48] Hajra S, Garai S, Hazra S. Catalytic enantioselective synthesis of (−)-podophyllotoxin. Org Lett. 2017;19:6530–3.10.1021/acs.orglett.7b03236Search in Google Scholar PubMed
[49] Ting CP, Maimone TJ. C-H bond arylation in the synthesis of aryltetralin lignans: a short total synthesis of podophyllotoxin. Angew Chem Int Ed. 2017;53:3115–9.10.1002/anie.201311112Search in Google Scholar PubMed
[50] Liu Y, Zhu S, Gu K, Guo Z, Huang X, Wang M, et al. GSH-activated NIR fluorescent prodrug for podophyllotoxin delivery. ACS Applied Materials & Interfaces. 2017 8 25;9:29496–504. DOI: 10.1021/acsami.7b07091.Search in Google Scholar PubMed
[51] Vishnuvardhan MVPS, Reddy VS, Chandrasekhar K, Lakshma VN, Sayeed IB, Alarifi A, et al. Click chemistry-assisted synthesis of triazolo linked podophyllotoxin conjugates as tubulin polymerization inhibitors. MedChemComm. 2017;8:1817–23. DOI: 10.1039/c7md00273dSearch in Google Scholar PubMed PubMed Central
[52] Service RF. Genetic engineering turns a common plant into a cancer fighter. Science. 2015.10.1126/science.aad1739Search in Google Scholar
[53] Jung EM, Lee YR. First total synthesis of prorepensin with a bis-geranylated chalcone. Bull Korean Chem Soc. 2009;30:2563–6.10.5012/bkcs.2009.30.11.2563Search in Google Scholar
[54] Calani L, Dall’Asta M, Bruni R, Del Rio D, Flavonoid occurrence, bioavailability, metabolism, and protective effects in humans: focus on flavan-3-ols and flavonols. In: Annalisa Romani, Vincenzo Lattanzio, and Stéphane Quideau, editors. Recent Advances in Polyphenol Research, Chapter 8, vol 4, 1st ed. John Wiley & Sons, Ltd., 2014:239–79.10.1002/9781118329634.ch8Search in Google Scholar
[55] Ferrari B, Castilho P, Tomi F, Rodrigues AI, Costa MDC, Casanova J. Direct identification and quantitative determination of costunolide and dehydrocostuslactone in the fixed oil of Laurus novocanariensis by 13C-NMR spectroscopy. Phytochemical Anal. 2005;16:104–7.10.1002/pca.825Search in Google Scholar
[56] Abegaz B, Tadesse M, Majinda R. Distribution of sesquiterpene lactones and polyacetylenic thiophenes in Echinops. Biochem Syst Ecol. 1991;19:323–8.10.1016/0305-1978(91)90021-QSearch in Google Scholar
[57] Lin X, Peng X, Su C. Potential anti-cancer activities and mechanisms of costunolide and dehydrocostuslactone. Int J Mollecular Sci. 2015;16:10888–906.10.3390/ijms160510888Search in Google Scholar PubMed PubMed Central
[58] Efferth T, Zacchino S, Georgiev MI, Liu L, Wagner H, Panossian A. Nobel Prize for artemisinin brings phytotherapy into the spotlight. Nature. 2015;22:A1–A3.10.1016/j.phymed.2015.10.003Search in Google Scholar PubMed
[59] Paddon CJ, Keasling JD. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol. 2014;12:355–67.10.1038/nrmicro3240Search in Google Scholar PubMed
[60] Amara Z, Bellamy JFB, Horvath R, Miller SJ, Beeby A, Burgard A, et al. Applying green chemistry to the photochemical route to artemisinin. Nature Chemistry. 2015 5 11;7:489–95. DOI: 10.1038/NCHEM.2261Search in Google Scholar PubMed
[61] Burgard A, Gieshoff T, Peschl A, Hörstermann, D, Keleschovsky C, Villa R, et al. Optimisation of the photochemical oxidation step in the industrial synthesis of artemsinin. Chem Eng J. 2016;294:83–96.10.1016/j.cej.2016.02.085Search in Google Scholar
[62] Stipanovic R, Puckhaber LS, Bell AA, Percival AE, Jacobs J. Occurrence of (+)- and (-)-gossypol in wild species of cotton and in Gossypium hirsutum Var. Marie-galante (Watt) Hutchinson. J Agric Food Chem. 2005;53:6266–71.10.1021/jf050702dSearch in Google Scholar PubMed
[63] Zhang A, Jerome A, Klun JA, Wang S, Carrol JF, Debbouns M. Isolongifolenone: a novel sesquiterpene repellent of ticks and mosquitoes. J Med Entomol. 2009;46:100–06.10.1603/033.046.0113Search in Google Scholar PubMed
[64] Klun JA, Kramer M, Zhang SA, Wang S, Debboun M. A quantitative in vitro assay for chemical mosquito-deterrent activity without human blood cells. J Am Mosq Control Assoc. 2008;24:508–12.10.2987/08-5755.1Search in Google Scholar PubMed
[65] Wang S, Zhang A. Facile and efficient synthesis of isolongifolenone. Org Prep Proced: New J Org Synth. 2009;40:405–10.10.1080/00304940809458102Search in Google Scholar
[66] Hoppe W, Brandl F, Strell I, Rohrl M, Gassmann I, Hecker E, et al. X-ray structure analysis of neophorbol. Angew Chem Int Ed. 1967;6:809–10.10.1002/anie.196708091Search in Google Scholar
[67] Kawamura S, Chu H, Felding J, Baran PS. Nineteen-step total synthesis of (+)-phorbol. Nature. 2016;532:91–3.10.1038/nature17153Search in Google Scholar
[68] Keisuke N. 19 step total synthesis of phorbol using a concept of innovative strategy “two-phase synthesis”. J Synth Org Chem Jpn. 2017;75:257–8.10.5059/yukigoseikyokaishi.75.257Search in Google Scholar
[69] Lee K, Cha JK. Formal Synthesis of (+)-Phorbol. J Am Chem Soc. 2001;123: 5590–1.10.1021/ja010643uSearch in Google Scholar PubMed
[70] Bridel M, Lavielle R. Sur le principe sucré des feuilles de Kaâ-hê-é (Stevia rebaundiana B). CR De Acad Sci. 1931;192:1123–5.Search in Google Scholar
[71] Vleggaar R, Ackerrnan LG, Steyn PS. Structure elucidation of monatin, a high-intensity sweetener isolated from the plant Schlerochiton ilicifolius. Journal Chem Soc, Perkin 1. 1992;3095–8.10.1039/p19920003095Search in Google Scholar
[72] Amino Y, Kawahara S, Mori K, Hirasawa K, Sakata H, Kashiwagia T. Preparation and characterization of four stereoisomers of monatin. Chem Pharm Bull. 2016;64:1161–71.10.1248/cpb.c16-00286Search in Google Scholar PubMed
[73] Singla R, Jaitak V. Synthesis of rebaudioside A from stevioside and their interaction model with hTAS2R4 bitter taste receptor. Phytochemistry. 2016;125:106–11.10.1016/j.phytochem.2016.03.004Search in Google Scholar PubMed
[74] Kobayashi S, Shibukawa K, Hamada Y, Kuruma T, Kawabata A. Syntheses of (−)-tripterifordin and (−)-neotripterifordin from stevioside. J Org Chem. 2018;83:1606–13.10.1021/acs.joc.7b02916Search in Google Scholar PubMed
[75] Gross G, Jaccaud G, Huggett AC. Analysis of the content of the diterpenes cafestol and kahweol in coffee brews. Food Chem Toxicol. 1997;35:547–54.10.1016/S0278-6915(96)00123-8Search in Google Scholar PubMed
[76] Ludwig IA, Clifford MN, Lean ME, Ashiharad H. Coffee: biochemistry and potential impact on health. Food Funct. 2014;5:1695–717.10.1039/C4FO00042KSearch in Google Scholar PubMed
[77] Limaa CS, Spindola DG, Bechara A, Garcia DM, Palmeira-dos-Santos C, Peixoto-da-Silvaa J, et al. Cafestol, a diterpene molecule found in coffee, induces leukemia cell death. Biomed Pharmacother. 2017;92:1045–54.10.1016/j.biopha.2017.05.109Search in Google Scholar PubMed
[78] Oh JH, Lee JT, Yang ES, Chang J-S, Lee DS, Kim SH, et al. The coffee diterpene kahweol induces apoptosis in human leukemia U937 cells through down-regulation of Akt phosphorylation and activation of JNK. Apoptosis. 2009;14:1378–86.10.1007/s10495-009-0407-xSearch in Google Scholar PubMed
[79] Lee K-A, Chae J-I, Shim J-H. Natural diterpenes from coffee, cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma. J Biomed Sci. 2012;19:2–10.10.1186/1423-0127-19-60Search in Google Scholar PubMed PubMed Central
[80] Shen T, Lee J, Lee E, Kim SH, Kim W, Cho JY. Cafestol, a coffee-specific diterpene, is a novel extracellular signal regulated kinase inhibitor with AP-1-targeted inhibition of prostaglandin E2 production in Lipopolysaccharide-activated Macrophages. Biol Pharm Bull. 2010;33.10.1248/bpb.33.128Search in Google Scholar PubMed
[81] De Roos B, van der Weg G, Urgert R, van de Bovenkamp P, Charrier A, Katan MB. Levels of cafestol, kahweol, and related diterpenoids in wild species of the coffee plant Coffea. J Agric Food Chem. 1997;45:3065–309.10.1021/jf9700900Search in Google Scholar
[82] Djerassi C, Cais M, Mitscher L. Terpenoids XXXVII. The structure of the pentacyclic diterpene cafestol. On the absolute configuration of diterpenes and alkaloids of the Phyllocladene group. J Am Chem Soc. 1959;81:2386–98.10.1021/ja01519a029Search in Google Scholar
[83] Kaufmann HP, Gupta AK. Terpene als bestandteile des unverseifbaren von fetten, IV.†‡ Zur konstitution des kahweols, II. Chem Ber. 1964;97:2652.10.1002/cber.19640970933Search in Google Scholar
[84] Corey EJ, Wess G, Xiang YB, Singh AK. Stereospecific total synthesis of (±)-cafestol. J Am Chem Soc. 1987;109:4717–18.10.1021/ja00249a043Search in Google Scholar
[85] Zhu L, Luo J, Hong R. Total synthesis of (±)-cafestol: a late-stage construction of the furan ring inspired by a biosynthesis strategy. Org Lett. 2014;16:2162–5.10.1021/ol500623wSearch in Google Scholar PubMed
[86] Chudzik M, Korzonek-Szlacheta IK. Triterpenes as potentially cytotoxic compounds. Molecules. 2015;20:1610–25.10.3390/molecules20011610Search in Google Scholar PubMed PubMed Central
[87] Ríos J. Effects of triterpenes on the immune system. J Ethnopharmacol. 2010;128:1–14.10.1016/j.jep.2009.12.045Search in Google Scholar PubMed
[88] Kuznetsova SA, Skvortsova GP, Maliara N, Skurydina ES, Veselova OF. Extraction of betulin from birch bark and study of its physico-chemical and pharmacological properties. Russian J Bioorg Chem. 2014;40:742–7.10.1134/S1068162014070073Search in Google Scholar
[89] Sebastian Jäger S, Trojan H, Kopp T, Laszczyk MN, Scheffler A. Pentacyclic triterpene distribution in various plants – rich sources for a new group of multi-potent plant extracts. Molecules. 2009;14:2016–31.10.3390/molecules14062016Search in Google Scholar PubMed PubMed Central
[90] Pichette A, Liu H, Roy C, Tanguay S, Simard F, Lavoie S. Selective oxidation of betulin for the preparation of betulinic acid, an antitumoral compound. Synth Commun. 2004;34:3925–37.10.1081/SCC-200034788Search in Google Scholar
[91] Rios JL, Manez S. New pharmacological opportunities for betulinic acid. Planta Med. 2018;84:8–19.10.1055/s-0043-123472Search in Google Scholar PubMed
[92] Ali-Seyed M, Jantan I, Vijayaraghavan K, Nasir S, Bukhari A. Betulinic acid: recent advances in chemical mechanisms of a promising anticancer therapy. Chem Biol Drug Des. 2016;87:517–36.10.1111/cbdd.12682Search in Google Scholar PubMed
[93] Zhang X, Hu J, Chen Y. Betulinic acid and the pharmacological effects of tumor suppression (Review). Mol Med Rep. 2016;14:4489–95.10.3892/mmr.2016.5792Search in Google Scholar PubMed
[94] Csuk R. Betulinic acid and its derivatives: a patent review (2008 – 2013). Expert Opin Ther Pat. 2014;24:1–11.10.1517/13543776.2014.927441Search in Google Scholar PubMed
[95] Correa RC, Peralta RM, Bracht A, Ferreira IC. The emerging use of mycosterols in food industry along with the current trend of extended use of bioactive phytosterols. Trends Food Sci Technol. 2017;67:19–35.10.1016/j.tifs.2017.06.012Search in Google Scholar
[96] Liu J. Discovery of bufadienolides as a novel class of ClC-3 chloride channel activators with antitumor activities. J Medicinal Chemistry. 2013 7 10;56:5734–43. DOI: 10.1021/jm400881m.Search in Google Scholar
[97] Wen S, Chen Y, Lu Y, Wang Y, Ding L, Jiang M. Cardenolides from the Apocynaceae family and their anticancer activity. Fitoterapia. 2016;112:74–84.10.1016/j.fitote.2016.04.023Search in Google Scholar PubMed
[98] Hutchinson D, Savitzky AH, Burghardt GM, Nguyen C, Meinwald J, Schroeder FC. Chemical defense of an Asian snake reflects local availability of toxic prey and hatchling diet. J Zool. 2013;289:270–8.10.1111/jzo.12004Search in Google Scholar
[99] Krenn L, Kopp B. Bufadienolides from animal and plant sources. Phytochemistry. 1998;48:1–29.10.1016/S0031-9422(97)00426-3Search in Google Scholar PubMed
[100] Chan EW, Sweidan NI, Wong SK, Chan HT. Cytotoxic cardenolides from Calotropis species: a short review. Records Nat Prod. 2017;11:334–44.10.25135/rnp.2017.1701.002Search in Google Scholar
[101] Mohamed NH, Liu M, Abdel-Mageed WM, Alwahibi LH, Dai H, Ismail MA, et al. Cytotoxic cardenolides from the latex of Calotropis procera. Bioorg Med Chem Lett. 2015;25:4615–20.10.1016/j.bmcl.2015.08.044Search in Google Scholar PubMed
[102] Thiilborg ST, Christensen SB, Cornett C, Olsen CE, Lemmich E. Molluscicidal saponins from a Zimbabwean strain of Phytolacca dodecandra. Phytochemistry. 1994;36:753–9.10.1016/S0031-9422(00)89811-8Search in Google Scholar PubMed
[103] Bartlet GR. Biology of free and combined adenine; distribution and metabolism. Transfusion. 1977;17:339–50.10.1046/j.1537-2995.1977.17477216862.xSearch in Google Scholar PubMed
[104] Da Silva L, Alves VL, Mendonça LVH, Conserva LM, da Rocha, EMM, Andrade EHA, et al. Chemical constituents and preliminary antimalarial activity of Humiria balsamifera. Pharm Biol. 2004;42:94–7.10.1080/13880200490510702Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Gas chromatography/mass spectrometry techniques for the characterisation of organic materials in works of art
- Computer-based techniques for lead identification and optimization I: Basics
- 10.1515/psr-2018-0155
- Polyoxometalates in photocatalysis
- A primer on natural product-based virtual screening
- Theoretical principles of Raman spectroscopy
- Secondary metabolites, their structural diversity, bioactivity, and ecological functions: An overview
- Applications in: Environmental Analytics (fine particles)
- Synthesis and characterization of size controlled bimetallic nanosponges
Articles in the same Issue
- Gas chromatography/mass spectrometry techniques for the characterisation of organic materials in works of art
- Computer-based techniques for lead identification and optimization I: Basics
- 10.1515/psr-2018-0155
- Polyoxometalates in photocatalysis
- A primer on natural product-based virtual screening
- Theoretical principles of Raman spectroscopy
- Secondary metabolites, their structural diversity, bioactivity, and ecological functions: An overview
- Applications in: Environmental Analytics (fine particles)
- Synthesis and characterization of size controlled bimetallic nanosponges