Startseite Phase-transfer catalysis and the ion pair concept
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Phase-transfer catalysis and the ion pair concept

  • Florenci V. González Adelantado EMAIL logo
Veröffentlicht/Copyright: 10. April 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This review outlines the recent advances in the field of asymmetric phase-transfer catalysis and the ion-pair concept including alkylation of amino acids and peptides, oxyindoles and other substrates, conjugate additions, fluorinations, photo-induced phase-transfer catalysis, Nitro-Mannich reactions, heterocyclizations and cycloadditions for the preparation of heterocycles, derivatization of isoxazoles, umpolung conjugate addition of imines and other three asymmetric reactions.

References

[1] Starks CM. Phase-transfer catalysis. I. Heterogeneous reactions involving anion transfer by quaternary ammonium and phosphonium salts. J Am Chem Soc. 1971;93:195–9.10.1021/ja00730a033Suche in Google Scholar

[2] Freedman HH. Industrial applications of phase transfer catalysis (PTC): past, present and future. Pure Appl Chem. 1986;58:857–68.10.1351/pac198658060857Suche in Google Scholar

[3] (a) Lygo B, Wainwright PG. A new class of asymmetric phase-transfer catalysts derived from cinchona alkaloids - application in the enantioselective synthesis of α-amino acids. Tetrahedron Lett. 1997;38:8595–8. (b) Lygo B, Wainwright PG. Asymmetric phase-transfer mediated epoxidation of α,β-unsaturated ketones using catalysts derived from Cinchona alkaloids. Tetrahedron Lett. 1998;39:1599–602. (c) Lygo B, Crosby J, Peterson JA. Enantioselective synthesis of bis-α-amino acid esters via asymmetric phase-transfer catalysis. Tetrahedron Lett. 1999;40:1385–8.10.1016/S0040-4039(97)10293-3Suche in Google Scholar

[4] (a) Corey EJ, Xu F, Noe MC. A rational approach to catalytic enantioselective enolate alkylation using a structurally rigidified and defined chiral quaternary ammonium salt under phase transfer conditions. J Am Chem Soc. 1997;119:12414–5. (b) Corey EJ, Noe MC, Xu F. Highly enantioselective synthesis of cyclic and functionalized α-amino acids by means of a chiral phase transfer catalyst. Tetrahedron Lett. 1998;39:5347–50. (c) Corey EJ, Bo Y, Busch-Petersen J. Highly enantioselective phase transfer catalyzed alkylation of a 3-oxygenated propionic ester equivalent; applications and mechanism. J Am Chem Soc. 1998;120:13000–1.10.1021/ja973174ySuche in Google Scholar

[5] Ooi T, Kameda M, Maruoka K. Molecular design of a C2-symmetric chiral phase-transfer catalyst for practical asymmetric synthesis of α-amino acids. J Am Chem Soc. 1999;121:6519–20.10.1021/ja991062wSuche in Google Scholar

[6] (a) Shioiri T, Handbook of phase-transfer catalysis, Chap. 14. (Eds.: Y. Sasson, R. Neumann), London: Blackie Academic & Professional, 1997:462. (b) O’Donnell MJ, Catalytic asymmetric synthesis, Chap. 10, 2nd ed. (Ed.: I. Ojima), New York: Wiley-VCH, 2000:727. (c) O´Donnell MJ. Aldrichimica acta. 2001;34:3–15. (d) Maruoka K, Ooi T. Enantioselective amino acid synthesis by chiral phase-transfer catalysis. Chem Rev. 2003;103:3013–28. (e) O’Donnell MJ. The enantioselective synthesis of α-amino acids by phase-transfer catalysis with achiral schiff base esters. Acc Chem Res. 2004;37:506–17. (f) Lygo B, Andrews BI. Asymmetric phase-transfer catalysis utilizing chiral quaternary ammonium salts: asymmetric alkylation of glycine imines. Acc Chem Res. 2004;37:518–25. (g) Hashimoto T, Maruoka K. Recent development and application of chiral phase-transfer catalysts. Chem Rev. 2007;107:5656–82. (h) Shirakawa S, Maruoka K. Recent developments in asymmetric phase-transfer reactions. angew. Chem Int Ed. 2013;52:4312–48.10.1007/978-94-009-0023-3_14Suche in Google Scholar

[7] Harada S, Kajihara R, Muramoto R, Jutabha P, Anzai N, Nemoto T. Catalytic asymmetric synthesis of α-methyl-p-boronophenylalanine. Bioorg Med Chem Lett. 2018;28:1915–8.10.1016/j.bmcl.2018.03.075Suche in Google Scholar PubMed

[8] Woo S, Kim Y, Lim B, Oh J, Lee Y, Gwon H, et al. Dimeric cinchona ammonium salts with benzophenone linkers: enantioselective phase transfer catalysts for the synthesis of α-amino acids. RSC Adv. 2018;8:2157–60.10.1039/C7RA12499FSuche in Google Scholar

[9] Pekošak A, Rotstein BH, Collier TL, Windhorst AD, Vasdev N, Poot AJ. Stereoselective 11C labeling of a “native” tetrapeptide by using asymmetric phase-transfer catalyzed alkylation reactions. Eur J Org Chem. 2017;5:1019–24.10.1002/ejoc.201601641Suche in Google Scholar

[10] Filp U, Pekošak A, Poot AJ, Windhorst AD. Stereocontrolled [11C] alkylation of N-terminal glycine schiff bases to obtain dipeptides. Eur J Org Chem. 2017;37:5592–6.10.1002/ejoc.201701129Suche in Google Scholar

[11] Jin L, Shuai Zhao S, Chen X. Synthesis of both enantiomers of chiral phenylalanine derivatives catalyzed by cinchona alkaloid quaternary ammonium salts as asymmetric phase transfer catalysts. Molecules. 2018;23:1421–37.10.3390/molecules23061421Suche in Google Scholar PubMed PubMed Central

[12] Chen SZ, Ma W, Yan Z, Zhang F, Wang S, Tu Y, et al. Organo-cation catalyzed asymmetric homo/heterodialkylation of bisoxindoles: construction of vicinal all-carbon quaternary stereocenters and total synthesis of (−)-chimonanthidine. J Am Chem Soc. 2018;140:10099–103.10.1021/jacs.8b05386Suche in Google Scholar PubMed

[13] Craig R, Sorrentino E, Connon SJ. Enantioselective alkylation of 2-oxindoles catalyzed by a bifunctional phase-transfer catalyst: synthesis of (-)-debromoflustramine B. Chem Eur J. 2018;24:4528–31.10.1002/chem.201800313Suche in Google Scholar PubMed

[14] Ohmatsu K, Furukawa Y, Kiyowaka M, Ooi T. Diastereo- and enantioselective phase-transfer alkylation of 3-substituted oxindoles with racemic secondary alkyl halides. Chem Commun. 2017;53:13113–6.10.1039/C7CC07122ASuche in Google Scholar

[15] Li R, Liu Z, Chen L, Pan J, Zhou W. Enantioselective phase-transfer catalyzed alkylation of 1-methyl-7-methoxy-2-tetralone: an effective route to dezocine. Beilstein J Org Chem. 2018;14:1421–7.10.3762/bjoc.14.119Suche in Google Scholar PubMed PubMed Central

[16] Zhang T, Scalabrino G, Frankish N, Sheridan H. Bioactive indanes: proof of concept study for enantioselective synthetic routes to PH46A, a new potential anti-inflammatory agent. Molecules. 2018;23:1503–21.10.3390/molecules23071503Suche in Google Scholar PubMed PubMed Central

[17] Pawliczek M, Shimazaki Y, Kimura H, Oberg KM, Zakpur S, Hashimoto T, et al. Phase-transfer-catalysed asymmetric synthesis of 2,2-disubstituted 1,4-benzoxazin-3-ones. Chem Comm. 2018;54:7078–80.10.1039/C8CC03635GSuche in Google Scholar

[18] Kang Q, Selvakumar S, Arumugam N, Almansour AI, Kumar RS, Maruoka K. Enantioselective alkylation of N‐arylhydrazones derived from α‐keto esters and isatin derivatives through asymmetric phase‐transfer catalysis. Chem Asian J. 2018;13:1780–3.10.1002/asia.201800652Suche in Google Scholar PubMed

[19] Kim D, Ha MW, Hong S, Park C, Kim B, Yang J, et al. Enantioselective synthesis of chiral α-azido and α-aryloxy quaternary stereogenic centers via the phase-transfer-catalyzed α-alkylation of α-bromomalonates, followed by SN2 substitution. J Org Chem. 2017;82:4936−43.10.1021/acs.joc.7b00324Suche in Google Scholar PubMed

[20] Ha MW, Lee JY, Kim D, Lee G, Lee JK, Hong S, et al. Enantioselective synthesis of chiral α-thio-quaternary stereogenic centers via phase-transfer-catalyzed α-alkylation of α-acylthiomalonates. J Org Chem. 2018;83:1011−8.10.1021/acs.joc.7b02605Suche in Google Scholar PubMed

[21] Xiang B, Belyk KM, Reamer RA, Yasuda N. Discovery and application of doubly quaternized cinchona-alkaloid-based phase-transfer catalysts. Angew Chem Int Ed. 2014;53:8375–8.10.1002/anie.201404084Suche in Google Scholar PubMed

[22] He CQ, Simon A, Lam Y, Brunskill AP, Yasuda N, Tan J, et al. Model for the enantioselective of asymmetric intramolecular alkylations by bis-quaternized cinchona alkaloid-derived catalysts. J Org Chem. 2017;82:8645–50.10.1021/acs.joc.7b01577Suche in Google Scholar PubMed

[23] Jakhar A, Nazish M, Gupta N, Khan NH, Kureshy RI. Enantioselective addition of cyanide to CF3-substituted alkylidenemalonates: construction of trifluoromethylated all-carbon quaternary stereocenters. ChemistrySelect. 2018;3:4838–43.10.1002/slct.201800113Suche in Google Scholar

[24] Arlt A, Toyama H, Takada K, Hashimoto T, Maruoka K. Phase-transfer catalyzed asymmetric synthesis of α, β-unsaturated γ, γ-disubstituted γ-lactams. Chem Commun. 2017;53:4779–82.10.1039/C7CC01058CSuche in Google Scholar

[25] Scorzelli S, Di Mola A, De Piano F, Consiglia Tedesco C, Palombi L, Filosa R, et al. A systematic study on the use of different organocatalytic activation modes for asymmetric conjugated addition reactions of isoindolinones. Tetrahedron. 2017;73:819–28.10.1016/j.tet.2016.12.036Suche in Google Scholar

[26] Jin Q, Zheng C, Zhao G, Zou G. Bifunctional quaternary ammonium salts catalyzed stereoselective conjugate addition of oxindoles to electron-deficient β-haloalkenes. J Org Chem. 2017;82:4840–50.10.1021/acs.joc.7b00571Suche in Google Scholar PubMed

[27] Takagi R, Fujii E, Kondo H. Enantioselective Michael reaction of cyclic β-ketoesters with Morita−Baylis−Hillman derivatives using a phase-transfer catalyst. J Org Chem. 2018;83:11191−203.10.1021/acs.joc.8b01777Suche in Google Scholar PubMed

[28] Miguélez J, Miyamura H, Kobayashi S. a polystyrene‐supported phase‐transfer catalyst for asymmetric Michael addition of glycine‐derived imines to α, β‐unsaturated ketones. Adv Synth Catal. 2017;359:2897–900.10.1002/adsc.201700155Suche in Google Scholar

[29] Fan Y, Zhou L, Li S. Catalytic asymmetric 1,6-conjugate addition of in situ generated para-quinone methides with tritylthiol. Org Chem Front. 2018;5:1820–4.10.1039/C8QO00211HSuche in Google Scholar

[30] Zhu J, Cui D, Li Y, He J, Chen W, Wang P. Enantioselective amination of nitroolefins under base-free and water-rich conditions using chiral bifunctional phase-transfer catalysts. Org Biomol Chem. 2018;16:3012–7.10.1039/C8OB00583DSuche in Google Scholar

[31] Liang X, Liu C, Zhang W, You S. Asymmetric fluorinative dearomatization of tryptamine derivatives. Chem Commun. 2017;53:5531–4.10.1039/C7CC02419CSuche in Google Scholar

[32] Liang X, Cai Y, You S. Asymmetric fluorinative dearomatization of tryptophol derivatives by chiral anion phase-transfer catalysis. Chin J Chem. 2018;36:925–8.10.1002/cjoc.201800319Suche in Google Scholar

[33] J A S C, Matsumoto A, Orlandi M, M J H, Sigman MS, Toste FD. Enantioselective fluorination of homoallylic alcohols enabled by the tuning of non-covalent interactions. Chem Sci. 2018;9:7153–8.10.1039/C8SC02223BSuche in Google Scholar

[34] Niwa T, Ujiie K, Sato H, Egami H, Hamashima Y. Asymmetric fluorination of cyclic tetrasubstituted alkenes with a pendant amide groups under dianionic phase-transfer catalysis. Chem Pharm Bull. 2018;66:920–2.10.1248/cpb.c18-00551Suche in Google Scholar PubMed

[35] Silvi M, Melchiorre P. Enhancing the potential of enantioselective organocatalysis with light. Nature. 2018;554:41–9.10.1038/nature25175Suche in Google Scholar PubMed

[36] Woźniak Ł, Murphy JJ, Melchiorre P. Photo-organocatalytic enantioselective perfluoroalkylation of β-ketoesters. J Am Chem Soc. 2015;137:5678–81.10.1021/jacs.5b03243Suche in Google Scholar PubMed PubMed Central

[37] Yang C, Zhang W, Li Y, Xue X, Li X, Cheng J. Origin of stereoselectivity of the photoinduced asymmetric phase-transfer-catalyzed perfluoroalkylation of β-ketoesters. J Org Chem. 2017;82:9321–7.10.1021/acs.joc.7b01130Suche in Google Scholar PubMed

[38] Wang Y, Yin H, Tang X, Wu Y, Meng Q, Gao Z. A series of cinchona-derived N-oxide phase-transfer catalysts: application to the photo-organocatalytic enantioselective α-hydroxylation of β-dicarbonyl compounds. J Org Chem. 2016;81:7042−50.10.1021/acs.joc.6b00856Suche in Google Scholar PubMed

[39] Tang X, Feng S, Wang Y, Yang F, Zheng Z, Zhao J, et al. Bifunctional metal-free photo-organocatalysts for enantioselective aerobic oxidation of b-dicarbonyl compounds. Tetrahedron. 2018;74:3624–33.10.1016/j.tet.2018.05.023Suche in Google Scholar

[40] Liu Y, Liu Y, Wang J, Wei Z, Cao J, Liang D, et al. Asymmetric phase-transfer catalysts bearing multiple hydrogen bonding donors: synthesis and application in nitro-Mannich reaction of isatin-derived N-Boc ketimines. Tetrahedron. 2017;73:2400–3.10.1016/j.tetlet.2017.05.022Suche in Google Scholar

[41] (a) Lu N, Li R, Wei Z, Cao J, Liang D, Lin Y, et al. Enantio- and diastereoselective nitro-mannich reaction of α-aryl nitromethanes with amidosulfones catalyzed by phase-transfer catalysts. J Org Chem. 2017;82:4668–76. (b) Liu Y, Wang J, Wei Z, Cao J, Liang D, Lin Y, Duan H. Diastereo- and enantioselective nitro-mannich reaction of α-aryl nitromethanes with isatin-derived n-boc ketimines catalyzed by chiral phase-transfer catalysts bearing multiple hydrogen-bonding donors. New J Chem. 2018;42:1608–11.10.1021/acs.joc.7b00306Suche in Google Scholar PubMed

[42] Liu Y, Wei Z, Liu Y, Cao J, Liang D, Lin Y, et al. Novel α-amino acid-derived phase-transfer-catalyst application to a highly enantio- and diastereoselective nitro-Mannich reaction. Org Biomol Chem. 2017;15:9234–42.10.1039/C7OB02501GSuche in Google Scholar PubMed

[43] Wang B, Xu T, Zhu L, Lan Y, Wang J, Lu N, et al. Highly enantioselective nitro-Mannich reaction of ketimines under phase-transfer catalysis. Org Chem Front. 2017;4:1266–71.10.1039/C7QO00124JSuche in Google Scholar

[44] Sharma K, Wolstenhulme JR, Painter PP, Yeo D, Grande-Carmona F, Johnston CP, et al. Cation-controlled enantioselective and diastereoselective synthesis of indolines: an autoinductive phase-transfer initiated 5-endo-trig process. J Am Chem Soc. 2015;137:13414–24.10.1021/jacs.5b08834Suche in Google Scholar PubMed

[45] Lamb AD, Davey PD, Driver RW, Thompson AL, Smith MD. Enantioselective synthesis of 4- and 6‑azaindolines by a cation-directed cyclization. Org Lett. 2016;18:5372–5.10.1021/acs.orglett.6b02744Suche in Google Scholar PubMed PubMed Central

[46] Sallio R, Lebrun S, Capet F, Agbossou-Niedercorn F, Michon C, Deniau E. Diastereoselective auxiliary- and catalyst-controlled intramolecular aza-Michael reaction for the elaboration of enantioenriched 3-substituted isoindolinones. Application to the synthesis of a new pazinaclone analogue. Beilstein J Org Chem. 2018;14:593–602.10.3762/bjoc.14.46Suche in Google Scholar PubMed PubMed Central

[47] Guo S, Liu X, Shen B, Lin L, Feng X. Organocatalytic asymmetric cascade reaction of 2-hydroxyphenyl-substituted enones and isocyanates to construct 1,3-benzoxazin-2-ones. Org Lett. 2016;18:5070–3.10.1021/acs.orglett.6b02522Suche in Google Scholar PubMed

[48] Lee H, Eun B, Sung E, G T H, Ko YK, Cho C. Catalytic enantioselective synthesis of carboxy-substituted 2-isoxazolines by cascade oxa-Michael-cyclization. Org Biomol Chem. 2018;16:657–64.10.1039/C7OB02722BSuche in Google Scholar

[49] Capaccio V, Capobianco A, Stanzione A, Pierri G, Tedesco C, Di Mola A, et al. Organocatalytic heterocyclization driven by dynamic kinetic resolution: enantioselective access to multi-heteroatomic cyclic structures mediated by Cinchona alkaloid-based catalysts. Adv Synth Catal. 2017;359:2874–80.10.1002/adsc.201700472Suche in Google Scholar

[50] Lian X, Adili A, Liu B, Tao Z, Han Z. Enantioselective [4 + 1] cycloaddition of ortho-quinone methides and bromomalonates under phase-transfer catalysis. Org Biomol Chem. 2017;15:3670–3.10.1039/C7OB00484BSuche in Google Scholar

[51] Tao ZL, Adili A, Wu X, Gong LZ. A highly enantioselective Mannich-type reaction of glycine schiff base catalyzed by a cinchoninium salt. Chin J Chem. 2014;32:969–73.10.1002/cjoc.201400453Suche in Google Scholar

[52] Zhang Q, Guo S, Yang J, Yu K, Feng X, Lin L, et al. Asymmetric formal [3 + 2]-cycloaddition of azomethine imines with azlactones to synthesize bicyclic pyrazolidinones. Org Lett. 2017;19:5826–9.10.1021/acs.orglett.7b02772Suche in Google Scholar PubMed

[53] Zhu B, Lee R, Yin Y, Li F, Coote ML, Jiang Z. Enantioselective vinylogous amination of 5-alkyl-4-nitroisoxazoles with a dipeptide-based guanidinium phase-transfer catalyst. Org Lett. 2018;20:429–32.10.1021/acs.orglett.7b03759Suche in Google Scholar PubMed

[54] Bo Zhu B, Fuyuan Li F, Lu B, Chang J, Jiang Z. Organocatalytic enantioselective vinylogous aldol reaction of 5-alkyl-4-nitroisoxazoles to paraformaldehyde. J Org Chem. 2018;83:11350–8.10.1021/acs.joc.8b01573Suche in Google Scholar PubMed

[55] Li Z, Hu B, Wu Y, Fei C, Deng L. Control of chemoselectivity in asymmetric tandem reactions: direct synthesis of chiral amines bearing nonadjacent stereocenters. Pnas. 2018;115:1730–5.10.1073/pnas.1718474115Suche in Google Scholar PubMed PubMed Central

[56] Hu B, Deng L. Catalytic asymmetric synthesis of trifluoromethylated γ-amino acids through the umpolung addition of trifluoromethyl imines to carboxylic acid derivatives. Angew Chem Int Ed. 2018;57:2233–7.10.1002/anie.201710915Suche in Google Scholar PubMed PubMed Central

[57] Yoshida Y, Mino T, Sakamoto M. Organocatalytic highly regio- and enantioselective umpolung michael addition reaction of a-imino esters. Chem Eur J. 2017;23:12749–53.10.1002/chem.201703479Suche in Google Scholar PubMed

[58] Legros F, Martzel T, Brière J, Oudeyer S, Levacher V. Organocatalytic enantioselective decarboxylative protonation reaction of Meldrum’s acid derivatives under PTC conditions. Eur J Org Chem. 2018;17:1975–83.10.1002/ejoc.201800331Suche in Google Scholar

[59] Craig R, Litvajova M, Sarah A, Cronin SA, Connon SJ. Enantioselective acyl-transfer catalysis by fluoride ions. Chem Commun. 2018;54:10108–11.10.1039/C8CC05692GSuche in Google Scholar

[60] Yamamoto E, Wakafuji K, Furutachi Y, Kobayashi K, Kamachi T, Tokunaga M. Dynamic kinetic resolution of N-Protected amino acid esters via phase-transfer catalytic base hydrolysis. ACS Catal. 2018;8:5708–13.10.1021/acscatal.8b00693Suche in Google Scholar

Published Online: 2020-04-10

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2018-0094/html?lang=de
Button zum nach oben scrollen