Abstract
This review summarizes results in the field of hydrogen-bond templated enantioselective photochemistry. It covers both the stoichemiometric use of templates derived from Kemp’s triacid as well as photocatalytic methods to achieve high enantioselectivities in photochemical processes.
References
[1] a) Everitt SR, Inoue Y. Molecular and supramolecular photochemistry: organic molecular photochemistry. Vol. 3. New York: CRC Press, 1999:71–130. b) Inoue Y. Asymmetric photochemical reactions in solution. Chem Rev. 1992;92:741–70; c) Rau H. Asymmetric photochemistry in solution. Chem Rev. 1983;83:535–47.Search in Google Scholar
[2] a) Kawasaki T, Sato M, Ishiguro S, Saito T, Morishita Y, Sato I, et al. Enantioselective synthesis of near enantiopure compound by asymmetric autocatalysis triggered by asymmetric photolysis with circularly polarized light. J Am Chem Soc. 2005;127:3274–5; b) Sato I, Sugie R, Matsueda Y, Furumura Y, Soai K. Asymmetric synthesis utilizing circularly polarized light mediated by the photoequilibrium of chiral olefins in conjunction with asymmetric autocatalysis. Angew Chem Int Ed. 2004;43:4490–2; c) Nishino H, Kosaka A, Hembury GA, Aoki F, Miyauchi K, Shitomi H, Onuki H, Inoue Y. Absolute asymmetric photoreactions of aliphatic amino acids by circularly polarized synchrotron radiation: critically pH-dependent photobehavior. J Am Chem Soc. 2002;124:11618–27.10.1021/ja0422108Search in Google Scholar PubMed
[3] a) Thomas R, Tamaoki N. Chirality transfer from chiral solvents and its memory in an azobenzene derivative exhibiting photo-switchable racemization. Org Biomol Chem. 2011;9:5389–93. b) Boyd DR, Campbell RM, Coulter PB, Grimshaw J, Neill DC, Jennings WB. Dynamic stereochemistry of imines and derivatives. Part 18. Photosynthesis and photoracemization of optically active oxaziridines. J Chem Soc, Perkin Trans. 1985;1:849–55; c) Seebach D, Oei H-A, Daum H. Asymmetric synthesis in photo-, electro-, and alkali metal-pinacolizations of benzaldehyde and phenones in the chiral medium DDB. Chem Ber. 1977;110:2316–33.10.1039/c1ob05453hSearch in Google Scholar PubMed
[4] a) Sakamoto M. Spontaneous chiral crystallization of achiral materials and absolute asymmetric photochemical transformation using the chiral crystalline environment. J Photochem Photobiol. 2006;C7:183–96. b) Sakamoto M. molecular and supramolecular photochemistry, vol. 11: chiral photochemistry. New York: Dekker, 2004:415–61.10.1016/j.jphotochemrev.2006.11.002Search in Google Scholar
[5] a) Zhao G, Yang C, Chen Q, Jin J, Zhang X, Zhao L, et al. Photochemical studies on exo-bicyclo[2.1.1]hexyl and bicyclo[3.1.0]hexyl aryl ketones: two approaches for synthesis of enantiomerically enriched cyclopentene derivatives. Tetrahedron. 2009;65:9952–5; b) Yang C, Xia W, Chen Q, Zhang X, Li B, Gou B. Photochemical studies on benzonorbornene derivatives. Medium effects and asymmetric induction. Lett Org Chem. 2009;6:41–3; c) Yang C, Xia W. Solid-state asymmetric photochemical studies using the ionic chiral auxiliary approach. Chem Asian J. 2009;4:1774–84; d) Xia W, Scheffer JR, Botoshansky M, Kaftory M. Photochemistry of 1-isopropylcycloalkyl aryl ketones: ring size effects, medium effects, and asymmetric induction. Org Lett. 2005;7:1315–18; e) Scheffer JR. Asymmetric induction in the photochemistry of crystalline ammonium carboxylate salts. Can J Chem. 2001;79:349–57.10.1016/j.tet.2009.10.011Search in Google Scholar
[6] a) Fukuhara G, Mori T, Inoue Y. Competitive enantiodifferentiating anti-markovnikov photoaddition of water and methanol to 1,1-diphenylpropene using a sensitizing cyclodextrin host. J Org Chem. 2009;74:6714–27. b) Nakamura A, Inoue Y. Supramolecular catalysis of the enantiodifferentiating [4+4] photocyclodimerization of 2-anthracenecarboxylate by γ-cyclodextrin. J Am Chem Soc. 2003;125:966–72; c) Toda F. Crystalline inclusion complexes as media of molecular recognitions and selective reactions. Aust J Chem. 2001;54:573–82.10.1021/jo9012628Search in Google Scholar PubMed
[7] a) Sivasubramanian K, Kaanumalle LS, Uppili S, Ramamurthy V. Value of zeolites in asymmetric induction during photocyclization of pyridones, cyclohexadienones and naphthalenones. Org Biomol Chem. 2007;5:1569–76. b) Shailaja J, Kaanumalle LS, Sivasubramanian K, Natarajan A, Ponchot KJ, Pradhan A, Ramamurthy V. Asymmetric induction during electron transfer mediated photoreduction of carbonyl compounds: role of zeolites. Org Biomol Chem. 2006;4:1561–71; c) Sivaguru J, Natarajan A, Kaanumalle LS, Shailaja J, Uppili S, Joy A, Ramamurthy V. Asymmetric photoreactions within zeolites: role of confinement and alkali metal ions. Acc Chem Res. 2003;36:509–21.10.1039/b702572fSearch in Google Scholar PubMed
[8] a) Natarajan A, Mague JT, Ramamurthy V. Asymmetric induction during Yang cyclization of α-oxoamides: the power of a covalently linked chiral auxiliary is enhanced in the crystalline state. J Am Chem Soc. 2005;127:3568–76. b) Natarajan A, Mague JT, Ramamurthy V. Viability of a covalent chiral auxiliary method to induce asymmetric induction in solid-state photoreactions explored. Cryst Growth Design. 2005;5:2348–55; c) Bach T. Stereoselective intermolecular [2+2] photocycloaddition reactions and their application in synthesis. Synthesis. 1998;683–703.10.1021/ja043999pSearch in Google Scholar PubMed
[9] a) Kawanami Y, Pace TC, Mizoguchi J, Yanagi T, Nishijima M, Mori T, et al. Supramolecular complexation and enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid with 4-aminoprolinol derivatives as chiral hydrogen-bonding templates. J Org Chem. 2009;74:7908–21; b) Müller C, Bach T. chirality control in photochemical reactions: enantioselective formation of complex photoproducts in solution. Aust J Chem. 2008;61:557–64; c) Svoboda J, König B. Templated photochemistry: toward catalysts enhancing the efficiency and selectivity of photoreactions in homogeneous solutions. Chem Rev. 2006;106:5413–30; d) Mizoguchi J, Kawanami Y, Wada T, Kodama K, Anzai K, Yanagi T, Inoue Y. Enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid using a chiral N-(2-hydroxymethyl-4-pyrrolidinyl)-benzamide template. Org Lett 2006;8:6051–4. e) Yang C, Inoue Y. Supramolecular photochirogenesis. Chem Soc Rev. 2014;43:4123–43. f) Bibal B, Mongin C, Bassani DM. Template effects and supramolecular control of photoreactions in solution. Chem Soc Rev. 2014;43:4179–98.10.1021/jo901792tSearch in Google Scholar PubMed
[10] a) Alonso R, Jiménez MC, Miranda MA. Stereodifferentiation in the compartmentalized photooxidation of a protein-bound anthracene. Org Lett. 2011;13:3860–3. b) Fukuhara G, Chiappe C, Mele A, Melai B, Bellina F, Inoue Y. Photochirogenesis in chiral ionic liquid: enantiodifferentiating [4+4] photocyclodimerization of 2-anthracenecarboxylic acid in (R)-1-methyl-3-(2,3-dihydroxypropyl)imidazolium bistriflimide. Chem Commun. 2010;46:3472–4. c) Ke CF, Yang C, Mori T, Wada T, Liu Y, Inoue Y. Catalytic enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by a non-sensitizing chiral metallosupramolecular host. Angew Chem, Int Ed. 2009;48:6675–77; d) Yang C, Mori T, Origane Y, Ko YH, Selvapalam N, Kim K, Inoue Y. Highly stereoselective photocyclodimerization of α-cyclodextrin-appended anthracene mediated by γ-cyclodextrin and cucurbit[8]uril: a dramatic steric effect operating outside the binding site. J Am Chem Soc. 2008;130:8574–5.10.1021/ol201209hSearch in Google Scholar PubMed
[11] MacGillivray LR, Papaefstathiou GS, Friscic T, Hamilton TD, Bucar D-K, Chu Q, et al. Supramolecular control of reactivity in the solid state: from templates to ladderanes to metal-organic frameworks. Acc Chem Res. 2008;41:280–91.10.1021/ar700145rSearch in Google Scholar PubMed
[12] Bach T, Bergmann H, Grosch B, Harms K, Herdtweck E. Synthesis of enantiomerically pure 1,5,7-trimethyl-3-azabicyclo[3.3.1]nonan-2-ones as chiral host compounds for enantioselective photochemical reactions in solution. Synthesis. 2001;1395–405.10.1055/s-2001-15231Search in Google Scholar
[13] a) Bergmann H, Grosch B, Sitterberg S, Bach T. An enantiomerically pure 1,5,7-trimethyl-3-azabicyclo[3.3.1]nonan-2-one as 1H NMR shift reagent for the ee determination of chiral lactams, quinolones, and oxazolidinones. J Org Chem. 2004;69:970–3. b) Bauer A, Bach T. Assignment of the absolute configuration of 7-substituted 3-azabicyclo[3.3.1]nonan-2-ones by NMR-titration experiments. Tetrahedron Asymmetry. 2004;15:3799–803.10.1021/jo0354847Search in Google Scholar PubMed
[14] a) Bach T, Bergmann H, Brummerhop H, Lewis W, Harms K. The [2+2]-photocycloaddition of aromatic aldehydes and ketones to 3,4-dihydro-2-pyridones: regioselectivity, diastereoselectivity, and reductive ring opening of the product oxetanes. Chem Eur J. 2001;7:4512–21. b) Bach T, Bergmann H, Harms K. High facial diastereoselectivity in the photocycloaddition of a chiral aromatic aldehyde and an enamide induced by intermolecular hydrogen bonding. J Am Chem Soc. 1999;121:10650–1.10.1002/1521-3765(20011015)7:20<4512::AID-CHEM4512>3.0.CO;2-HSearch in Google Scholar
[15] a) Bach T, Aechtner T, Neumüller B. Enantioselective Norrish–Yang cyclization reactions of N-(ω-oxo-ω-phenylalkyl)-substituted imidazolidinones in solution and in the solid state. Chem Eur J. 2002;8:2464–75. b) Bach T, Aechtner T, Neumüller B. Intermolecular hydrogen binding of a chiral host and a prochiral imidazolidinone: enantioselective Norrish–Yang cyclisation in solution. Chem Commun. 2001;607–8.10.1002/1521-3765(20020603)8:11<2464::AID-CHEM2464>3.0.CO;2-SSearch in Google Scholar
[16] Bach T, Bergmann H, Harms K. Enantioselective photochemical reactions of 2-pyridones in solution. Org Lett. 2001;3:601–3.10.1021/ol007004tSearch in Google Scholar PubMed
[17] Bach T, Grosch B, Strassner T, Herdtweck E. Enantioselective [6π]-photocyclization reaction of an acrylanilide mediated by a chiral host. Interplay between enantioselective ring closure and enantioselective protonation. J Org Chem. 2003;68:1107–16.10.1021/jo026602dSearch in Google Scholar PubMed
[18] a) Grosch B, Orlebar CN, Herdtweck E, Kaneda M, Wada T, Inoue Y, et al. Enantioselective [4+2]-cycloaddition reaction of a photochemically generated o-quinodimethane: mechanistic details, association studies, and pressure effects. Chem Eur J. 2004;10:2179–89; b) Grosch B, Orlebar, CN, Herdtweck E, Massa W, Bach T. Highly enantioselective Diels–Alder reaction of a photochemically generated o-quinodimethane with olefins. Angew Chem Int Ed. 2003;42:3693–6.10.1002/chem.200306049Search in Google Scholar
[19] Müller C, Bauer A, Bach T. Chirogenic [3+2]-photocycloaddition reactions of 2-substituted naphthoquinones with cyclic alkenes. Photochem Photobiol Sci. 2011;10:1463–8.10.1039/c1pp05049dSearch in Google Scholar PubMed
[20] Albrecht D, Vogt F, Bach T. Diastereo- and enantioselective intramolecular [2+2] photocycloaddition reactions of 3-(ω′-alkenyl)- and 3-(ω′-alkenyloxy)-substituted 5,6-dihydro-1H-pyridin-2-ones. Chem Eur J. 2010;16:4284–96.10.1002/chem.200902616Search in Google Scholar
[21] Zimmerman J, Sibi MP. Enantioselective radical reactions. Top Curr Chem. 2006;263:107–62.10.1007/128_027Search in Google Scholar
[22] a) Dressel M, Aechtner T, Bach T. Enantioselectivity and diastereoselectivity in reductive radical cyclization reactions of 3-(ω-iodoalkylidene)-piperidin-2-ones. Synthesis. 2006;2206–14; b) Aechtner T, Dressel M, Bach T. Hydrogen bond mediated enantioselectivity of radical reactions. Angew Chem Int Ed. 2004;43:5849–51.10.1002/chin.200645142Search in Google Scholar
[23] Nishida M, Hayashi H, Nishida A, Kawahara N. Enantioselective radical cyclization controlled by a chiral aluminium reagent. Chem Commun. 1996;579–80.10.1039/cc9960000579Search in Google Scholar
[24] Kapitán P, Bach T. Template-induced enantioselectivity in the reductive radical cyclization of 3-(3-iodopropoxy)propenoic acid derivatives depending on the binding motif. Synthesis. 2008;1559–64.10.1055/s-2008-1067024Search in Google Scholar
[25] a) Bakowski A, Dressel M, Bauer A, Bach T. Enantioselective radical cyclisation reactions of 4-substituted quinolones mediated by a chiral template. Org Biomol Chem. 2011;9:3516–29. b) Dressel M, Bach T. Chirality multiplication and efficient chirality transfer in exo- and endo-radical cyclization reactions of 4-(4′-iodobutyl)quinolones. Org Lett. 2006;8:3145–7.10.1039/c0ob01272fSearch in Google Scholar PubMed
[26] a) Bentley KW. β-Phenylethylamines and the isoquinoline alkaloids. Nat Prod Rep. 2006;23:444–63. b) Jin Z. Amaryllidaceae and Sceletium alkaloids. Nat Prod Rep. 2011;28:1126–42.10.1039/B509523ASearch in Google Scholar PubMed
[27] a) Austin KA, Herdtweck E, Bach T. Intramolecular [2+2] photocycloaddition of substituted isoquinolones: enantioselectivity and kinetic resolution induced by a chiral template. Angew Chem Int Ed. 2011;50:8416–9.10.1002/anie.201103051Search in Google Scholar PubMed
[28] a) Coote SC, Bach T. Enantioselective intermolecular [2+2] photocycloadditions of isoquinolone mediated by a chiral hydrogen-bonding template. J Am Chem Soc. 2013;135:14948–51. b) Coote SC, Pöthig A, Bach T. enantioselective template-directed [2 + 2] photocycloadditions of isoquinolones: scope, mechanism and synthetic applications. Chem Eur J. 2015;21:6906–12.10.1021/ja408167rSearch in Google Scholar PubMed
[29] a) Bach T, Bergmann H, Grosch B, Harms K. Highly enantioselective intra- and intermolecular [2+2] photocycloaddition reactions of 2-quinolones mediated by a chiral lactam host: host-guest interactions, product configuration, and the origin of the stereoselectivity in solution. J Am Chem Soc. 2002;124:7982–90. b) Bach T, Bergmann H. Enantioselective intermolecular [2+2]-photocycloaddition reactions of alkenes and a 2-quinolone in solution. J Am Chem Soc. 2000;122:11525–6.10.1021/ja0122288Search in Google Scholar PubMed
[30] Mayr F, Wiegand C, Bach T. Enantioselective, intermolecular [2+2] photocycloaddition reactions of 3-acetoxyquinolone: total synthesis of (−)-pinolinone. Chem Commun. 2014;50:3353–5.10.1039/C3CC49469ASearch in Google Scholar
[31] a) Selig P, Bach T. Photochemistry of 4-(2′-aminoethyl)quinolones: enantioselective synthesis of tetracyclic tetrahydro-1aH-pyrido[4′,3′:2,3]-cyclobuta[1,2-c] quinoline-2,11(3H,8H)-diones by intra- and intermolecular [2+2]-photocycloaddition reactions in solution. J Org Chem. 2006;71:5662–73. b) Brandes S, Selig P, Bach T. Stereoselective intra- and intermolecular [2+2] photocycloaddition reactions of 4-(2′-aminoethyl)quinolones. Synlett. 2004;2588–90.10.1021/jo0606608Search in Google Scholar PubMed
[32] a) Selig P, Herdtweck E, Bach T. Total synthesis of Meloscine by a [2+2]-photocycloaddition/ring-expansion route. Chem Eur J. 2009;15:3509–25. b) Selig P, Bach T. Enantioselective total synthesis of the Melodinus alkaloid (+)-Meloscine. Angew Chem Int Ed. 2008;47:5082–4.10.1002/chem.200802383Search in Google Scholar PubMed
[33] Selig P, Bach T. Methyl 2-(Trimethylsiloxy) Acrylate. Encyclop Reag Org Synt. 2010. John Wiley & Sons, Ltd.10.1002/047084289X.rn01226Search in Google Scholar
[34] a) Bach, T., Bergmann, H., Grosch, B., Harms, K. Highly enantioselective intra- and intermolecular [2+2] photocycloaddition reactions of 2-quinolones mediated by a chiral lactam host: host-guest interactions, product configuration, and the origin of the stereoselectivity in solution. J Am Chem Soc. 2002;124:7982–90; b) Bach T, Bergmann H, Harms K. Enantioselective intramolecular [2+2]-photocycloaddition reactions in solution. Angew Chem Int Ed 2000;39:2302–4.10.1021/ja0122288Search in Google Scholar PubMed
[35] Breitenlechner S, Bach T. A polymer-bound chiral template for enantioselective photochemical reactions. Angew Chem Int Ed. 2008;47:7957–9. Enantioselective catalysis of photochemical reactions. Angew Chem Int Ed. 54:3872–90.10.1002/anie.200802479Search in Google Scholar PubMed
[36] Brimioulle R, Lenhart D, Maturi MM, Bach T. 2014.Search in Google Scholar
[37] a) Lu R, Yang C, Cao Y, Wang Z, Wada T, Jiao W, et al. Supramolecular enantiodifferentiating photoisomerization of cyclooctene with modified β-cyclodextrins: critical control by a host structure. Chem Comm. 2008;374–6; b) Fukuhara G, Mori T, Wada T, Inoue Y. Entropy-controlled supramolecular photochirogenesis: enantiodifferentiating Z-E photoisomerization of cyclooctene included and sensitized by permethylated 6-O-modified β-cyclodextrins. J Org Chem. 2006;71:8233–43; c) Asaoka S, Wada T, Inoue Y. Microenvironmental polarity control of electron-transfer photochirogenesis. Enantiodifferentiating polar addition of 1,1-diphenyl-1-alkenes photosensitized by saccharide naphthalenecarboxylates. J Am Chem Soc. 2003;125:3008–27.10.1039/B714300ASearch in Google Scholar
[38] Bauer A. 7-(Oxazolo[4,5-b]-xanthone-2-yl)-1,5,7-trimethyl-3-azabicyclo[3.3.1]nonan-2-one. Encyclop Reag Org Synt. 2017. John Wiley & Sons, Ltd.10.1002/047084289X.rn02086Search in Google Scholar
[39] Matsumoto M, Yamada M, Watanabe N. Reversible 1,4-cycloaddition of singlet oxygen to N-substituted 2-pyridones: 1,4-endoperoxide as a versatile chemical source of singlet oxygen. Chem Commun. 2005;483–5.10.1039/b414845bSearch in Google Scholar PubMed
[40] Wiegand C, Herdtweck E, Bach. T. Enantioselectivity in visible light-induced, singlet oxygen [2+4] cycloaddition reactions (type II photooxygenations) of 2-pyridones. Chem Commun. 2012;48:10195–7.10.1039/c2cc35621jSearch in Google Scholar PubMed
[41] Lenhart D, Bauer A, Pöthig A, Bach T. Enantioselective visible-light-induced radical-addition reactions to 3-alkylidene indolin-2-ones. Chem Eur J. 2016;22:6519–23.10.1002/chem.201600600Search in Google Scholar PubMed
[42] Bauer A, Westkämper F, Grimme S, Bach T. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature. 2005;436:1139–40.10.1038/nature03955Search in Google Scholar PubMed
[43] Cauble DF, Lynch V, Krische MJ. Studies on the enantioselective catalysis of photochemically promoted transformations: “sensitizing receptors” as chiral catalysts. J Org Chem. 2003;68:15–21.10.1021/jo020630eSearch in Google Scholar PubMed
[44] Müller C, Bauer A, Bach T. Light-driven enantioselective organocatalysis. Angew Chem Int Ed. 2009;48:6640–2.10.1002/anie.200901603Search in Google Scholar PubMed
[45] Müller C, Bauer A, Maturi MM, Cuquerella MC, Miranda MA, Bach T. Enantioselective intramolecular [2+2]-photocycloaddition reactions of 4-substituted quinolones catalyzed by a chiral sensitizer with a hydrogen-bonding motif. J Am Chem Soc. 2011;133:16689–97.10.1021/ja207480qSearch in Google Scholar PubMed
[46] Maturi MM, Wenninger M, Alonso R, Bauer A, Pöthig A, Riedle E, et al. Intramolecular [2+2] photocycloaddition of 3- and 4-(But-3-enyl)oxyquinolones: influence of the alkene substitution pattern, photophysical studies and enantioselective catalysis by a Chiral Sensitizer. Chem Eur J. 2013;19:7461–72.10.1002/chem.201300203Search in Google Scholar PubMed
[47] Block M, Suomivuori C-M, Maturi MM, Johansson MP, Bauer A, Kaila VR, et al. Mechanism of enantioselective catalytic [2+2] photocycloaddition reactions via chiral hydrogen-bonded quinolone/xanthone complexes: evidence for energy transfer within an excited complex. Manuscript in preparation, 2013.Search in Google Scholar
[48] Somekawa K, Okumura Y, Uchida K, Shimo T. Preparations of 2-azabicyclo[2.2.2]octa-5,7-dien-3-ones and 7-azabicyclo[4.2.0]octa-2,4-dien-8-ones from addition reactions of 2-pyridones. J Heterocyclic Chem. 1988;25:731–4.10.1002/jhet.5570250306Search in Google Scholar
[49] Maturi MM, Bach T. Enantioselective catalysis of the intermolecular [2+2] photocycloaddition between 2-pyridones and acetylenedicarboxylates. Angew Chem Int Ed. 2014;53:7661–4.10.1002/anie.201403885Search in Google Scholar PubMed
[50] Alonso R, Bach T. A chiral thioxanthone as an organocatalyst for enantioselective [2+2] photocycloaddition reactions induced by visible light. Angew Chem. 2014;126:4457 –60.10.1002/ange.201310997Search in Google Scholar
[51] Tröster A, Alonso R, Bauer A, Bach T. Enantioselective intermolecular [2 + 2] photocycloaddition reactions of 2(1H)-quinolones induced by visible light irradiation. J Am Chem Soc. 2016;138:7808–11.10.1021/jacs.6b03221Search in Google Scholar PubMed PubMed Central
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Multi technique and multiscale approaches to the study of ancient and modern art objects on wooden and canvas support
- Characterization of proteins in cultural heritage using MALDI–TOF and LC–MS/MS mass spectrometric techniques
- Organophosphorus-selenium/tellurium reagents: from synthesis to applications
- Selenium– and tellurium–nitrogen reagents
- Applications of metal selenium/tellurium compounds in materials science
- Organoselenium and organotellurium compounds containing chalcogen-oxygen bonds in organic synthesis or related processes
- Templated enantioselective photocatalysis
- Liquid chromatography: Current applications in Heritage Science and recent developments
- Chemical space of naturally occurring compounds
Articles in the same Issue
- Multi technique and multiscale approaches to the study of ancient and modern art objects on wooden and canvas support
- Characterization of proteins in cultural heritage using MALDI–TOF and LC–MS/MS mass spectrometric techniques
- Organophosphorus-selenium/tellurium reagents: from synthesis to applications
- Selenium– and tellurium–nitrogen reagents
- Applications of metal selenium/tellurium compounds in materials science
- Organoselenium and organotellurium compounds containing chalcogen-oxygen bonds in organic synthesis or related processes
- Templated enantioselective photocatalysis
- Liquid chromatography: Current applications in Heritage Science and recent developments
- Chemical space of naturally occurring compounds