Abstract
This chapter emphasizes aspects related to the role of organochalcogen (Se, Te) compounds with single E‒O and/or double E=O (E=Se, Te) bonds in organic synthesis, as reagents, intermediates, or catalysts, and it gives a larger extent mainly to data reported in the field during the last ten years. For each of these two heavier chalcogens the material is structured according to the oxidation state of the chalcogen and, for the same oxidation state, in sections dedicated to a particular type of compounds. Functionalization or cyclization reactions in which the organochalcogen compounds take part as nucleophiles, electrophiles or radicals, employed in various synthetic transformations, are discussed and, where available, the mechanistic aspects are outlined. New chiral species and new strategies were developed during last years in order to increase the yield, the reaction rate and the stereoselectivity in specific organic transformations, i.e. addition, oxidation, elimination, cyclization or rearrangement reactions. A notably attention was devoted to easily accessible and environmental friendly catalysts, re-usable and “green” solvents, as well as waste-free procedures.
Abbreviations
- Ac
acetyl
- AcO
acetate
- Alk
alkyl
- Ar
aryl
- AcOH
acetic acid
- APTES/TEOS
3-aminopropyltriethoxysilane/tetraethoxysilane
- bdmim
1-butyl-2,3-dimethylimidazolium
- bmim
1-butyl-3-methylimidazolium
- Bn
benzyl
- Boc
tert-butyloxycarbonyl
- bpy
4-methyl-N-butylpyridinium
- nBu
normal-butyl
- tBu
tert-butyl
- cat.
catalyst
- mCPBA
meta-chloroperoxybenzoic acid
- DHSox
dihydroxyselenolane oxide
- DHSred
reduced dihydroxyselenolane
- DMBz -
dimethoxybenzoyl
- DMF
dimethylformamide
- DMP
Dess–Martin periodinane
- DOS
diversity oriented synthesis
- FG
functional group
- HMPA
hexamethylphosphoramide
- Me
methyl
- Mes
mesityl
- MIRC
Michael initiated ring closure
- MOM
methoxymethyl
- Nu
nucleophile
- TfO
triflate (trifluoromethanesulfonate)
- TfOH
triflic acid
- Ph
phenyl
- iPr
iso-propyl
- Py
pyridyl
- RTILs
Room Temperature Ionic Liquids
- TBDPS
tert-butyldiphenylsilyl
- TIP
2,4,6-triisopropylphenyl
- TIPDS
1,1,3,3-tetraisopropyldisiloxane
- TMS
trimethylsilyl
- OTs
tosylat
References
[1] See, for example: (a) Patai S, Rappoport Z, editors. Patai’s chemistry of functional groups: the chemistry of organic selenium and tellurium compounds. Vol. 1. New York, NY, USA: John Wiley & Sons, Inc., 1986; (b) Patai S, editor. Patai’s chemistry of functional groups: the chemistry of organic selenium and tellurium compounds. Vol. 2. New York, NY, USA: John Wiley & Sons, Inc., 1987; (c) Rappoport Z, editor. Patai’s chemistry of functional groups: the chemistry of organic selenium and tellurium compounds. Vol. 3. Chichester, UK: John Wiley & Sons, Ltd., 2012; (d) Rappoport Z, editor. The chemistry of organic selenium and tellurium compounds. Vol. 4. Chichester, UK: John Wiley & Sons, Ltd., 2013; (e) Paulmier C. Selenium reagents and intermediates in organic chemistry. Tetrahedron Organic Chemistry. Vol. 4. (Baldwin JE, editor), Oxford, UK: Pergamon Press, 1986; (f) Wirth T, editor. Organoselenium chemistry: modern developments in organic synthesis. Topics in Current Chemistry. Vol. 208. Berlin, Germany: Springer Verlag, 2000; (g) Ogawa A. Selenium and tellurium in organic synthesis. In: Yamamoto H, Oshima K, editors. Main group metals in organic synthesis. Vol. 2. Weinheim, Germany: Wiley-VCH, 2004:813–66; (h) Woollins JD, Laitinen R, editors. Selenium and tellurium chemistry: from small molecules to biomolecules and materials. Berlin, Heidelberg, Germany: Springer-Verlag, 2011; (i) Wirth T, editor. Organoselenium chemistry – synthesis and reactions. Weinheim, Germany: Wiley-VCH, 2012; (j) Santi C, editor. Organoselenium chemistry: between synthesis and biochemistry. Saif, Sharjah, United Arab Emirates: Bentham Science Publications, 2014.Search in Google Scholar
[2] See, for example: (a) Clive DLJ. Modern organoselenium chemistry. Tetrahedron. 1978;34:1049–132; (b) Mugesh G, du Mont W-W, Sies H. Chemistry of biologically important synthetic organoselenium compounds. Chem Rev. 2001;101:2125–80; (c) Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Green chemistry with selenium reagents: development of efficient catalytic reactions. Angew Chem Int Ed. 2009;48:8409–11; (d) Freudendahl DM, Shahzad SA, Wirth T. Recent advances in organoselenium chemistry. Eur J Org Chem. 2009:1649–64; (e) Godoi B, Schumacher RF, Zeni G. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem Rev. 2011:111:2937–80; (f) Sancineto L, Palomba M, Bagnoli L, Marini F, Santi C. Advances in electrophilic organochalcogen reagents. Curr Org Chem. 2016;20:122–35; (g) Santi C, Jacob RG, Monti B, Bagnoli L, Sancineto L, Lenardão EJ. Water and aqueous mixtures as convenient alternative media for organoselenium chemistry. Molecules. 2016;21:1482–98.10.1016/0040-4020(78)80135-5Search in Google Scholar
[3] See, for example: (a) Petragnani N, Stefani HA. Tellurium in organic synthesis: second, updated and enlarged edition. Oxford, UK: Academic Press, Elsevier Ltd, 2007; (b) Petragnani N. Tellurium. In: Abel EW, Stone FGA, Wilkinson G, editors. Comprehensive organometallic chemistry II. Vol. 11. Main-group metal organometallics in organic synthesis. Oxford, UK: Elsevier, 1995:571–601; (c) Petragnani N, Stefani HA. Advances in organic tellurium chemistry. Tetrahedron 2005;61:1613–79; (d) Srivastava K, Panda A, Sharma S, Singh HB. Telluroxanes: synthesis, structure and applications. J Organomet Chem. 2018;861:174–206.10.1016/B978-008045310-1/50007-1Search in Google Scholar
[4] (a) Diels O, Karstens A. Über Dehydrierungen mit Selen (II. Mitteilung). Ber Dtsch Chem Ges B. 1927;60:2323–25; (b) Diels O, Gädke W, Körding P. Über die Dehydrierung des Cholesterins. (III. Mitteilung). Justus Liebigs Ann Chem. 1927;459:1–26; (c) Clemo GR, Dickenson HG. The action of selenium on compounds containing angular methyl groups. J Chem Soc. 1935;735–8; (d) House WT, Orchin M. A study of the selenium dehydrogenation of guaiol and related compounds. Selenium as a hydrogen transfer agent. J Am Chem Soc. 1960;82:639–42; (e) Silverwood HA, Orchin M. Aromatization reactions with selenium and aryl diselenides. J Org Chem. 1962;27:3401–4.10.1002/cber.19270601014Search in Google Scholar
[5] Kacer F. (to I.G. Farbeindustrie AG) DE 557249, August 23, 1932.Search in Google Scholar
[6] For selected reviews, see: (a) Waitkins GR, Clark CW. Selenium dioxide: preparation, properties, and use as oxidizing agent. Chem Rev. 1945;36:235–89; (b) Rabjohn N. Selenium dioxide oxidation. Org React. 1949;5:331–86; (c) Rabjohn N. Selenium dioxide oxidation. Org React. 1976;24:261–415; (d) Trachtenberg EN. Oxidation reactions with selenium dioxide. In: Augustine RL, editor. Oxidation: techniques and application in organic synthesis. Vol. 1, Ch. 3. New York: M. Dekker, 1969; (e) Fieser LF, Fieser M. Reagents for organic synthesis. Vol. 1. New York: Wiley, 1967: 992–1000; (f) Reich HJ. Organoselenium oxidations. In: Trahanovsky WS, editor. Oxidation in organic chemistry. Vol. 5C, Ch. 1. New York: Academic Press, 1978: 1–130; (g) Nicolaou KC, Petasis NA. Selenium in natural products synthesis, Ch. 2 and Ch. 3. Philadelphia, PA, USA: CIS Ins., 1984; (h) Thurow S, Penteado F, Perin G, Alves D, Santi C, Monti B, et al. Selenium dioxide-promoted selective synthesis of mono- and bissulfenylindoles. Org Chem Front. 2018;5:1983–91.10.1021/cr60115a001Search in Google Scholar
[7] (a) Bergman J, Engman L. Acetoxymethylation of benzene, toluene and related compounds with TeO2/HOAc. Tetrahedron Lett. 1978;19:3279–82; (b) Bergman J, Engman L. Novel synthesis of 3-halogenobenzo[b]tellurophene-derivatives. Tetrahedron Lett. 1979;20:1509–10; (c) Bergman J, Engman L. Tellurium in organic synthesis, IX. Oxidation of some nitrogenous compounds with TeO2. Z Naturforsch. 1980;35b:882–4.10.1016/S0040-4039(01)85616-1Search in Google Scholar
[8] Siemens C. Ueber das selenmercaptan. Justus Liebigs Ann Chem. 1847;61:360–2.10.1002/jlac.18470610313Search in Google Scholar
[9] Jones DN, Mundy D, Whitehouse RD. Steroidal selenoxides diastereoisomeric at selenium; syn-elimination, absolute configuration, and optical rotatory dispersion characteristics. J Chem Soc D: Chem Commun. 1970;86–7.10.1039/c29700000086Search in Google Scholar
[10] Mukherjee AJ, Zade SS, Singh HB, Sunoj RB. Organoselenium chemistry: role of intramolecular interactions. Chem Rev. 2010;110:4357–416.10.1021/cr900352jSearch in Google Scholar PubMed
[11] (a) Déziel R, Goulet S, Grenier L, Bordeleau J, Bernier J. Asymmetric selenomethoxylation of olefins involving a chiral C2 symmetrical electrophilic organoselenium reagent. J Org Chem. 1993;58:3619–21; (b) Wirth T. Asymmetric reaction of arylalkenes with diselenides. Angew Chem Int Ed Engl. 1995;34:1726–8; (c) Déziel R, Malenfant E, Bélanger G. Practical synthesis of (R,R)- and (S,S)-bis[2,6-bis(1-ethoxyethyl)phenyl] diselenide. J Org Chem. 1996;61:1875–6; (d) Déziel R, Malenfant E, Thibault C, Fréchette S, Gravel M. 2,6-Bis[(2S)-tetrahydrofuran-2-yl]phenyl diselenide: an effective reagent for asymmetric electrophilic addition reactions to olefins. Tetrahedron Lett. 1997;38:4753–6; (e) Wirth T, Fragale G. Asymmetric addition reactions with optimized selenium electrophiles. Chem Eur J. 1997;3:1894–902; (f) Bürgler FW, Fragale G, Wirth T. Stereoselective addition reactions with chalcogen electrophiles. ARKIVOC 2007;X:21–8.10.1021/jo00066a010Search in Google Scholar
[12] Wirth T, Fragale G. Stereoselective isoquinoline alkaloid synthesis with new diselenides. Synthesis. 1998;162–6.10.1055/s-1998-2011Search in Google Scholar
[13] Yu L, Li H, Zhang X, Ye J, Liu J, Xu Q, et al. Organoselenium-catalyzed mild dehydration of aldoximes: an unexpected practical method for organonitrile synthesis. Org Lett. 2014;16:1346–9.10.1021/ol500075hSearch in Google Scholar PubMed
[14] Iwaoka M, Tomoda S, Kerns RJ, Wei P, Ramírez JS. Benzeneselenenyl trifluoromethanesulfonate. In: Fuchs P, Bode J, Charette A, Rovis T, editor(s). e-EROS – Encyclopedia of Reagents for Organic Synthesis. Hoboken, NJ, USA: John Wiley & Sons, 2005. DOI: 10.1002/047084289X.rb015.pub2.10.1002/047084289X.rb015.pub2Search in Google Scholar
[15] (a) Frederickson M, Grigg R. Electrophile mediated heteroatom cyclizations onto C-C π-bonds. Part 1: Halogen and chalcogen mediated cyclization. Org Prep Proced Int. 1997;29:33–67. (b) Robin S, Rousseau G. Electrophilic cyclization of unsaturated amides. Tetrahedron. 1998;54:13681–736; (c) Paulmier C. Inter and intramolecular nucleophilic substitutions of activated phenylselanyl groups. Phosphorus Sulfur Silicon. 2001;172:25–54; (d) Petragnani N, Stefani HA, Valduga CJ. Recent advances in selenocyclofunctionalization reactions. Tetrahedron. 2001;57:1411–48; (e) Robin S, Rousseau G. Formation of four-membered heterocycles through electrophilic heteroatom cyclization. Eur J Org Chem. 2002:3099–114; (f) Ranganathan S, Muraleedharan KM, Vaisha NK, Jayaraman N. Halo- and selenolactonisation: the two major strategies for cyclofunctionalisation. Tetrahedron. 2004;60:5273–308; (g) Khokhar SS, Wirth T. Selenocyclizations: control by coordination and by the counterion. Angew Chem Int Ed. 2004;43:631–3.10.1080/00304949709355172Search in Google Scholar
[16] Markovic Z, Konstantinovic S, Juranic I, Dosen-Micovic L. Molecular orbital study of the rearrangement of seleniranium ions. Gazz Chim Ital. 1997;127:429–34.Search in Google Scholar
[17] Tomassini C, Di Sarra F, Monti B, Sancineto L, Bagnoli L, Marini F, et al. Kinetic resolution of 2-methoxycarbonylalk-3-enols through a stereoselective cyclofunctionalization promoted by an enantiomerically pure electrophilic selenium reagent. Arkivoc. 2017;II:303–1210.3998/ark.5550190.p009.826Search in Google Scholar
[18] Uehlin L, Wirth T. Synthesis of chiral acetals by asymmetric selenenylations. Phosphorus Sulfur Silicon Relat Elem. 2009;184:1374–85.10.1080/10426500902930167Search in Google Scholar
[19] Ścianowski J, Szumera J, Kleman P, Pacula AJ. Synthesis and reactions of terpenyl diselenides functionalized with phenyl and naphthyl groups. Tetrahedron: Asymmetry. 2016;27:238–45.10.1016/j.tetasy.2016.02.004Search in Google Scholar
[20] Choi TJ, Baek JY, Jeon HB, Kim KS. A new efficient glycosylation method employing glycosyl pentenoates and PhSeOTf. Tetrahedron Lett. 2006;47:9191–4.10.1016/j.tetlet.2006.10.158Search in Google Scholar
[21] Santi C, Tiecco M, Testaferri L, Tomassini C, Santoro S, Bizzoca G. Diastereo and enantioselective synthesis of 1,2-diols promoted by electrophilic selenium reagents. Phosphorus Sulfur Silicon. 2008;183:956–60.10.1080/10426500801900881Search in Google Scholar
[22] Santoro S, Battistelli B, Gjoka B, Si CWS, Testaferri L, Tiecco M, et al. Oxidation of alkynes in aqueous media catalyzed by diphenyl diselenide. Synlett. 2010;1402–6.10.1055/s-0029-1219817Search in Google Scholar
[23] Kodama S, Saeki T, Mihara K, Higashimae S, Kawaguchi S, Sonoda M, et al. A benzoyl peroxide/diphenyl diselenide binary system for functionalization of alkynes leading to alkenyl and alkynyl selenides. J Org Chem. 2017;82:12477–84.10.1021/acs.joc.7b02276Search in Google Scholar PubMed
[24] Abdo M, Zhang Y, Schramm VL, Knapp S. Electrophilic aromatic selenylation: new OPRT inhibitors. Org Lett. 2010;12:2982–5.10.1021/ol1010032Search in Google Scholar PubMed PubMed Central
[25] Back TG. Benzeneseleninic acid and benzeneseleninic anhydride. In: Fuchs P, Bode J, Charette A, Rovis T, editors. e-EROS - Encyclopedia of Reagents for Organic Synthesis. Hoboken, NJ, USA: John Wiley & Sons, 2007. DOI: 10.1002/9780470842898.rb016.pub2.Search in Google Scholar
[26] Zhang X, Sun J, Ding Y, Yu L. Dehydration of aldoximes using PhSe(O)OH as the pre-catalyst in air. Org Lett. 2015;17:5840–2.10.1021/acs.orglett.5b03011Search in Google Scholar PubMed
[27] Jing X, Wang T, Ding Y, Yu L. A scalable production of anisonitrile through organoselenium-catalyzed dehydration of anisaldoxime under solventless conditions. Appl Catal, A. 2017;541:107–11.10.1016/j.apcata.2017.05.007Search in Google Scholar
[28] Jing X, Yuan D, Yu L. Green and practical oxidative deoximation of oximes to ketones or aldehydes with hydrogen peroxide/air by organoselenium catalysis. Adv Synth Catal. 2017;359:1194–201.10.1002/adsc.201601353Search in Google Scholar
[29] Cerra B, Mangiavacchi F, Santi C, Lozza AM, Gioiello A. Selective continuous flow synthesis of hydroxy lactones from alkenoic acids. React Chem Eng. 2017;2:467–71.10.1039/C7RE00083ASearch in Google Scholar
[30] Sancineto L, Mangiavacchi F, Tidei C, Bagnoli L, Marini F, Gioiello A, et al. Selenium catalyzed oxacyclization of alkenoic acids and alkenols. Asian J Org Chem. 2017;6:988–92.10.1002/ajoc.201700193Search in Google Scholar
[31] (a) Ichikawa H, Usami Y, Arimoto M. Synthesis of novel organoselenium as catalyst for Baeyer–Villiger oxidation with 30 % H2O2. Tetrahedron Lett. 2005;46:8665–8; (b) Ichikawa H, Watanabe R, Fujino Y, Usami Y. Divergent synthesis of withasomnines via synthesis of 4-hydroxy-1H-pyrazoles and Claisen rearrangement of their 4-O-allylethers. Tetrahedron Lett. 2011;52:4448–51; (c) Usami Y, Watanabe R, Fujino Y, Shibano M, Ishida C, Yoneyama H, et al. Divergent synthesis and evaluation of inhibitory activities against cyclooxygenases-1 and −2 of natural withasomnines and analogues. Chem Pharm Bull. 2012;60:1550–60.10.1016/j.tetlet.2005.10.055Search in Google Scholar
[32] Denmark SE, Baiazitov RY, Nguyen ST. Tandem double intramolecular [4+2]/[3+2] cycloadditions of nitroalkenes: construction of the pentacyclic core structure of daphnilactone B. Tetrahedron. 2009;65:6535–48.10.1016/j.tet.2009.05.060Search in Google Scholar PubMed PubMed Central
[33] Press DJ, Mercier EA, Kuzma D, Back TG. Substituent effects upon the catalytic activity of aromatic cyclic seleninate esters and spirodioxyselenuranes that act as glutathione peroxidase mimetics. J Org Chem. 2008;73:4252–5.10.1021/jo800381sSearch in Google Scholar PubMed
[34] Press DJ, McNeil NMR, Hambrook M, Back TG. Effects of methoxy substituents on the glutathione peroxidase-like activity of cyclic seleninate esters. J Org Chem. 2014;79:9394–401.10.1021/jo501689hSearch in Google Scholar PubMed
[35] Mercier EA, Smith CD, Parvez M, Back TG. Cyclic seleninate esters as catalysts for the oxidation of sulfides to sulfoxides, epoxidation of alkenes, and conversion of enamines to α-hydroxyketones. J Org Chem. 2012;77:3508–17.10.1021/jo300313vSearch in Google Scholar PubMed
[36] McNeil NMR, McDonnell C, Hambrook M, Back TG. Oxidation of disulfides to thiolsulfinates with hydrogen peroxide and a cyclic seleninate ester catalyst. Molecules. 2015;20:10748–62.10.3390/molecules200610748Search in Google Scholar PubMed PubMed Central
[37] Reich HJ, Chow F, Peake SL. Seleninic acids as catalysts for oxidations of olefins and sulfides using hydrogen peroxide. Synthesis. 1978;299–301.10.1055/s-1978-24730Search in Google Scholar
[38] (a) Back TG, Moussa Z. Remarkable activity of a novel cyclic seleninate ester as a glutathione peroxidase mimetic and its facile in situ generation from allyl 3-hydroxypropyl selenide. J Am Chem Soc. 2002;124:12104–5; (b) Back TG, Moussa Z. Diselenides and allyl selenides as glutathione peroxidase mimetics. Remarkable activity of cyclic seleninates produced in situ by the oxidation of allyl ω-hydroxyalkyl selenides. J Am Chem Soc. 2003;125:13455–60; (c) Back TG, Moussa Z, Parvez M. The exceptional glutathione peroxidase‐like activity of di(3‐hydroxypropyl) selenide and the unexpected role of a novel spirodioxaselenanonane intermediate in the catalytic cycle. Angew Chem Int Ed. 2004;43:1268–70; (d) Back TG, Kuzma D, Parvez M. Aromatic derivatives and tellurium analogues of cyclic seleninate esters and spirodioxyselenuranes that act as glutathione peroxidase mimetics. J Org Chem. 2005;70:9230–6; (e) Kuzma D, Parvez M, Back TG. Formation of a spirodiazaselenurane and its corresponding azaselenonium derivatives from the oxidation of 2,2′-selenobis(benzamide). Structure, properties and glutathione peroxidase activity. Org Biomol Chem. 2007;5:3213–7.10.1021/ja028030kSearch in Google Scholar PubMed
[39] (a) Miniejew C, Outurquin F, Pannecoucke X. New phenylselanyl group activation: synthesis of aziridines and oxazolidin-2-ones. Org Biomol Chem. 2004;2:1575–6; (b) Redon S, Berthe-Berkaoui A-L, Pannecoucke X, Outurquin F. Selenylated dienes: synthesis, stereochemical studies by 77Se NMR, and transformation into functionalized allenes. Tetrahedron. 2007;63:3707–17.10.1039/b406566mSearch in Google Scholar PubMed
[40] Andreou T, Burés J, Vilarrasa J. Reaction of Dess–Martin periodinane with 2-(alkylselenyl)pyridines. Dehydration of primary alcohols under extraordinarily mild conditions. Tetrahedron Lett. 2010;51:1863–6.10.1016/j.tetlet.2010.02.002Search in Google Scholar
[41] Redon S, Pannecoucke X, Franck X, Outurquin F. Synthesis and oxidative rearrangement of selenenylated dihydropyrans. Org Biomol Chem. 2008;6:1260–7.10.1039/b718825kSearch in Google Scholar PubMed
[42] Russell DA, Freudenreich JJ, Ciardiello JJ, Sore HF, Spring DR. Stereocontrolled semi-syntheses of deguelin and tephrosin. Org Biomol Chem. 2017;15:1593–6.10.1039/C6OB02659ASearch in Google Scholar PubMed
[43] Wong LSM, Turner KA, White JM, Holmes AB, Ryan JH. Asymmetric synthesis of a hydroxylated nine-membered lactone from tartaric acid using the Claisen rearrangement. Aust J Chem. 2010;63:529–32.10.1071/CH09637Search in Google Scholar
[44] Macdougall PE, Smith NA, Schiesser CH. Substituent effects in selenoxide elimination chemistry. Tetrahedron. 2008;64:2824–31.10.1016/j.tet.2008.01.044Search in Google Scholar
[45] Chen W, Bay WP, Wong MW, Huang D. Selenium Blue-α and -β: turning on the fluorescence of a pyrenyl fluorophore via oxidative cleavage of the Se–C bond by reactive oxygen species. Tetrahedron Lett. 2012;53:3843–6.10.1016/j.tetlet.2012.05.022Search in Google Scholar
[46] See JY, Yang H, Zhao Y, Wong MW, Ke Z, Yeung Y-Y. Desymmetrizing enantio- and diastereoselective selenoetherification through supramolecular catalysis. ACS Catal. 2018;8:850–8.10.1021/acscatal.7b03510Search in Google Scholar
[47] (a) Santi C, Santoro S. Electrophilic selenium. In: Wirth T, editor. Organoselenium chemistry – synthesis and reactions. Weinheim, Germany: Wiley-VCH, 2012:1–51; (b) Ścianowski J, Rafiński Z. Electrophilic selenium reagents: addition reactions to double bonds and selenocyclizations. In: Santi C, editor. Organoselenium chemistry: between synthesis and biochemistry. Saif, Sharjah, United Arab Emirates: Bentham Science Publications, 2014: 8–60; (c) Sancineto L, Palomba M, Bagnoli L, Marini F, Santi C. Advances in electrophilic organochalcogen reagents. Curr Org Chem. 2015;20:122–35.Search in Google Scholar
[48] Aversa MC, Barattucci A, Bonaccorsi P, Temperini A. Regio- and stereocontrolled synthesis of (Z)-α-(phenylseleno)sulfinyl and -sulfonyl alkenes via sulfenic acids, and a study of their reactivity. Eur J Org Chem. 2011;5668–73.10.1002/ejoc.201100759Search in Google Scholar
[49] Ogawa A, Sekiguchi M, Shibuya H, Kuniyasu H, Takami N, Ryu I, et al. Oxidation of 1,2-bis(phenylselebo)-1-alkenes. A novel example of selenoxide anti-elimination. Chem Lett. 1991;20:1805–6.10.1246/cl.1991.1805Search in Google Scholar
[50] Tarao A, Tabuchi Y, Sugimoto E, Ikeda M, Uchimoto H, Arimitsu K, et al. A mechanistic investigation of anti-elimination in (Z)-1,2-bis(arylseleno)-1-alkenes and their sulfur analogs. Org Biomol Chem. 2015;13:5964–71.10.1039/C5OB00490JSearch in Google Scholar PubMed
[51] See, for example: (a) Balkrishna SJ, Prasad CD, Panini P, Detty MR, Chopra D, Kumar S. Isoselenazolones as catalysts for the activation of bromine: bromolactonization of alkenoic acids and oxidation of alcohols. J Org Chem. 2012;77:9541–52; (b) Chen F, Tan CK, Yeung Y-Y. C2-Symmetric cyclic selenium-catalyzed enantioselective bromoaminocyclization. J Am Chem Soc. 2013;135:1232–5; (c) Luo J, Zhu Z, Liu Y, Zhao X. Diaryl selenide catalyzed vicinal trifluoromethylthioamination of alkenes. Org Lett. 2015;17:3620–3; (d) Verma A, Jana S, Prasad CD, Yadav A, Kumar S. Organoselenium and DMAP co-catalysis: regioselective synthesis of medium-sized halolactones and bromooxepanes from unactivated alkenes. Chem Commun. 2016;52:4179–82; (e) Wu J-J, Xu J, Zhao X. Selenide‐catalyzed stereoselective construction of tetrasubstituted trifluoromethylthiolated alkenes with alkynes. Chem Eur J. 2016;22:15265–9; (f) Luo J, Liu Y, Zhao X. Chiral selenide-catalyzed enantioselective construction of saturated trifluoromethylthiolated azaheterocycles. Org Lett. 2017;19:3434–7; (g) Liu X, Liang Y, Ji J, Luo J, Zhao X. Chiral selenide-catalyzed enantioselective allylic reaction and intermolecular difunctionalization of alkenes: efficient construction of C-SCF3 stereogenic molecules. J Am Chem Soc. 2018;140:4782–6.10.1021/jo301486cSearch in Google Scholar PubMed
[52] Zhu Z, Luo J, Zhao X. Combination of Lewis basic selenium catalysis and redox selenium chemistry: synthesis of trifluoromethylthiolated tertiary alcohols with alkenes. Org Lett. 2017;19:4940–3.10.1021/acs.orglett.7b02406Search in Google Scholar PubMed
[53] Weilbeer C, Selent D, Dyballa KM, Franke R, Spannenberg A, Börner A. Evaluation of organoselenium based compounds as co-catalysts in rhodium-catalyzed hydroformylation. Chemistry Select. 2016;1:5421–9.10.1002/slct.201601215Search in Google Scholar
[54] Drake MD, Bright FV, Detty MR. Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: origins of the “dendrimer effect” with catalysts terminating in phenylseleno groups. J Am Chem Soc. 2003;125:12558–66.10.1021/ja0367593Search in Google Scholar PubMed
[55] Goodman MA, Detty MR. Selenoxides as catalysts for the activation of hydrogen peroxide. Bromination of organic substrates with sodium bromide and hydrogen peroxide. Organometallics. 2004;23:3016–20.10.1021/om049908eSearch in Google Scholar
[56] Bennett SM, Tang Y, McMaster D, Bright FV, Detty MR. A xerogel-sequestered selenoxide catalyst for brominations with hydrogen peroxide and sodium bromide in an aqueous environment. J Org Chem. 2008;73:6849–52.10.1021/jo801234eSearch in Google Scholar PubMed
[57] Jeong LS, Tosh DK, Kim HO, Wang T, Hou X, Yun HS, et al. First synthesis of 4′-selenonucleosides showing unusual southern conformation. Org Lett. 2008;10:209–12.10.1021/ol7025558Search in Google Scholar PubMed
[58] (a) Jayakanthan K, Johnston BD, Pinto BM. Stereoselective synthesis of 4′-selenonucleosides using the Pummerer glycosylation reaction. Carbohydr Res. 2008;343:1790–800. (b) Taniike H, Inagaki Y, Matsuda A, Minakawa N. Practical synthesis of 4′-selenopyrimidine nucleosides using hypervalent iodine. Tetrahedron. 2011;67:7977–82; (c) Ishii K, Saito-Tarashima N, Ota M, Yamamoto S, Okamoto Y, Tanaka Y, et al. Practical synthesis of 4′-selenopurine nucleosides by combining chlorinated purines and ‘armed’ 4-selenosugar. Tetrahedron. 2016;72:6589–94.10.1016/j.carres.2008.02.014Search in Google Scholar PubMed
[59] (a) Iwaoka M, Kumakura F, Yoneda M, Nakahara T, Henmi K, Aonuma H, et al. Direct observation of conformational folding coupled with disulphide rearrangement by using a water-soluble selenoxide reagent – A case of oxidative regeneration of ribonuclease A under weakly basic conditions. J Biochem. 2008;144:121–30. (b) Kumakura F, Mishra B, Priyadarsini KI, Iwaoka M. A water-soluble cyclic selenide with enhanced glutathione peroxidase-like catalytic activities. Eur J Org Chem 2010, 440-5; (c) Arai K, Dedachi K, Iwaoka M. Rapid and quantitative disulfide bond formation for a polypeptide chain using a cyclic selenoxide reagent in an aqueous medium. Chem Eur J 2011, 17, 481-5.10.1093/jb/mvn049Search in Google Scholar PubMed
[60] Arai K, Moriai K, Ogawa A, Iwaoka M. An amphiphilic selenide catalyst behaves like a hybrid mimic of protein disulfide isomerase and glutathione peroxidase 7. Chem Asian J. 2014;9:3464–71.10.1002/asia.201402726Search in Google Scholar PubMed
[61] Kumar PV, Singh BG, Kunwar A, Iwaoka M, Priyadarsini KI. Degradation of peroxynitrite by simple, recyclable selenolanes. Bull Chem Soc Jpn. 2016;89:490–7.10.1246/bcsj.20150334Search in Google Scholar
[62] Marini F, Sternativo S, Del Verme F, Testaferri L, Tiecco M. Enantioselective organocatalytic Michael addition of α-substituted cyanoacetates to α,β-unsaturated selenones. Adv Synth Catal. 2009;351:103–6.10.1002/adsc.200800592Search in Google Scholar
[63] Buyck T, Wang Q, Zhu J. Catalytic enantioselective Michael addition of α-aryl-α-isocyanoacetates to vinyl selenone: synthesis of α,α-disubstituted α-amino acids and (+)- and (-)-trigonoliimine A. Angew Chem Int Ed. 2013;52:12714–8.10.1002/anie.201306663Search in Google Scholar PubMed
[64] Buyck T, Wang Q, Zhu J. From racemic to enantioselective total synthesis of trigonoliimines via development of an organocatalytic enantioselective Michael addition of α-aryl-α-isocyanoacetate to vinyl phenyl selenone. Chimia. 2014;68:211–4.10.2533/chimia.2014.211Search in Google Scholar PubMed
[65] Clemenceau A, Wang Q, Zhu J. Enantioselective synthesis of quaternary α-amino acids enabled by the versatility of the phenylselenonyl group. Chem Eur J. 2016;22:18368–72.10.1002/chem.201604781Search in Google Scholar PubMed
[66] Zhang T, Cheng L, Hameed S, Liu L, Wang D, Chen Y-J. Highly enantioselective Michael addition of 2-oxindoles to vinyl selenone in RTILs catalyzed by a Cinchona alkaloid-based thiourea. Chem Commun. 2011;47:6644–6.10.1039/c1cc10880hSearch in Google Scholar PubMed
[67] Simlandy AK, Mukherjee S. Catalytic asymmetric formal γ-allylation of deconjugated butenolides. Org Biomol Chem. 2016;14:5659–64.10.1039/C5OB02362ASearch in Google Scholar PubMed
[68] Bhaumik A, Samanta S, Pathak T. Enantiopure 1,4,5-trisubstituted 1,2,3-triazoles from carbohydrates: applications of organoselenium chemistry. J Org Chem. 2014;79:6895–904.10.1021/jo5009564Search in Google Scholar PubMed
[69] Bhaumik A, Pathak T. Methyl-α‑D‑2-selenonyl pent-2-enofuranoside: a reactive selenosugar for the diversity oriented synthesis of enantiomerically pure heterocycles, carbocycles, and isonucleosides. J Org Chem. 2015;80:11057–64.10.1021/acs.joc.5b01192Search in Google Scholar PubMed
[70] Bhaumik A, Das A, Pathak T. Vinyl selenones derived from D-fructose: a new platform for fructochemistry. Asian J Org Chem. 2016;5:1048–62.10.1002/ajoc.201600183Search in Google Scholar
[71] Marini F, Sternativo S, Del Verme F, Testaferri L, Tiecco M. A new stereoselective synthesis of cyclopropanes containing quaternary stereocentres via organocatalytic Michael addition to vinyl selenones. Adv Synth Catal. 2009;351:1801–6.10.1002/adsc.200900222Search in Google Scholar
[72] Bagnoli L, Scarponi C, Testaferri L, Tiecco M. Preparation of both enantiomers of cyclopropane derivatives from the reaction of vinyl selenones with di-(-)-bornyl malonate. Tetrahedron: Asymmetry. 2009;20:1506–14.10.1016/j.tetasy.2009.05.019Search in Google Scholar
[73] Sternativo S, Marini F, Del Verme F, Calandriello A, Testaferri L, Tiecco M. One-pot synthesis of aziridines from vinyl selenones and variously functionalized primary amines. Tetrahedron. 2010;66:6851–7.10.1016/j.tet.2010.06.055Search in Google Scholar
[74] Bagnoli L, Scarponi C, Rossi MG, Testaferri L, Tiecco M. Synthesis of enantiopure 1,4-dioxanes, morpholines, and piperazines from the reaction of chiral 1,2-diols, amino alcohols, and diamines with vinyl selenones. Chem Eur J. 2011;17:993–9.10.1002/chem.201002593Search in Google Scholar PubMed
[75] Buyck T, Wang Q, Zhu J. Triple role of phenylselenonyl group enabled a one-pot synthesis of 1,3-oxazinan-2-ones from α‑isocyanoacetates, phenyl vinyl selenones, and water. J Am Chem Soc. 2014;136:11524–8.10.1021/ja506031hSearch in Google Scholar PubMed
[76] Buyck T, Wang Q, Zhu J. Integrated one-pot synthesis of 1,3-oxazinan-2-ones from isocyanoacetates and phenyl vinyl selenones. Chimia. 2015;69:199–202.10.2533/chimia.2015.199Search in Google Scholar PubMed
[77] Sternativo S, Calandriello A, Costantino F, Testaferri L, Tiecco M, Marini F. A highly enantioselective one-pot synthesis of spirolactones by an organocatalyzed Michael addition/cyclization sequence. Angew Chem Int Ed. 2011;50:9382–5.10.1002/anie.201104819Search in Google Scholar PubMed
[78] Sternativo S, Walczak O, Battistelli B, Testaferri L, Marini F. Organocatalytic Michael addition of indanone carboxylates to vinyl selenone for the asymmetric synthesis of polycyclic pyrrolidines. Tetrahedron. 2012;68:10536–41.10.1016/j.tet.2012.08.077Search in Google Scholar
[79] Sardella R, Ianni F, Lisanti A, Scorzoni S, Marini F, Sternativo S, et al. Direct chromatographic enantioresolution of fully constrained β-amino acids: exploring the use of high-molecular weight chiral selectors. Amino Acids. 2014;46:1235–42.10.1007/s00726-014-1683-5Search in Google Scholar PubMed
[80] Sternativo S, Battistelli B, Bagnoli L, Santi C, Testaferri L, Marini F. Synthesis of γ-lactams via a domino Michael addition/cyclization reaction of vinyl selenone with substituted amides. Tetrahedron Lett. 2013;54:6755–7.10.1016/j.tetlet.2013.10.004Search in Google Scholar
[81] Bagnoli L, Casini S, Marini F, Santi C, Testaferri L. Vinyl selenones: annulation agents for the synthesis of six-membered benzo-1,4-heterocyclic compounds. Tetrahedron. 2013;69:481–6.10.1016/j.tet.2012.11.036Search in Google Scholar
[82] Palomba M, Rossi L, Sancineto L, Tramontano E, Corona A, Bagnoli L, et al. A new vinyl selenone-based domino approach to spirocyclopropyl oxindoles endowed with anti-HIV RT activity. Org Biomol Chem. 2016;14:2015–24.10.1039/C5OB02451JSearch in Google Scholar PubMed
[83] Sridhar PR, Reddy GM, Seshadri K. Stereoselective synthesis of cis-fused perhydrofuro[2,3-b]furan derivatives from sugar-derived allyl vinyl ethers. Eur J Org Chem. 2012;6228–35.10.1002/chin.201312092Search in Google Scholar
[84] Temperini A, Barattucci A, Bonaccorsi PM, Rosati O, Minuti L. Stereoselective synthesis of substituted tetrahydropyrans and isochromans by cyclization of phenylseleno alcohols. J Org Chem. 2015;80:8102–12.10.1021/acs.joc.5b01199Search in Google Scholar PubMed
[85] Beng TK, Silaire AWV, Alwali A, Bassler DP. One-shot access to α,β-difunctionalized azepenes and dehydropiperidines by reductive cross-coupling of α-selenonyl-β-selenyl enamides with organic bromides. Org Biomol Chem. 2015;13:7915–9.10.1039/C5OB01003ASearch in Google Scholar PubMed
[86] Kambe N, Tsukamoto T, Miyoshi N, Murai S, Sonoda N. Oxidation of olefins with benzenetellurinic anhydride. Chem Lett. 1987;16:269–72.10.1246/cl.1987.269Search in Google Scholar
[87] Yoshida M, Suzuki T, Kamigata N. Novel preparation of highly electrophilic species for benzenetellurenylation or benzenesulfenylation by nitrobenzenesulfonyl peroxide in combination with ditelluride or disulfide. Application to intramolecular ring closures. J Org Chem. 1992;57:383–6.10.1021/jo00027a068Search in Google Scholar
[88] Yamada T, Mishima E, Ueki K, Yamago S. Phenyltellanyl triflate (PhTeOTf) as a powerful tellurophilic activator in the Friedel–crafts reaction. Chem Lett. 2008;37:650–1.10.1246/cl.2008.650Search in Google Scholar
[89] Yamago S, Iida K, Yoshida J. Organotellurium compounds as novel initiators for controlled/living radical polymerizations. Synthesis of functionalized polystyrenes and end-group modifications. J Am Chem Soc. 2002;124:2874–5.10.1021/ja025554bSearch in Google Scholar PubMed
[90] Ogura F, Otsubo T. Benzenetellurinic anhydride. In: Paquette LA, editor(s). e-EROS – Encyclopedia of Reagents for Organic Synthesis. Hoboken, NJ, USA: John Wiley & Sons, 2001, and references cited therein. DOI: 10.1002/047084289X.rb024.10.1002/047084289X.rb024Search in Google Scholar
[91] Hu NX, Aso Y, Otsubo T, Ogura F. New synthetic reactions using arenetellurinic anhydrides. Phosphorus Sulfur Relat Elem. 1988;38:177–89.10.1080/03086648808079712Search in Google Scholar
[92] Ogura F, Otsubo T, Aso Y. New synthetic reactions using organotelluriums. Phosphorus Sulfur Silicon Relat Elem. 1992;67:223–38.10.1080/10426509208045840Search in Google Scholar
[93] Barton DHR, Finet J-P, Thomas M. Organotellurinic acid anhydrides as selective oxidants in organic synthesis. Tetrahedron. 1986;42:2319–24.10.1016/S0040-4020(01)90612-XSearch in Google Scholar
[94] Hu NX, Aso Y, Otsubo T, Ogura F. Novel oxidizing properties of p-methoxybenzenetellurinic acid anhydride. Tetrahedron Lett. 1986;27:6099–102.10.1016/S0040-4039(00)85408-8Search in Google Scholar
[95] Narwal JK, Garg S, Verma KK. Studies on the oxidizing properties of some tellurinic acid anhydrides. Chem Sci Trans. 2013;2:1491–5.Search in Google Scholar
[96] Fukumoto T, Matsuki T, Hu NX, Aso Y, Otsubo T, Ogura F. Benzenetellurinic mixed anhydrides as mild oxidizing agents. Chem Lett. 1990;19:2269–72.10.1246/cl.1990.2269Search in Google Scholar
[97] Hu NX, Aso Y, Otsubo T, Ogura F. Cyclofunctionalization of hydroxyolefins induced by arenetellurinic anhydride. Tetrahedron Lett. 1987;28:1281–4.10.1016/S0040-4039(00)95346-2Search in Google Scholar
[98] Hu NX, Aso Y, Otsubo T, Ogura F. Cyclofunctionalization of hydroxyolefins induced by arenetellurinyl acetate. J Org Chem. 1989;54:4391–7.10.1021/jo00279a030Search in Google Scholar
[99] Hu NX, Aso Y, Otsubo T, Ogura F. Organotellurium-mediated synthesis of oxazolidin-2-ones from alkenes. J Chem Soc Chem Commun. 1987;1447–8.10.1039/c39870001447Search in Google Scholar
[100] Hu NX, Aso Y, Otsubo T, Ogura F. Aminotellurinylation of olefins and its utilization for synthesis of 2-oxazolidinones. J Org Chem. 1989;54:4398–404.10.1021/jo00279a031Search in Google Scholar
[101] Hu NX, Aso Y, Otsubo T, Ogura F. Tellurium-based organic synthesis: a novel one-pot formation of 2-oxazolines from alkenes induced by amidotellurinylation. Tetrahedron Lett. 1988;29:1049–52.10.1016/0040-4039(88)85332-2Search in Google Scholar
[102] Hu NX, Aso Y, Otsubo T, Ogura F. Organotelluriums. Part 21. Amidotellurinylation of olefins and a novel one-pot synthesis of 4,5-dihydro-oxazoles from olefins. J Chem Soc Perkin Trans I. 1989;1775–80.10.1039/p19890001775Search in Google Scholar
[103] Fukumoto T, Aso Y, Otsubo T, Ogura F. Stereoselective addition reactions of alkynes with benzenetellurinyl trifluoromethanesulfonate in acetonitrile: organotellurium-mediated one-pot synthesis of oxazoles from internal alkynes. J Chem Soc Chem Commun. 1992;1070–2.10.1039/c39920001070Search in Google Scholar
[104] Fukumoto T, Aso Y, Otsubo T, Ogura F. Syntheses of β-amidovinyltellurides and oxazoles by addition reactions of alkynes with benzenetellurinyl trifluoromethanesulfonate in acetonitrile. Heteroatom Chem. 1993;4:511–6.10.1002/hc.520040517Search in Google Scholar
[105] Hu NX, Aso Y, Otsubo T, Ogura F. Transformation of allylsilanes into allylamines via phenyltellurinylation. Tetrahedron Lett. 1988;29:4949–52.10.1016/S0040-4039(00)80649-8Search in Google Scholar
[106] Brill WF. A site isolated tellurium oxidation catalyst having no soluble analog. J Org Chem. 1986;51:1149–50.10.1021/jo00357a046Search in Google Scholar
[107] Alberto EE, Muller LM, Detty MR. Rate accelerations of bromination reactions with NaBr and H2O2 via the addition of catalytic quantities of diaryl ditellurides. Organometallics. 2014;33:5571–81.10.1021/om500883fSearch in Google Scholar
[108] Finet J-P. Dianisyl telluroxide. In: Paquette LA, editor(s). e-EROS – Encyclopedia of Reagents for Organic Synthesis. Hoboken, NJ, USA: John Wiley & Sons, 2001, and references cited therein. DOI: 10.1002/047084289X.rd009m.10.1002/047084289X.rd009mSearch in Google Scholar
[109] Ley SV, Meerholz CA, Barton DHR. Diaryl telluroxides as new mild oxidising reagents. Tetrahedron. 1981;37 (Suppl. 1):213–23.10.1016/0040-4020(81)85057-0Search in Google Scholar
[110] Barton DHR, Ley SV, Meerholz CA. Bis(p-methoxyphenyl) telluroxide: a new, mild oxidising agent. Chem Commun. 1979;755–6.10.1039/c39790000755Search in Google Scholar
[111] Barton DHR, Finet J-P, Giannotti C, Thomas M. Telluramine derivatives as selective oxidants. Tetrahedron Lett. 1988;29:2671–4.10.1016/0040-4039(88)85256-0Search in Google Scholar
[112] Engman L, Cava MP. Synthesis and reactions of bis(p-methoxyphenyl)tellurone. J Chem Soc Chem Commun. 1982;164–5.10.1039/C39820000164Search in Google Scholar
[113] Oba M, Endo M, Nishiyama K, Ouchi A, Ando W. Photosensitized oxygenation of diaryl tellurides to telluroxides and their oxidizing properties. Chem Commun. 2004;1672–3.10.1039/b403683bSearch in Google Scholar PubMed
[114] Hu NX, Aso Y, Otsubo T, Ogura F. Polymer-supported diaryl selenoxide and telluroxide as mild and selective oxidizing agents. Bull Chem Soc Jpn. 1986;59:879–84.10.1246/bcsj.59.879Search in Google Scholar
[115] Mallow O, Bolsinger J, Finke P, Hesse M, Chen Y-S, Duthie A, et al. Oxygen transfer from an intramolecularly coordinated diaryltellurium oxide to acetonitrile. Formation and combined AIM and ELI‑D analysis of a novel diaryltellurium acetimidate. J Am Chem Soc. 2014;136:10870–3.10.1021/ja505648xSearch in Google Scholar PubMed
[116] Koide Y, Kawaguchi M, Urano Y, Hanaoka K, Komatsu T, Abo M, et al. A reversible near-infrared fluorescence probe for reactive oxygen species based on Te–rhodamine. Chem Commun. 2012;48:3091–3.10.1039/c2cc18011aSearch in Google Scholar
[117] Kryman MW, Schamerhorn GA, Yung K, Sathyamoorthy B, Sukumaran DK, Ohulchanskyy TY, et al. Organotellurium fluorescence probes for redox reactions: 9‑aryl-3,6-diaminotelluroxanthylium dyes and their telluroxides. Organometallics. 2013;32:4321–33.10.1021/om400467sSearch in Google Scholar
[118] Lutkus LV, Irving HE, Davies KS, Hill JE, Lohman JE, Eskew MW, et al. Photocatalytic aerobic thiol oxidation with a self-sensitized tellurorhodamine chromophore. Organometallics. 2017;36:2588–96.10.1021/acs.organomet.7b00166Search in Google Scholar
[119] Shimada K, Takata Y, Osaki Y, Moro-oka A, Kogawa H, Sakuraba M, et al. Regioselective synthesis of polysubstituted pyridines via hetero-Diels–Alder reaction of isotellurazoles with acetylenic dienophiles. Tetrahedron Lett. 2009;50:6651–3.10.1016/j.tetlet.2009.09.060Search in Google Scholar
[120] Ley SV, Meerholz CA, Barton DHR. Catalytic oxidation of thiocarbonyl compounds involving the use of 1,2-dibromotetrachloroethane as a brominating reagent for diaryl TeII species. Tetrahedron Lett. 1980;21:1785–8.10.1016/S0040-4039(00)77838-5Search in Google Scholar
[121] Matsuki T, Hu NX, Aso Y, Otsubo T, Ogura F. Indirect electrolytic oxidation of thioamides using organotellurium as a mediator. Bull Chem Soc Jpn. 1988;61:2117–21.10.1246/bcsj.61.2117Search in Google Scholar
[122] Oba M, Okada Y, Nishiyama K, Ando W. Aerobic photooxidation of phosphite esters using diorganotelluride catalysts. Org Lett. 2009;11:1879–81.10.1021/ol900240sSearch in Google Scholar PubMed
[123] Okada Y, Oba M, Arai A, Tanaka K, Nishiyama K, Ando W. Diorganotelluride-catalyzed oxidation of silanes to silanols under atmospheric oxygen. Inorg Chem. 2010;49:383–5.10.1021/ic9022745Search in Google Scholar PubMed
[124] See, for example: (a) Detty MR, Zhou F, Friedman AE. Positive halogens from halides and hydrogen peroxide with organotellurium catalysts. J Am Chem Soc. 1996;118:313–8; (b) Francavilla C, Drake MD, Bright FV, Detty MR. Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: improved catalytic activity through statistical effects and cooperativity in successive generations. J Am Chem Soc. 2001;123:57–67; (c) Higgs DE, Nelen MI, Detty MR. Iodination of organic substrates with halide salts and H2O2 using an organotelluride catalyst. Org Lett. 2001;3:349–52; (d) Abe M, You Y, Detty MR. 21-Telluraporphyrins. 2. Catalysts for bromination reactions with hydrogen peroxide and sodium bromide. Organometallics. 2002;21:4546–51.10.1021/ja953187gSearch in Google Scholar
[125] See, for example: (a) You Y, Ahsan K, Detty MR. Mechanistic studies of the tellurium(II)/tellurium(IV) redox cycle in thiol peroxidase-like reactions of diorganotellurides in methanol. J Am Chem Soc. 2003;125:4918–27; (b) Ahsan K, Drake MD, Higgs DE, Wojciechowski AL, Tse BN, Bateman MA, et al. Dendrimeric organotelluride catalysts for the activation of hydrogen peroxide. Improved catalytic activity through statistical and stereoelectronic effects. Organometallics. 2003;22:2883–90; (c) Braga AL, Alberto EE, Soares LC, Rocha JBT, Sudati JH, Roos DH. Synthesis of telluroamino acid derivatives with remarkable GPx like activity. Org Biomol Chem. 2009;7:43–5; (d) Sarma BK, Manna D, Minoura M, Mugesh G. Synthesis, structure, spirocyclization mechanism, and glutathione peroxidase-like antioxidant activity of stable spirodiazaselenurane and spirodiazatellurane. J Am Chem Soc. 2010;132:5364–74; (e) Singh VP, Poon J, Engman L. Turning pyridoxine into a catalytic chain-breaking and hydroperoxide-decomposing antioxidant. J Org Chem. 2013;78:1478–87.10.1021/ja029590mSearch in Google Scholar PubMed
[126] Oba M, Tanaka K, Nishiyama K, Ando W. Aerobic oxidation of thiols to disulfides catalyzed by diaryl tellurides under photosensitized conditions. J Org Chem. 2011;76:4173–7.10.1021/jo200496rSearch in Google Scholar PubMed
[127] Engman L, Cava MP. Bis(p-methoxyphenyl)telluroxide, a novel organotellurium aldol catalyst. Tetrahedron Lett. 1981;22:5251–2.10.1016/S0040-4039(01)92472-4Search in Google Scholar
[128] (a) Zhong Q, Lu R. Catalytic synthesis of α,β-unsaturated ketones and 2,4-alkadienones by organotellurium oxide. Yingyong Huaxue. 1990;7(3):89–92. (Chem Abstr. 1991;114:61639); (b) Zhong Q, Shao J, Liu C, Lu R. Catalytic synthesis of α,β-unsaturated nitriles, cyanoesters and cyanoamides by organotellurium oxide. Yingyong Huaxue. 1991;8(5):17–20 (Chem Abstr. 1992;116:83329); (c) Zhong Q, Lu Y, Liu C, Tao W, Zou Y. Catalytic synthesis of α-cyano-α,β-unsaturated sulfones in the presence of organotellurium oxide. Chin Chem Lett. 1991;2:683–4 (Chem Abstr. 1992;116:173723).Search in Google Scholar
[129] Akiba M, Lakshmikantham MV, Jen K-Y, Cava MP. Organotellurium chemistry. 9. Structural parameters in the telluroxide-catalyzed aldol condensation. J Org Chem. 1984;49:4819–21.10.1021/jo00199a014Search in Google Scholar
[130] Verma KK, Garg S, Narwal JK. Study on the applications of some bis (hydroxyaryl) telluroxides as aldol catalyst. Pharma Chem. 2011;3:218–25.Search in Google Scholar
[131] Eliseeva EV, Red’kin NA, Gar’kin VP, Pytskii IS, Buryak AK. Chromatography–mass spectrometry study of aldol condensation reaction with an organotelluric catalyst. Prot Met Phys Chem Surf. 2015;51:1050–7.10.1134/S2070205115060088Search in Google Scholar
[132] Engman L, Stern D, Pelcman M, Andersson CM. Thiol peroxidase activity of diorganyl tellurides. J Org Chem. 1994;59:1973–9.10.1021/jo00087a008Search in Google Scholar
[133] Kanda T, Engman L, Cotgreave IA, Powis G. Novel water-soluble diorganyl tellurides with thiol peroxidase and antioxidant activity. J Org Chem. 1999;64:8161–9.10.1021/jo990842kSearch in Google Scholar PubMed
[134] Detty MR. Reaction pathways of telluroxide equivalents. Reductive elimination of hydrogen peroxide from dihydroxytelluranes and oxidation of carbon via intramolecular transfer of oxygen. Organometallics. 1991;10:702–12.10.1021/om00049a033Search in Google Scholar
[135] Detty MR, Gibson SL. Tellurapyrylium dyes as catalysts for oxidations with hydrogen peroxide and as scavengers of singlet oxygen. Dihydroxytelluranes as mild oxidizing agents. Organometallics. 1992;11:2147–56.10.1021/om00042a031Search in Google Scholar
[136] McMaster DM, Bennett SM, Tang Y, Finlay JA, Kowalke GL, Nedved B, et al. Antifouling character of ‘active’ hybrid xerogel coatings with sequestered catalysts for the activation of hydrogen peroxide. Biofouling. 2009;25:21–33.10.1080/08927010802431298Search in Google Scholar PubMed
[137] Oba M, Okada Y, Nishiyama K, Shimada S, Ando W. Synthesis, characterization and oxidizing properties of a diorgano tellurone carrying bulky aromatic substituents. Chem Commun. 2008;5378–80.10.1039/b811112jSearch in Google Scholar PubMed
[138] Beckmann J, Bolsinger J, Duthie A, Finke P. New series of intramolecularly coordinated diaryltellurium compounds. Rational synthesis of the diarylhydroxytelluronium triflate [(8-Me2NC10H6)2Te(OH)](O3SCF3). Organometallics. 2012;31:238–45.10.1021/om2008259Search in Google Scholar
[139] Oba M, Nishiyama K, Koguchi S, Shimada S, Ando W. Synthesis and properties of tellurinic anhydride−tellurone adducts. Organometallics. 2013;32:6620–3.10.1021/om400772dSearch in Google Scholar
[140] Oba M, Okada Y, Endo M, Tanaka K, Nishiyama K, Shimada S, et al. Formation of diaryl telluroxides and tellurones by photosensitized oxygenation of diaryl tellurides. Inorg Chem. 2010;49:10680–6.10.1021/ic101708ySearch in Google Scholar PubMed
[141] Power PP. Main-group elements as transition metals. Nature. 2010;463:171–7.10.1038/nature08634Search in Google Scholar PubMed
[142] Kukushkin VYu, Pombeiro AJL. Metal-mediated and metal-catalyzed hydrolysis of nitriles. Inorg Chim Acta. 2005;358:1–21.10.1016/j.ica.2004.04.029Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Multi technique and multiscale approaches to the study of ancient and modern art objects on wooden and canvas support
- Characterization of proteins in cultural heritage using MALDI–TOF and LC–MS/MS mass spectrometric techniques
- Organophosphorus-selenium/tellurium reagents: from synthesis to applications
- Selenium– and tellurium–nitrogen reagents
- Applications of metal selenium/tellurium compounds in materials science
- Organoselenium and organotellurium compounds containing chalcogen-oxygen bonds in organic synthesis or related processes
- Templated enantioselective photocatalysis
- Liquid chromatography: Current applications in Heritage Science and recent developments
- Chemical space of naturally occurring compounds
Articles in the same Issue
- Multi technique and multiscale approaches to the study of ancient and modern art objects on wooden and canvas support
- Characterization of proteins in cultural heritage using MALDI–TOF and LC–MS/MS mass spectrometric techniques
- Organophosphorus-selenium/tellurium reagents: from synthesis to applications
- Selenium– and tellurium–nitrogen reagents
- Applications of metal selenium/tellurium compounds in materials science
- Organoselenium and organotellurium compounds containing chalcogen-oxygen bonds in organic synthesis or related processes
- Templated enantioselective photocatalysis
- Liquid chromatography: Current applications in Heritage Science and recent developments
- Chemical space of naturally occurring compounds