Abstract
Catalysis is, often, the preferred approach to access chiral molecules in enantioenriched form both in academia and in industry; nowadays, organocatalysis is recognised as the third pillar in asymmetric catalysis, along with bio- and metal-catalysis. Despite enormous advancements in academic research, there is a common belief that organocatalysis is not developed enough to be applicable in industry. In this review, we describe a selection of industrial routes and their R&D process for the manufacture of active pharmaceutical ingredients, highlighting how asymmetric organocatalysis brings added value to an industrial process. The thorough study of the steps, driven by economic stimuli, developed and improved chemistry that was, otherwise, believed to not be applicable in an industrial setting. The knowledge discussed in the reviewed papers will be an invaluable resource for the whole research community.
References
[1] In: Blaser H-U, Schmidt E, editor(s). Asymmetric catalysis on industrial scale: challenges, approaches and solutions. Weinheim, Germany: Wiley-VCH, 2004Suche in Google Scholar
[2] In: Dalko P, editor(s). Comprehensive Enantioselective Organocatalysis (3 Volumes). Weinheim, Germany: Wiley-VCH, 201310.1002/9783527658862Suche in Google Scholar
[3] In: List B, editor(s). Asymmetric organocatalysis, in topics in current chemistry, 2010. Berlin, Germany and New York, USA: Springer-Verlag, 2009:19110.1007/978-3-642-02815-1Suche in Google Scholar
[4] In: Rios Torres R, editor(s). Stereoselective Organocatalysis. Hoboken, New Jersey, USA: Wiley, 201310.1002/9781118604755Suche in Google Scholar
[5] Melchiorre P, Marigo M, Carlone A, Bartoli B. Asymmetric aminocatalysis—gold rush in organic chemistry. Angew Chem Int Ed. 2008;47:6138–71.10.1002/anie.200705523Suche in Google Scholar PubMed
[6] Ahrendt KA, Borths CJ, MacMillan DWC. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels−Alder reaction. J Am Chem Soc. 2000;122:4243–4.10.1021/ja000092sSuche in Google Scholar
[7] List B, Lerner RA, Barbas III CF. Proline-catalyzed direct asymmetric aldol reactions. J Am Chem Soc. 2000;122:2395–6.10.1021/ja994280ySuche in Google Scholar
[8] MacMillan DWC. The advent and development of organocatalysis. Nature. 2008;455:304–8.10.1038/nature07367Suche in Google Scholar PubMed
[9] Marqués-López E, Herrera RP, Christmann M. Asymmetric organocatalysis in total synthesis – a trial by fire. Nat Prod Rep. 2010;27:1138–67.10.1039/b924964hSuche in Google Scholar PubMed
[10] Alemán J, Cabrera S. Applications of asymmetric organocatalysis in medicinal chemistry. Chem Soc Rev. 2013;42:774–93.10.1039/C2CS35380FSuche in Google Scholar PubMed
[11] Abbasov ME, Romo D. The ever-expanding role of asymmetric covalent organocatalysis in scalable, natural product synthesis. Nat Prod Rep. 2014;31:1318–27.10.1039/C4NP00025KSuche in Google Scholar PubMed PubMed Central
[12] Sun BF. Total synthesis of natural and pharmaceutical products powered by organocatalytic reactions. Tetrahedron Lett. 2015;56:2133–40.10.1016/j.tetlet.2015.03.046Suche in Google Scholar
[13] Merad J, Lalli C, Bernadat G, Maury J, Masson G. Enantioselective Brønsted acid catalysis as a tool for the synthesis of natural products and pharmaceuticals. Chem Eur J. 2018;24:3925–43.10.1002/chem.201703556Suche in Google Scholar PubMed
[14] Hughes DL. Asymmetric organocatalysis in drug development – highlights of recent patent literature. Org Process Res Dev. 2018;22:574–84.10.1021/acs.oprd.8b00096Suche in Google Scholar
[15] Hajos ZG, Parrish DR. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J Org Chem. 1974;39:1615–21.10.1021/jo00925a003Suche in Google Scholar
[16] Eder U, Sauer G, Wiechert R. New type of asymmetric cyclization to optically active steroid CD partial structures. Angew Chem Int Ed. 1971;10:496–7.10.1002/anie.197104961Suche in Google Scholar
[17] Dolling U-H, Davis P, Grabowski EJJ. Efficient catalytic asymmetric alkylations. 1. Enantioselective synthesis of (+)-indacrinone via chiral phase-transfer catalysis. J Am Chem Soc. 1984;106:446–7.10.1021/ja00314a045Suche in Google Scholar
[18] Maruoka K. Practical aspects of recent asymmetric phase-transfer catalysis. Org Process Res Dev. 2008;12:679–97.10.1021/op7002979Suche in Google Scholar
[19] Tan J, Yasuda N. Contemporary asymmetric phase transfer catalysis: large-scale industrial applications. Org Process Res Dev. 2015;19:1731–46.10.1021/acs.oprd.5b00304Suche in Google Scholar
[20] For a selection of examples, see the special feature section. Org Process Res Dev. 2011;15:1088–211.10.1021/op200214dSuche in Google Scholar
[21] Butters M, Catterick D, Craig A, Curzons A, Dale D, Gillmore A, et al. Critical assessment of pharmaceutical processess - a rationale for changing the synthetic route. Chem Rev. 2006;106:3002–27.10.1021/cr050982wSuche in Google Scholar PubMed
[22] In: Blaser H-U, Federsel H-J, editor(s). Asymmetric catalysis on industrial scale: challenges, approaches and solutions, Second ed. Weinheim, Germany: Wiley-VCH . see Chapters 9, 26, 27 201110.1002/9783527630639Suche in Google Scholar
[23] Xu F. Organocatalysis for asymmetric synthesis – from lab to factory. In: Dunn PJ, Hi KK (M), Krische MJ, Williams MT, editor(s). Sustainable catalysis - challenges and practices for the pharmaceutical and fine chemical industries. Hoboken, New Jersey, USA: Wiley. Chapter 14 2013:317–38.10.1002/9781118354520.ch14Suche in Google Scholar
[24] Scott JP, Ashwood MS, Brands KM, Brewer SE, Cowden CJ, Dolling UH, et al. Development of a phase transfer catalyzed asymmetric synthesis for an estrogen receptor beta selective agonist. Org Process Res Dev. 2008;12:723–30.10.1021/op700178qSuche in Google Scholar
[25] Xu F, Zacuto M, Yoshikawa N, Desmond R, Hoerrner S, Itoh T, et al. Asymmetric synthesis of telcagepant, a CGRP receptor antagonist for the treatment of migraine. J Org Chem. 2010;75:7829–41.10.1021/jo101704bSuche in Google Scholar PubMed
[26] Xu F, Corley E, Zacuto M, Conlon DA, Pipik B, Humphrey G, et al. Asymmetric synthesis of a potent, aminopiperidine-fused imidazopyridine dipeptidyl peptidase IV inhibitor. J Org Chem. 2010;75:1343–53.10.1021/jo902573qSuche in Google Scholar PubMed
[27] Yue T-Y, McLeod DD, Albertson KB, Beck S R, Deerberg J, Fortunak JM, et al. Stereoselective process for a CCR3 antagonist. Org Process Res Dev. 2006;10:262–71.10.1021/op050202lSuche in Google Scholar
[28] Jiang X, Gong B, Prasad K, Repič O. A practical synthesis of a chiral analogue of FTY720. Org Process Res Dev. 2008;12:1164–9.10.1021/op800144hSuche in Google Scholar
[29] Ishii Y, Fujimoto R, Mikami M, Murakami S, Miki Y, Furukawa Y. Practical syntheses of chiral α-amino acids and chiral half-esters by kinetic resolution of urethane-protected α-amino acid N-carboxyanhydrides and desymmetrization of cyclic meso-anhydrides with new modified Cinchona alkaloid catalysts. Org Process Res Dev. 2007;11:609–15.10.1021/op700023hSuche in Google Scholar
[30] Ager DJ, Anderson K, Oblinger E, Shi Y, VanderRoest J. An epoxidation approach to a chiral lactone: application of the Shi epoxidation. Org Process Res Dev. 2007;11:44–51.10.1021/op060140eSuche in Google Scholar
[31] Mittendorf J, Benet-Buchholz J, Fey P, Mohrs KH. Efficient asymmetric synthesis of β-amino acid BAY 10-8888/PLD-118, a novel antifungal for the treatment of yeast infections. Synthesis. 2003;1:136–4010.1055/s-2003-36265Suche in Google Scholar
[32] Verghese PS, Schleiss MR. Letermovir. Treatment of human cytomegalovirus infection, Antiinfective agent. Drugs Future. 2013;38:291–8.10.1358/dof.2013.038.05.1946425Suche in Google Scholar PubMed PubMed Central
[33] Goossen K, Kuhn O, Berwe M, Krüger J, Militzer H-C. Process for the preparation of dihydroquinazolines. US20090221822.Suche in Google Scholar
[34] Humphrey GR, Dalby S M, Andreani T, Xiang B, Luzung MR, Song ZJ, et al. Asymmetric synthesis of letermovir using a novel phase-transfer-catalyzed aza-Michael reaction. Org Process Res Dev. 2016;20:1097–103.10.1021/acs.oprd.6b00076Suche in Google Scholar
[35] Luzung M, Humphrey GR, Xiang B, Belyk K M, Dalby SM, Schwab W, et al. Process for the preparation of substituted quinazoline compounds. WO2015088931 A1.Suche in Google Scholar
[36] Xiang B, Belyk K M, Reamer RA, Yasuda N. Discovery and application of doubly quaternized cinchona-alkaloid-based phase-transfer catalysts. Angew Chem Int Ed. 2014;53:8375–8.10.1002/anie.201404084Suche in Google Scholar PubMed
[37] Chung CK, Liu Z, Lexa KW, Andreani T, Xu Y, Ji Y, et al. Asymmetric hydrogen bonding catalysis for the synthesis of dihydroquinazoline-containing antiviral, letermovir. J Am Chem Soc. 2017;139:10637–40.10.1021/jacs.7b05806Suche in Google Scholar PubMed
[38] Dutschman GE, Grill SP, Gullen EA, Haraguchi K, Takeda S, Tanaka H, et al. Novel 4-substituted stavudine analog with improved anti-human immunodeficiency virus activity and decreased cytotoxicity. Antimicrob Agents Chemother. 2004;48:1640–6.10.1128/AAC.48.5.1640-1646.2004Suche in Google Scholar PubMed PubMed Central
[39] Cheng Y-C, Tanaka H, Baba M Antiviral nucleosides analogs and methods for treating viral infections, especially HIV. US7,589,078.Suche in Google Scholar
[40] Cotte L, Dellamonica P, Raffi F, Yazdanpanah Y, Michel Molina J-M M, Boué F, et al. Randomized placebo-controlled study of the safety, tolerability, antiviral activity, and pharmacokinetics of 10-day monotherapy with BMS-986001, a novel HIV-NRTI, in treatment-experienced HIV-1–infected subjects. Immune Defic Syndr. 2013;63:346–54.10.1097/QAI.0b013e3182965d12Suche in Google Scholar PubMed
[41] Wang F, Flint OP. BMS-986001, an HIV nucleoside reverse transcriptase inhibitor, does not degrade mitochondrial DNA in long-term primary cultures of cells isolated from human kidney, muscle, and adipose tissue. Antimicrob Agents Chemother. 2013;57:6205.10.1128/AAC.01206-13Suche in Google Scholar PubMed PubMed Central
[42] Eastgate MD, Schmidt MA, Fandrick KR. On the design of complex drug candidate syntheses in the pharmaceutical industry. Nature Rev. 2017;1:1–16.10.1038/s41570-017-0016Suche in Google Scholar
[43] Nagai K, Kiguchi S, Koyama H, Hume WE, Tsujimoto S. Method for producing 4′ethynyl d4T. US20100280235.Suche in Google Scholar
[44] Gallagher WP, Deshpande PP, Li J, Katipally K, Sausker J. A Claisen approach to 4′Ed4T. Org Lett. 2015;17:14–7.10.1021/ol503095vSuche in Google Scholar PubMed
[45] Gallagher WP, Deshpande PP, Li J, Katipally K Method for producing festinavir using 5-methyluridine as starting material. WO2014/172264.Suche in Google Scholar
[46] Ortiz A, Benkovics T, Beutner GL, Shi Z, Bultman M, Nye J, et al. Scalable synthesis of the potent HIV inhibitor BMS-986001 by non-enzymatic dynamic kinetic asymmetric transformation (DYKAT). Angew Chem Int Ed. 2015;54:7185–8.10.1002/anie.201502290Suche in Google Scholar PubMed
[47] Ortiz A, Benkovics T, Shi Z, Deshpande PP, Guo Z, Kronenthal DR, et al. Sulfilimine and sulfoxide methods for the preparation of festinavir. WO2013177243A1.Suche in Google Scholar
[48] Ji Y, Benkovics T, Beutner GL, Sfouggatakis C, Eastgate MD, Blackmond DG. Mechanistic insights into the vanadium-catalyzed Achmatowicz rearrangement of furfurol. J Org Chem. 2015;80:1696–702.10.1021/jo502641dSuche in Google Scholar PubMed
[49] Benkovics T, Ortiz A, Guo Z, Goswami A, Deshpande P. Enantioselective preparation of (S)-5-oxo-5,6-dihydro-2 H-pyran-2-yl benzoate. Org Synth. 2014;91:293–306.10.15227/orgsyn.091.0293Suche in Google Scholar
[50] Wilson LJ, Liotta D. A general method for controlling glycosylation stereochemistry in the synthesis of 2′-deoxyribose nucleosides. Tetrahedron Lett. 1990;31:1815–8.10.1016/S0040-4039(00)98793-8Suche in Google Scholar
[51] Mayes BA, Stewart AJ, Moussa AM D-Amino acid compounds for liver disease. WO2013177219A1.Suche in Google Scholar
[52] Gosselin G, Parsy CC, Alexandre F-R, Rahali H, Griffon J-F, Milhau J, et al. 2′-Chloro nucleoside analogs for HCV infection. WO2014058801A1.Suche in Google Scholar
[53] Press release Sep 2017: http://investors.merck.com/news/press-release-details/2017/Merck-Discontinues-MK-3682B-and-MK-3682C-Development-Programs/default.aspx.Suche in Google Scholar
[54] Cahard D, McGuigan C, Balzarini J. Aryloxy phosphoramidate triesters as Pro-Tides. Mini Rev Med Chem. 2004;4:371–81.10.2174/1389557043403936Suche in Google Scholar PubMed
[55] Ross BS, Reddy PG, Zhang H-R, Rachakonda S, Sofia MJ. Synthesis of diastereomerically pure nucleotide phosphoramidates. J Org Chem. 2011;76:8311–19.10.1021/jo201492mSuche in Google Scholar PubMed
[56] Simmons BL, Campos KR, Klapars A, Stewart AJ, Mayes BA, Maligres PE, et al. Process for making nucleoside phosphoramidate compounds. WO2016064797A1.Suche in Google Scholar
[57] DiRocco DA, Ji Y, Sherer EC, Klapars A, Reibarkh M, Dropinski J, et al. A multifunctional catalyst that stereoselectively assembles prodrugs. Science. 2017;356:426–30.10.1126/science.aam7936Suche in Google Scholar PubMed
[58] Press release March 2018: http://investor.xenon-pharma.com/phoenix.zhtml?c=253202&p=irol-newsArticle&ID=2336851.Suche in Google Scholar
[59] Sclafani JA, Chen J, Levy DV, Reese H, Dimitri M, Mudipalli P, et al. The first asymmetric pilot-scale synthesis of TV-45070. Org Process Res Dev. 2017;21:1616–24.10.1021/acs.oprd.7b00237Suche in Google Scholar
[60] Cadieux J-J, Chafeev M, Chowdhury S, Fu J, Jia Q, Abel S, et al. Synthetic methods for spiro-oxindole compounds. U.S. Patent 8,445,696, May 21, 2013.Suche in Google Scholar
[61] Sun S, Fu J, Chowdhury S, Hemeon IW, Grimwood ME, Mansour TS Asymmetric syntheses of spiro-oxindole compounds useful as therapeutic agents. U.S. Patent 9,487,535, Nov 08, 2016.Suche in Google Scholar
[62] Lygo B, Wainwright PG. A new class of asymmetric phase-transfer catalysts derived from Cinchona alkaloids — application in the enantioselective synthesis of α-amino acids. Tetrahedron Lett. 1997;38:8595−8.10.1016/S0040-4039(97)10293-3Suche in Google Scholar
[63] Wang Y, Milkiewicz KL, Kaufman ML, He L, Landmesser NG, Levy DV, et al. Plant process for the preparation of cinchona alkaloid-based thiourea catalysts. Org Process Res Dev. 2017;21:408–13.10.1021/acs.oprd.7b00049Suche in Google Scholar
[64] Vakulya B, Varga S, Csámpai A, Soós T. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts. Org Lett. 2005;7:1967−9.10.1021/ol050431sSuche in Google Scholar PubMed
[65] McCooey SH, Connon SJ, Accessible R. 9-epi-amino cinchona alkaloid derivatives promote efficient, highly enantioselective additions of aldehydes and ketones to nitroolefins. Org Lett. 2007;9:599–602.10.1021/ol0628006Suche in Google Scholar PubMed
[66] Cassani C, Martín-Rapún R, Arceo E, Bravo F, Melchiorre P. Synthesis of 9-amino(9-deoxy)epi Cinchona alkaloids, general chiral organocatalysts for the stereoselective functionalization of carbonyl compounds. Nat Protoc. 2013;8:325–44.10.1038/nprot.2012.155Suche in Google Scholar PubMed
[67] Sigman MS, Vachal P, Jacobsen EN. A general catalyst for the asymmetric Strecker reaction. Angew Chem Int Ed. 2000;39:1279–81.10.1002/(SICI)1521-3773(20000403)39:7<1279::AID-ANIE1279>3.0.CO;2-USuche in Google Scholar
[68] Zuend SJ, Jacobsen EN. Mechanism of amido-thiourea catalyzed enantioselective imine hydrocyanation: transition state stabilization via multiple non-covalent interactions. J Am Chem Soc. 2009;131:15358–74.10.1021/ja9058958Suche in Google Scholar PubMed
[69] Zuend SJ, Coughlin MP, Lalonde MP, Jacobsen EN. Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids. Nature. 2009;461:968–71.10.1038/nature08484Suche in Google Scholar PubMed
[70] Ooi T, Kameda M, Maruoka K. Molecular design of a C2-symmetric chiral phase-transfer catalyst for practical asymmetric synthesis of α-amino acids. J Am Chem Soc. 1999;121:6519–20.10.1021/ja991062wSuche in Google Scholar
[71] Ikunaka M, Maruoka K. Asymmetric phase-transfer catalysis for the production of non-proteinogenic α-amino acids, chapter 9. In: Blaser H-U, Federsel H-J, editor(s). Asymmetric catalysis on industrial scale: challenges, approaches and solutions, 2nd ed. Weiheim, Germany.: Wiley-VCH, 2011:151–69.Suche in Google Scholar
[72] Bernardi L, Fochi M, Carbone R, Martinelli A, Fox ME, Cobley CJ, et al. Organocatalytic asymmetric conjugate additions to cyclopent-1-enecarbaldehyde: a critical assessment of organocatalytic approaches towards the telaprevir bicyclic core. Chem Eur J. 2015;21:19208–22.10.1002/chem.201503352Suche in Google Scholar
[73] Stevanović D, Bertuzzi G, Mazzanti A, Fochi M, Bernardi L. Catalytic enantioselective povarov reactions of ferrocenecarbaldehyde-derived imines – brønsted acid catalysis at parts-per-million level loading. Adv Synth Catal. 2018;360:893–900.10.1002/adsc.201701484Suche in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Transient absorption with a streak camera
- Enantioselective organocatalytic approaches to active pharmaceutical ingredients – selected industrial examples
- The conservation of medieval manuscript illuminations: A chemical perspective
- Mechanistic role of plant-based bitter principles and bitterness prediction for natural product studies II: prediction tools and case studies
- Colorants: General survey
- XRF technique
Artikel in diesem Heft
- Transient absorption with a streak camera
- Enantioselective organocatalytic approaches to active pharmaceutical ingredients – selected industrial examples
- The conservation of medieval manuscript illuminations: A chemical perspective
- Mechanistic role of plant-based bitter principles and bitterness prediction for natural product studies II: prediction tools and case studies
- Colorants: General survey
- XRF technique