Abstract
Organic selenium- and tellurium-phosphorus compounds have found wide application as reagents in synthetic inorganic and organic chemistry, such as oxygen/chalcogen exchange, oxidation/reduction, nucleophilic/electrophilic substitution, nucleophilic addition, free radical addition, Diels–Alder reaction, cycloadditions, coordination, and so on. This chapter covers the main classes of phosphorus-selenium/tellurium reagents, including binary phosphorus-selenium/tellurium species, organophosphorus(III)-selenium/tellurium compounds, phosphorus(V)-selenides/tellurides, diselenophosphinates/ditellurophopshinates, diselenaphosphetane diselenides, Woollins’ reagent, phosphorus-selenium/tellurium amides, and imides. Given the huge amount of literature up to mid-2017, this overview is inevitably selective and will focus particularly on their synthesis, reactivity, and applications in synthetic and coordination chemistry.
References
[1] Liotta D. Organoselenium chemistry, New York, USA: John Wiley & Sons, 1987. (Back TG. Organoselenium chemistry – A practical approach. Oxford University Press, Oxford, UK, 1999).Search in Google Scholar
[2] Davies R, Patel L. Chalcogen-phosphorus (and heavier congener) compounds. In: Devillanova FA, Du Mont WW, editors. Handbook of chalcogen chemistry: new perspectives in sulfur, selenium and tellurium. 2nd ed. UK: RSC Publishing, 2013:238–306.Search in Google Scholar
[3] Petragnani N, Stefani H. Advances in organic tellurium chemistry. Tetrahedron. 2005;61:1613–79.10.1016/j.tet.2004.11.076Search in Google Scholar
[4] Chivers T, Laitinen RS. Tellurium: a maverick among the chalcogens. Chem Soc Rev. 2015;44:1725–39.10.1039/C4CS00434ESearch in Google Scholar PubMed
[5] Nordheider N, Woollins JD, Chivers T. Organophosphorus-tellurium chemistry: from fundamentals to applications. Chem Rev. 2015;115:10378–406.10.1021/acs.chemrev.5b00279Search in Google Scholar PubMed
[6] Hua G, Woollins JD. Formation and reactivity of phosphorus-selenium rings. Angew Chem Int Ed. 2009;48:1368–77.10.1002/anie.200800572Search in Google Scholar PubMed
[7] Hua G, Woollis JD. Organic phosphorus-selenium chemistry. In: Woollins JD, Laitinen RS, editors, Selenium and tellurium chemistry: from small molecules to biomolecules and materials. Germany: Springer Heidelberg, 2011:1–39.Search in Google Scholar
[8] Woollins JD. How not to discover a new reagent. The Evolution and Chemistry of Woollins’ Reagent. Synlett. 2012;23:1154–69.10.1055/s-0031-1290665Search in Google Scholar
[9] Hua G, Woollins JD. Selenophosphorus compounds. In: Timperley CM, editor. Best synthetic methods: organophosphorus(V) chemistry. Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-San Francisco-Sydney-Tokyo: Elsevier, 2015:633–720.10.1016/B978-0-08-098212-0.00006-6Search in Google Scholar
[10] Housecroft C, Sharpe AG. Inorganic chemistry. 2nd ed. USA: Pearson Education Ltd New York, 2005:426–7.Search in Google Scholar
[11] Leung YC, Waser J. The crystal structure of P4S3. Acta Cryst. 1957;10:574–82.10.1107/S0365110X57002042Search in Google Scholar
[12] Keulen E, Vos A. A possible explanation of the δc separations in intermediate plagioclase. Acta Cryst. 1958;12:323–4.10.1107/S0365110X59000950Search in Google Scholar
[13] Penny GJ, Sheldrick GM. Crystal and molecular structure of tetraphosphorus pentaselenide. J Chem Soc Inorg Phys Theor. 1971;245–8.10.1039/j19710000245Search in Google Scholar
[14] Blachnik R, Lonnecke P, Boldt K, Engelen B. P2S5. Acta Cryst C Cryst Commun. 1994;50:659–61.10.1107/S0108270193010534Search in Google Scholar
[15] Korak RD, Zemlyanskii NI. Intermediate esters of O,O-dialky(phenyl)diselenophosphoric acid. Zh Obshch Khim. 1971;41:1211–3.Search in Google Scholar
[16] Zemlyanskii NI, Gorak RD. Transesterifcation and reaction of O,O-dialkyl diselenophosphates with hydrogen chloride. Zh Obshch Khim. 1971;41:2446–8.Search in Google Scholar
[17] Baldus HP, Blachnik RZ. New A4B3 molecules: p3SbS3, P4S2Te and P4STe2. Naturforsch. 1990;45:1605–9.10.1515/znb-1990-1201Search in Google Scholar
[18] Jörgens S, Johrendt D, Mewis A. BaP4Te2—A ternary telluride with P—Te bonds and a tructural fragment of black phosphorus. Chemistry - A European Journal. 2003;9:2405–10.10.1002/chem.200304858Search in Google Scholar
[19] Rotter C, Schuster M, Karaghiosoff K. P4Ch22- (Ch = S, Se, Te). Inorg Chem. 2009;48:7531–3.10.1021/ic901149mSearch in Google Scholar
[20] Graham CME, Valjus J, Pritchard TE, Boyle PD, Tuononen HM, Ragogna PJ. Phosphorus-chalcogen ring expansion and metal coordination. Inorganic Chemistry. 2017;56:13500–9.10.1021/acs.inorgchem.7b02217Search in Google Scholar PubMed
[21] Baudler M, Suchomel H, Furstenberg G, Schings U. Di- tert-butylthia- and -selenadiphosphirane. Angew Chem Int Ed. 1981;20:1044–5.10.1002/anie.198110441Search in Google Scholar
[22] Yoshifuji M, Shibayama K, Ando K, Inamoto N. Preparation and characterization of some unsymmetrical thiadiphosphiranes. Heterocycles. 1984;22:681–6.10.3987/R-1984-04-0681Search in Google Scholar
[23] Yoshifuji M, Shibayama K, Inamoto N. Reaction of diphosphenes with elemental selenium. Isolation and characterization of selenadiphosphiranes and diselenoxophosphorane. Chem Lett. 1984;13:603–6.10.1246/cl.1984.603Search in Google Scholar
[24] Sasamori T, Takeda N, Tokitoh N. Synthesis and reactions of new diphosphenes bearing extremely bulky substituents. J Phys Org Chem. 2003;16:450–62.10.1002/poc.608Search in Google Scholar
[25] Yogendra Si, Hennersdorf F, Weigand JJ. Trapping rare and elusive phosphinidene chalcogenidesNitrogen–phosphorus(III)–chalcogen macrocycles for the synthesis of polynuclear silver(I) sandwich complexes. Angew Chem Int EdInorganic Chemistry. 2017;56:62368698–40704.Search in Google Scholar
[26] Lardon M. Selenium and proton nuclear magnetic resonance measurements on organic selenium compounds. J Am Chem Soc. 1970;92:5063–6.10.1021/ja00720a010Search in Google Scholar
[27] Musher JI, Corey EJ. Virtual long-range spin-spin coupling in nuclear magnetic resonance (N.M.R.). The linear 3-spin system and qualitative. Tetrahedron. 1962;18:791–809.10.1016/S0040-4020(01)92729-2Search in Google Scholar
[28] Yogendra S, Chitnis SS, Hennersdorf F, Bodensteiner M, Fischer R, Burford N, et al. Condensation reactions of chlorophosphanes with chalcogenides. Inorg Chem. 2016;55:1854–60.10.1021/acs.inorgchem.5b02723Search in Google Scholar PubMed
[29] Colquhoun IJ, Hc M, McFarlane W, Nash JA, Keat R, Rycroft DS, et al. Long-range nuclear spin-spin coupling between selenium-77 and phosphorus-31 in biphosphorus compounds. Org Magn Reson. 1979;12:473–5.10.1002/mrc.1270120807Search in Google Scholar
[30] Simirnova ES, Munoz Molina JM, Johnson A, Bandeira NA, Bo C, Echavarren AM. Polynuclear gold [AuI]4, [AuI]8, and bimetallic [AuI4AgI] complexes: C-H functionalization of carbonyl compounds. Angew Chem Int Ed. 2016;55:7487–91.10.1002/anie.201603200Search in Google Scholar
[31] Munoz MP. Silver and platinum-catalyzed addition of O-H and N-H bonds to allenes. Chem Soc Rev. 2014;43:3164–83.10.1039/c3cs60408jSearch in Google Scholar
[32] Dehnert P, Grobe J, Hildebrandt W, Le Van DZ. Perfluoromethyl elemental ligands. XXI. Preparation and characterization of organoelement-element compounds of the type RnE-ERm (R = CH3, CF3; E = P, As, S, Se, Te; n,m = 1,2). Z Naturforsch B. 1979;34:1646–52.10.1515/znb-1979-1205Search in Google Scholar
[33] Du Mont WW, Kubiniok S, Severengiz T. Properties of Te-Te bonds. IV. Dismutation reactions of di-p-tolylditelluride with tetra-tert-butyldiphosphane and tetra-isopropyldiphosphane. Z Anorg Allg Chem. 1985;531:21–5.10.1002/zaac.19855311204Search in Google Scholar
[34] Du Mont WW, Kroth HJ. Tellurium-125 NMR shifts and Te-P coupling constants of phosphine tellurides, tellurophosphines, and tellurophosphine complexes. Z Naturforsch B. 1981;36:332–4.10.1515/znb-1981-0310Search in Google Scholar
[35] Dumont WW, Severengiz T, Meyer B. Small heterocycles containing phosphorus and tellurium. Angew Chem Int Ed. 1983;22:983–4.10.1002/anie.198309831Search in Google Scholar
[36] Grimm S, Karaghiosoff K, Mayer P, Ross D. New phosphorus-tellurium heterocycles in the quasi-binary system RP/Te. Phosphorus Sulfur Silicon Relat Elem. 2001;168–169:375–8.10.1080/10426500108546588Search in Google Scholar
[37] Francis MD, Jones C, Morley CP. A novel synthetic route to chalcogen substituted diphospholes. Tetrahedron Lett. 1990;40:3815–6.10.1016/S0040-4039(99)00535-3Search in Google Scholar
[38] Francis MD, Hibbs DE, Hitchcock PB, Hursthouse MB, Jones C, Mackewitz T, et al. First structural characterization of 1,2,4-selenadiphosphole and 1,2,4-telluradiphosphole ring systems. Crystal and molecular structures of the η1-complexes [M(CO)5(P2SeC2tBu2)] (M = Cr, W) and [W(CO)5(P2TeC2tBu2)]. J Organomet Chem. 1999;580:156–60.10.1016/S0022-328X(98)01141-3Search in Google Scholar
[39] Mosbo JA, Verkade JG. Stereochemistry of oxidation of trivalent phosphorus and configurational assignments in 2-substituted 1,3,2-dioxaphosphorinanes. J Am Chem Soc. 1973;95:4659–65.10.1021/ja00795a032Search in Google Scholar
[40] Cross RJ, Millington D. Selenium abstraction from diethyl diselenide by tertiary phosphines. J Chem Soc Chem Commun. 1975;455–6.10.1039/c39750000455Search in Google Scholar
[41] Brown DH, Cross RJ, Millington D. Photochemical reactions between tertiary phosphines and organic diselenides. J Chem Soc Dalton Trans. 1977;159–61.10.1039/dt9770000159Search in Google Scholar
[42] Nicpon P, Meek DW. Novel synthesis of arylphosphine selenides. Reaction of arylphosphines with potassium selenocyanate. Inorg Chem. 1966;5:1297–8.10.1021/ic50041a056Search in Google Scholar
[43] Bollmark M, Stawinski J. A new selenium-transferring reagent-triphenylphosphine selenide. Chem Commun. 2001;771–2.10.1039/b101002fSearch in Google Scholar
[44] Stawinski J, Thelin M. Nucleoside H-phosphonates. 14. Synthesis of nucleoside phopshoroselenoates and phosphorothioselenoates via stereospecific selenization of the corresponding H-phosphonate and H-phosphonothioate diesters with the aid of new selenium-transfer reagent, 3H-1,2-benzothiaselenol-3-one. J Org Chem. 1994;59:130–6.10.1021/jo00080a021Search in Google Scholar
[45] Markowska A, Mickalski J. Organophosphorus compounds of sulfur and selenium. XVII. Organic seleno acids of phosphorus. Rocniki Chemii. 1960;34:1675–80.Search in Google Scholar
[46] Elbel S, Tom Dieck H. Photoelectron spectra of group 5 compounds. Part V. Trifluoro- and trimethylphosphorus chalcogenide halides. J Chem Soc Dalton Trans. 1976;1762–8.10.1002/chin.197703044Search in Google Scholar
[47] Zingaro RA. Phosphine sulfides and selenides: the phosphorus-sulfur and phosphorus-selenium stretching frequencies. Inorg Chem. 1963;2:192–6.10.1021/ic50005a049Search in Google Scholar
[48] Zyablikova TA, Ilyasov AV, Ignateva SN, Malatsoin SF, Erastov OA. Selenium-77 and phosphorus-31 spin-spin interaction in cyclic organophosphorus compounds. Seriya Khim. 1990;776–80.Search in Google Scholar
[49] Wieber M, Eichhorn B. Chloro(chloromethyl)methylphosphine. Chem Ber. 1973;106:2733–7.10.1002/cber.19731060836Search in Google Scholar
[50] Kimura T, Murai T. P-Chiral phosphinoselenoic chlorides and optically active P-chiral phosphinoselenoic amides: synthesis and stereospecific interconversion with extrusion and addition reactions of the selenium atom. Chem Lett. 2004;33:878–9.10.1246/cl.2004.878Search in Google Scholar
[51] Kimura T, Murai T. P-Chiral phosphinoselenoic chlorides and phosphinochalcogenoselenoic acid esters: synthesis, characterization, and conformational studies. J Org Chem. 2005;70:952–9.10.1021/jo0484979Search in Google Scholar PubMed
[52] Ilyasov AV, Nuretdinov IA. NMR 77Se, 125Te, 31P and structure of seleno- and telluro-phosphorus compounds. Phosphorus Sulfur Silicon Relat Elem. 1998;136,137&138:479–82.10.1080/10426509808545977Search in Google Scholar
[53] Schroeder HF, Mueller J. Dialkylphosphinic azides. II. Z Anorg Allg Chem. 1979;451:158–74.10.1002/zaac.19794510123Search in Google Scholar
[54] Necas M, Foreman MRSJ, Woollins JD, Novosad J. New mixed-donor unsymmetrical P-N-P ligands and their palladium(II) complexes. New J Chem. 2001;25:1256–63.10.1039/b103501kSearch in Google Scholar
[55] Sekar P, Ibers JA. Imporved synthesis of HN(SPPh2)(SePPh2) and some coordination chemistry of [N(SPPh2)(SePPh2)]-. Inorg Chim Acta. 2001;319:117–22.10.1016/S0020-1693(01)00456-XSearch in Google Scholar
[56] Shi M, Sui WS. Chiral diphenylselenophosphoramides: a new class of chiral ligands for the titanium(IV) alkoxide-promoted addition of diethylzinc to aldehydes. Tetrahedron Asymmetry. 2000;11:835–41.10.1016/S0957-4166(00)00016-1Search in Google Scholar
[57] Shi M, Zhang W. Asymmetric 1,4-addition of diethylzinc to α,β-unsaturated enones catalyzed by chiral imino-thiophosphoramide ligands and copper(I). Tetrahedron Asymmetry. 2004;15:167–76.10.1016/j.tetasy.2003.11.015Search in Google Scholar
[58] Shi M, Wang CJ, Zhang W. Enantioselective conjugate addition of dialkylzinc and diphenylzinc to enones catalyzed by a chiral cooper(I) binaphthylthiophosphoramide or binaphthylselenophosphoramide ligand system. Chem Eur J. 2004;10:5507–16.10.1002/chem.200400254Search in Google Scholar PubMed
[59] Shi M, Jiang JK, Shen YM, Feng YS, Lei GX. An unexpected carbon dioxide insertion in the reaction of trans-2,4-disubstitued azetidine, trans-2,5-disubstituted pyrrolidine, or trans-2,6-disubstituted piperidine with diphenylthiophosphinic chloride and diphenylselenophosphinic chlorides. J Org Chem. 2000;65:3443–8.10.1021/jo991985+Search in Google Scholar PubMed
[60] Nuretdinov IA, Buina NA, Bayandina EV. Beckmann rearrangement of aldoximes in the presence of metallic copper and the direct synthesis of chelate complexes of group IB, IIB, and VIII metals. Zh Obshch Khim. 1978;48:1668.Search in Google Scholar
[61] Murai T, Matsuoka D, Morishita K. 1,1-Binaphthyl-2,2’-diyl phosphoroselenoyl chloride as a chiral molecular tool for the preparation of enantiomerically pure alcohols and amines. J Am Chem Soc. 2006;128:4584–5.10.1021/ja060308bSearch in Google Scholar PubMed
[62] Murai T, Inaji S, Morishita K, Shibahara F, Tokunaga M, Obora Y, et al. Synthesis of 1,1’-binaphthyl-2,2’-diyl phosphoroselenoic amides and their conversion to optically pure phosphoramidites. Chem Lett. 2006;35:1424–5.10.1246/cl.2006.1424Search in Google Scholar
[63] Miller JA. Phosphine oxides, sulfides, and selenides. Organophosphorus Chem. 1973;5:70–82.Search in Google Scholar
[64] Pilkington MJ, Slawin AM, Williams DJ, Woollins JD. The preparation and structures of Ph2P(E)OH and Ph2P(E)OPPh2 (E = S, Se). Main Group Chem. 1995;1:145–51.10.1080/13583149512331338345Search in Google Scholar
[65] Kuchen W, Knop B. Derivatives of diethyl phosphinothionoselenolate. Angew Chem. 1964;76:496–7.10.1002/ange.19640761112Search in Google Scholar
[66] Kuchen W, Knop B. Organophosphorus compounds. IX. Phosphinic acids Et2P(S)SeH and Et2P(Se)SeH and their derivatives. Chem Ber. 1966;99:1663–72.10.1002/cber.19660990534Search in Google Scholar
[67] Kuchen W, Knop B. Oxidative phosphorylation, by phosphate adducts of compounds with a C=N+ double bond. Angew Chem. 1965;77:259–60.10.1002/ange.19650770606Search in Google Scholar
[68] Kroshefsky RD, Weiss R, Verkade JD. Constraint and electronegativity effects on selenium-77-phosphorus-31 spin-spin couplings in selenophosphoryl compounds. Inorg Chem. 1979;18:469–72.10.1021/ic50192a059Search in Google Scholar
[69] Kudchadker MV, Zingaro RA, Irgolic KJ. Chemistry of phosphorus pentaselenide. I. Its reaction with alcohols. Can J Chem. 1968;46:1415–24.10.1139/v68-230Search in Google Scholar
[70] Liu CW, Shang IJ, Hung CM, Wang JC, Keng TC. Novel silver diselenophosphate clusters: structures of Ag10(μ10-Se)[Se2P(OEt)2]8 and (Ag[Se2P(OiPr)2])6. Dalton Trans. 2002;1974–9.10.1039/b111095kSearch in Google Scholar
[71] Kudelska W. Glycosidation of an ambident organic phosphoroselenothioate in the presence of a Lewis acid. Heteroatom Chem. 1999;10:259–62.10.1002/(SICI)1098-1071(1999)10:3<259::AID-HC14>3.0.CO;2-#Search in Google Scholar
[72] Zingaro RA. Tributylphosphine telluride. J Organomet Chem. 1963;1:200.10.1016/S0022-328X(00)87450-1Search in Google Scholar
[73] Zingaro RA, Steeves BH, Irgolic K. Phosphine telluride. J Organomet Chem. 1965;4:320–3.10.1016/S0022-328X(00)88840-3Search in Google Scholar
[74] Brodie AM, Rodley GA, Wilkins CJ. Cobalt(II) complexes with trimethylphosphine selenide. J Chem Soc A. 1969;2927–9.10.1039/j19690002927Search in Google Scholar
[75] Jeremias L, Babiak M, Kubat V, Calhodra MJ, Travnicek Z, Novosad J. Successful oxidation of Ph2P(CH2nPPh2 (n = 2,4,6) by tellurium leading to Ph2P(Te)(CH2nP(Te)Ph2. RSC Adv. 2014;4:15428–30.10.1039/c4ra00157eSearch in Google Scholar
[76] Austad T, Rod T, Ase K, Songstad J, Norbury AH. Adduct between triphenyl phosphine and triphenyl phosphine telluride. Tellurium(0) compound. Acta Chem Scand. 1973;27:1939–49.10.3891/acta.chem.scand.27-1939Search in Google Scholar
[77] Mardersteig HG, Noth H. Aminophosphanes. XI. Reaction of N-(diphenylphosphino)triphenylphosphazene. Z Anorg Allg Chem. 1970;375:272–80.10.1002/zaac.19703750309Search in Google Scholar
[78] Dean PA. Nuclear magnetic resonance studies of the solvation of phosphorus(V) selenides, 1,2-bis(diphenylphosphino)ethane, and tris(dimethylamino)phosphine telluride by sulfur dioxide. Can J Chem. 1979;57:754–61.10.1139/v79-123Search in Google Scholar
[79] Rømming C, Iversen AJ, Songstad J. Structural studies on the phosphorus-nitrogen bond. III. The crystal structure of tri(morpholino)phosphine telluride. The tellurium basicity of tervalent phosphorus species. Acta Chem Scand. 1980;34A:333–42.10.3891/acta.chem.scand.34a-0333Search in Google Scholar
[80] Rømming C, Maartmann-Moe K, Songstad J. Structural studies on the phosphorus-nitrogen bond. VIII. The crystal structure of tris(pyrrolidino)phosphine selenide and tris(pyrrolidino)phosphine telluride. Acta Chem Scand. 1984;38A:349–57.10.3891/acta.chem.scand.38a-0349Search in Google Scholar
[81] Diemert K, Kuchen W, Kutter J. Organophosphorus compounds. XX. Bifunctional aminophosphines polymethylenebis[bis(diethylamino)phsohines] (Et2N)2P[CH2]nP(NEt22 and Et2N(R)P[CH2]nP(R)NEt2. Phosphorus Sulfur Relat Elem. 1983;15:155–64.10.1080/03086648308073291Search in Google Scholar
[82] Scherer OJ, Schnabl G. Element-organic amine/imine compounds, XVI. New diazadiphosphetidines. Chem Ber. 1976;109:2996–3004.10.1002/cber.19761090904Search in Google Scholar
[83] Kuhn N, Schumann H. Phosphorus tellurium compounds. II. Tellurophosphonium cations. Phosphorus Sulfur Relat Elem. 1986;26:199–201.10.1080/03086648608083094Search in Google Scholar
[84] Kuhn N, Schumann H, Boese R. Oxidative coupling of tellurophosphoranes, a route to phosphine stabilized tritellurium dications. J Chem Soc Chem Commun. 1987;1257–8.10.1039/c39870001257Search in Google Scholar
[85] Konu J, Chivers T. Synthesis, spectroscopic and structural characterization of tertiary phosphine tellurium dihalides Et3PTeX2 (X = Cl, Be, I). Dalton Trans. 2006;3941–6.10.1039/b608133aSearch in Google Scholar PubMed
[86] Kuhn N, Schumann H, Wolmershauser GM. M(CO)5(R3PTe) (M = Cr, Mo, W; R = CMe3): the first stable tellurophosphorane complexes. J Chem Soc Chem Commun. 1985;1595–7.10.1039/C39850001595Search in Google Scholar
[87] Huang L, Zingaron RA, Meyers EA, Reibenspies JH. Reaction of mercury(II) dibromide with tris(n-butyl)phosphine telluride: formation of an unusual (HgTe)3 ring system. Heteroat Chem. 1996;7:57–65.10.1002/(SICI)1098-1071(199601)7:1<57::AID-HC10>3.0.CO;2-4Search in Google Scholar
[88] Sadekov ID, Maksimenko AA, Nivorozhkin VL. Organic derivatives of monocoordinated tellurium. Russ Chem Rev. 1998;67:193–208.10.1070/RC1998v067n03ABEH000370Search in Google Scholar
[89] Chivers T. Tellurium compounds of the main-group elements: progress and prospects. J Chem Soc Dalton Trans. 1996;1185–94.10.1039/dt9960001185Search in Google Scholar
[90] Ww DM. Bis(di-butylphosphino)tellurium(II): a derivative of phosphinous anhydride exhibiting umpolung. Angew Chem Int Ed. 1980;19:554–5.10.1002/anie.198005541Search in Google Scholar
[91] Brennan JG, Andersen RA, Zalkin A. Chemistry of trivalent uranium metallocenes: electron-transfer reactions. Synthesis and characterization of [(MeC5H43U]2E (E = S, Se, Te) and the crystal structures of hexakis(methylcyclopntadienyl)sulfidiuranium and tris(methylcyclopentadienyl)(triphenylphosphine oxide)uranium. Inorg Chem. 1986;25:1761–5.10.1021/ic00231a008Search in Google Scholar
[92] Uhl W, Schutz U, Hiller W, Heckel M. Synthesis and crystal structure of a monomeric tetraalkyldigallium telluride with a bent Ga-Te-Ga group. Organometallics. 1995;14:1073–5.10.1021/om00002a065Search in Google Scholar
[93] Fischer JM, Piers W, MacGillivray LR, Zawarotko MJ. Penmethyltitanocene tellurides and ditellurides. X-ray structures of [(C5Me52Ti]2μ-Te) and (C5Me52Ti(η2-Te2). Inorg Chem. 1995;34:2499–500.10.1021/ic00114a005Search in Google Scholar
[94] McCoie JM, Bollinger JC, Ibers JA. Chalcogenide substitution reactions. Inorg Chem. 1993;32:3923–7.10.1021/ic00070a024Search in Google Scholar
[95] Coleman AP, Dickson RS, Deacon GB, Fallon GD, Ke M, McGregor K, et al. The synthesis of some alkyltelluride-manganese(I) complexes, and an assessment of their suitability for MOCVD applications. Polyhedron. 1994;13:1277–90.10.1016/S0277-5387(00)80261-2Search in Google Scholar
[96] Moon J, Nam H, Kim S, Ryu J, Han C, Lee C, et al. Synthesis of phosphinodiselenoic acid esters and their application as RAFT agents in styrene polymerization. Tetrahedron Lett. 2008;49:5137–40.10.1016/j.tetlet.2008.06.098Search in Google Scholar
[97] Maneeprakorn W, Malik MA, O’Brien P. The preparation of cobalt phosphide and cobalt chalcogenide (CoX, X = S, Se) nanoparticles from single source precursors. Mater Chem. 2010;20:2329–35.10.1039/b922804gSearch in Google Scholar
[98] Malik MA, Afzaal M, O’Brien P. Precursor chemistry for main group elements in semiconducting materials. Chem Rev. 2010;110:4417–46.10.1021/cr900406fSearch in Google Scholar PubMed
[99] Hasegawa Y, Adachi T, Tanaka A, Afzaal M, O’Brien P, Doi T, et al. Remarkable magneto-optical properties of europium selenide nanoparticles with wide energy gaps. J Am Chem Soc. 2008;130:5710–5.10.1021/ja710165mSearch in Google Scholar PubMed
[100] Fan D, Afzaal M, Malik MA, C Q N, O’Brien P, Thomas PJ. Using coordination chemistry to develop new routes to semiconductor and other materials. Coord Chem Rev. 2007;251:1878–88.10.1016/j.ccr.2007.03.021Search in Google Scholar
[101] Harris LM, Tam EC, Cummins SJ, Coles MP, Fulton JR. The reactivity of germanium phosphinides with chalcogens. Inorg Chem. 2017;56:3087–94.10.1021/acs.inorgchem.6b03109Search in Google Scholar PubMed
[102] Behrke AC, Kerridge A, Walensky JR. Dithio- and diselenophosphinate thorium(IV) and uranium(IV) complexes: molecular and electronic structures, spectroscopy, and transmetalation reactivity. Inorg Chem. 2015;54:11625–36.10.1021/acs.inorgchem.5b01342Search in Google Scholar PubMed
[103] Chauhan HPS. Chemistry of diorganodithiophosphate (and phosphinate) derivatives with arsenic, antimony and bismuth. Coord Chem Rev. 1998;173:1–30.Search in Google Scholar
[104] Devillanova FA. Handbook of chalcogen chemistry: new perspectives in sulfur, selenium and tellurium. Cambridge UK: RSC Publishing, 2007:286–343.10.1039/9781847557575Search in Google Scholar
[105] Artem’ev AV, Chemysheva NA, Gusarova NK, S F M, Yasrko SV, Albanov AL, et al. An efficient and general synthesis of Se-esters of diselenophosphinic acids via reaction of alkali metal diselenophosphinates with organic halides. Synthesis. 2011;1309–13.10.1002/chin.201134182Search in Google Scholar
[106] Latouche C, Lee YC, Liao JH, Furer E, Saillard JY, Liu CW, et al. Structure and spectroscopic preperties of gold (I) diselenophosph(in)ate complexes: a joint experimental and theoretical study. Inorg Chem. 2012;51:11851–9.10.1021/ic301763kSearch in Google Scholar PubMed
[107] Jones MB, Gaunt AJ, Cordon JC, Kaltsoyannis N, Neu MP, Scott BL. Uncovering f-element bonding differences and electronic structure in a series of 1:3 and 1:4 complexes with a diselenophosphinate ligand. Chem Sci. 2013;4:1189–203.10.1039/c2sc21806bSearch in Google Scholar
[108] Artem’ev AV, Gusarova NK, Malysheva SF, Trofimov BA. Diselenophosphinates. Synthesis and Applications. Org Prep Proc Int. 2011;43:381–449.10.1080/00304948.2011.613694Search in Google Scholar
[109] Nguyen CQ, Afzaal M, Malik MA, Helliwell M, Raftery J, O’Brien P. Novel inorganic rings and materials deposition. J Organomet Chem. 2007;692:2669–77.10.1016/j.jorganchem.2006.11.043Search in Google Scholar
[110] Trofimov BA, Artem’ev AV, Gusarova NK, Malysheva SF, Fedorov SV, Kazheva ON, et al. One-pot reaction of secondary phosphine selenides with selenium and nitrogen bases: a novel synthesis of diorganodiselenophosphinates. Synthesis. 2009;3332–8.10.1055/s-0029-1216948Search in Google Scholar
[111] Artem’ev AV, Gusarova NK, Malysheva SF, Kraikivskii PB, Belogorlova NA, Trofimov BA. Efficient general synthesis of alkylammonium diselenophosphinates via multicomponent one-pot reaction of secondary phosphines with elemental selenium and amines. Synthesis. 2010;3724–30.10.1002/chin.201110187Search in Google Scholar
[112] Trofimov BA, Artem’ev AV, Malysheva SF, Gusarova NK. Reaction of secondary phosphine selenides with the system Se/MOH (M = Li, Na, K, Rb, Cs): a novel three-component synthesis of diorganodiselenophosphinates. J Organomet Chem. 2009;694:4116–20.10.1016/j.jorganchem.2009.03.010Search in Google Scholar
[113] Artem’ev AV, Malysheva SF, Gusarova NK, Belogorlova NA, Trofimov BA. Facile atom-economic synthesis of ammonium diselenophosphinates via three-component reaction of secondary phosphines, elemental selenium, and ammonia. Synthesis. 2010;1777–80.10.1002/chin.201042179Search in Google Scholar
[114] Artem’ev AV, Gusarova NK, Malysheva SF, Trofimov BA. Selective synthesis of hydrazinium diselenophosphinates from secondary phosphines, elementary selenium, and hydrazine. Russ Chem Bull. 2010;59:1671–3.10.1007/s11172-010-0294-xSearch in Google Scholar
[115] KuChen W, Knop B. Synthesis of halogenoalkyl hydroperoxides by “bromine-induced autoxidation” of allyl halides. Angew Chem Int Ed. 1965;4:244.10.1002/anie.196502441Search in Google Scholar
[116] Muller A, Christophliemk P, Rao VV. Transition metal chalcogen compounds. Preparation, electronic, and vibrational spectra of diphenyldiselenophosphinato complexes. Chem Ber. 1971;104:1905–14.Search in Google Scholar
[117] Jhang RY, Liao JH, Liu CW, Kuimov VA, Gusarova NK, Artem’ev AV. A new convenient synthetic route to metal diselenophosphinates: synthesis and characterization of [M2(Se2PPh24] (M = Zn, Cd and Hg) complexes. J Organmet Chem. 2014;758:60–4.10.1016/j.jorganchem.2014.02.009Search in Google Scholar
[118] Jhang RY, Liao JH, Liu CW, Artem’ev AV. Synthesis of the first chalcogen-centered diselenophosphinato Zn(II) clusters, [Zn4μ4-X){Se2PR2}6] (X = S or Se), and a zigzag polymer {ZnBr(μ-Se2PR2)[PyNO]}n. J Organomet Chem. 2015;781:72–6.10.1016/j.jorganchem.2015.01.007Search in Google Scholar
[119] Artem’ev AV, Malysheva SF, Sukhov BG, Belogorlova NA, Gatilov YV, Mamatyuk VI, et al. Unexpected redox reaction of alkali metal diselenophosphinates with elemental iodine. Mendeleev Commun. 2012;22:18–20.10.1016/j.mencom.2012.01.006Search in Google Scholar
[120] Sarkar B, Fang CS, You LY, Wang JC, Liu CW. The chemistry of phosphorodiselenoates: structure, catalysis and formation of Se-esters. New J Chem. 2009;33:626–33.10.1039/B813267DSearch in Google Scholar
[121] Krawczyk E, Skowronska A, Michalski J. Studies on the interaction of phosphine selenides and their structural analogues with dihalogens and sulfuryl chloride. J Chem Soc Dalton Trans. 2002;4471–8.10.1039/B207019GSearch in Google Scholar
[122] Williams DJ, Wynne KJ. Chalcogen chemistry. 10. Synthesis and characterization of triarylphosphine adducts of selenium(II) bromide. Inorg Chem. 1976;15:1449–51.10.1021/ic50160a039Search in Google Scholar
[123] Pilkington MJ, Slawin AMZ, Williams DJ, Woollins JD. The X-ray crystal structure of Na2[PhPSe2]2.5H2O – a polymer containing six-membered sodium-water rings and sodium coordinated by selenium. Polyhedron. 1991;10:2641–5.10.1016/S0277-5387(00)81339-XSearch in Google Scholar
[124] Du Mont WW, Hensel R, McFarlane W, Ij C, Ml Z, Serhadli O. Telluration and selenation of tetra-tert-butyldiphosphine. Chem Ber. 1989;122:37–41.10.1002/cber.19891220107Search in Google Scholar
[125] Gelmini L, Stephan DW. Synthesis, characterization, and chemistry of titanium(IV), zirconium(IV), and hafnium(IV) complexes of phosphine sulfides and selenides. The crystal and molecular structures of Cp2Ti(SPCy22, CpTi(S2PCy2), and Cp2Ti(Se2PPh2). Organometallics. 1987;6:1515–22.10.1021/om00150a025Search in Google Scholar
[126] Maneeprakorn W, Nguyen CQ, Malik MA, O’Brien P, Raftery J. Synthesis of nickel selenophosphinates [Ni(Se2PR22] (R = iPr, tBu and Ph) and their use as single source precursors for the deposition of nickel phosphide or nickel selenide nanoparticles. Dalton Trans. 2009;2103–8.10.1039/b816903aSearch in Google Scholar
[127] Tanaka A, Adachi T, Hasegawa Y, Kawai T. Crystal growth of nanoscales europium selenide having characteristic crystal shapes. J Alloy Compd. 2009;488:538–40.10.1016/j.jallcom.2008.11.126Search in Google Scholar
[128] Silvestru C, Haiduc I. Structural patterns in inorganic and organoantimony derivatives of oxo- and thiodiorganophosphorus ligands. Coord Chem Rev. 1996;147:117–46.10.1016/0010-8545(95)01129-3Search in Google Scholar
[129] Bildstein B, Sladky F. Novel anionic chalcogen ligands. Tellurophosphinites R2PTe- and chalcogenotellurophopshinates R2P(X)Te- [X = oxygen, sulfur, selenium, tellurium]. Phosphorus Silicon Relat Elem. 1990;47:341–7.10.1080/10426509008037988Search in Google Scholar
[130] Davies RP, Matinelli MG, Patel L, Wheatley AEH, White AJP, Williams DJ. Structural studies of lithium telluro- and seleno-phosphorus compounds. Eur J Inorg Chem. 2003;3409–16.10.1002/ejic.200300234Search in Google Scholar
[131] Davies RP, Matinelli MG, Patel L, White AJ. Facile synthesis of bis(dichalcogenophosphinate)s and a remarkable [Li8(OH)6]2+ polyhedron. Inorg Chem. 2010;49:4626–31.10.1021/ic100272ySearch in Google Scholar PubMed
[132] Shore JT, Pennington WT, Noble MC, Cordes AW. Crystal structure of tert-butylperthiophosphonic anhydride, (tert-C4H9PS22, and its selenium analog (tert-C4H9PSe22. Phosphorus Sulfur Relat Elem. 1988;39:153–7.10.1080/03086648808072868Search in Google Scholar
[133] Hahn J, Hopp A, Borkowsky A. Sulfur-phosphorus and selenium-phosphorus heterocycles synthesis and structure elucidation by modern NMR techniques. Phosphorus Sulfur Relat Elem. 1992;64:129–36.10.1080/10426509208041138Search in Google Scholar
[134] Wood PT, Woollins JD. Phosphorus-selenium heterocycles. J Chem Soc Chem Commun. 1988;1190–1.10.1039/C39880001190Search in Google Scholar
[135] Pilkington MJ, Slawin AM, Williams DJ, Woollins JD. The preparation and characterization of binary phosphorus-selenium rings. Heteroatom Chem. 1990;1:351–5.10.1002/hc.520010502Search in Google Scholar
[136] Karaghiosoff K, Eckstein K. Phosphorus-selenium heterocycles (RP)nSem: syntheses and structures. Phosphorus Sulfur Relat Elem. 1993;75:257–60.Search in Google Scholar
[137] Karaghiosoff K, Eckstein K, Motzer R. Phosphorus-selenium heterocycles in the quasi-binary system RP/Se. Phosphorus Sulfur Relat Elem. 1994;93/94:185–8.10.1080/10426509408021812Search in Google Scholar
[138] Baxter I, Hill AF, Malget JM, White AJP, Williams DJ. Selenoketenyl and selenoalkyne complexes via the reactions of ketenyl complexes with Woollins’ reagent. Chem Commun. 1997;2049–50.10.1039/a705083fSearch in Google Scholar
[139] Hua G, Li Y, Slawin AM, Woollins JD. Synthesis of primary arylselenoamides by reaction of aryl nitriles with Woollins’ reagent. Org Lett. 2006;8:5251–4.10.1021/ol062053cSearch in Google Scholar PubMed
[140] Gray IP, Bhattacharyya P, Slawin AM, Woollins JD. A new synthesis of (PhPSe22 (Woollins’ reagent) and its use in the synthesis of novel P-Se heterocycles. Chem Eur J. 2005;11:6221–7.10.1002/chem.200500291Search in Google Scholar PubMed
[141] Rothenberger A, Shi W, Shafaei-Fallah M. The anhydride route to group 15/16 ligands in oligomeric and polymeric environments: from metal complexes to supraionic chemistry. Chem Eur J. 2007;13:5974–81.10.1002/chem.200700550Search in Google Scholar PubMed
[142] Shi W, Zhang L, Shafaei-Fallah M, Rothenberrger A. Synthesis and crystal structures of octahedral metal complexes containing the new dianion [PhP(Se,O)SeSe(O,Se)PPh]2-. Z Anorg Allg Chem. 2007;633:440–2.10.1002/zaac.200600297Search in Google Scholar
[143] Shi W, Shafaei-Fallah M, Zhang L, Matern E, Rothenberrger A. Polymeric organometallic architectures of novel P-Se anions. Chem Eur J. 2007;13:598–603.10.1002/chem.200600626Search in Google Scholar PubMed
[144] Hua G, Li Y, Fuller AL, Slawin AM, Woollins JD. Facile synthesis and structure of novel 2,5-disubstituted 1,3,4-selenadiazoles. Eur J Org Chem. 2009;1612–8.10.1002/ejoc.200900013Search in Google Scholar
[145] Hua G, Zhang Q, Li Y, Slawin AM, Woollins JD. Novel heterocyclic selenazadiphospholoaminediselenides, zwitterionic carbamidoyl(phenyl)phosphinodiselenoic acids and selenoureas derived from cyanamides. Tetrahedron. 2009;65:6074–2.10.1016/j.tet.2009.05.056Search in Google Scholar
[146] Hua G, Fuller AL, Li Y, Slawin AM, Woollins JD. Synthesis and X-ray structures of new phosphorus-selenium heterocycles with an E-P(Se)-E’ (E, E’ = N, S, Se) linkage. New J Chem. 2010;34:1665–71.10.1039/b9nj00570fSearch in Google Scholar
[147] Hua G, Henry JB, Li Y, Mount AR, Slawin AM, Woollins JD. Synthesis of novel 2,5-diarylselenophenes from selenation of 1,4-diarylbutane-1,4-diones or methanol/’arylacetylenes. Org Biomol Chem. 2010;8:1655–60.10.1039/b924986aSearch in Google Scholar PubMed
[148] Hua G, Fuller AL, Slawin AM, Woollins JD. Novel five- to ten-membered organoselenium heterocycles from the selenation of aromatic diols. Eur J Org Chem. 2010;2607–15.10.1002/ejoc.201000075Search in Google Scholar
[149] Hua G, Fuller AL, Slawin AM, Woollins JD. Formation of new organoselenium heterocycles and ring reduction of 10-membered heterocycles into seven-membered heterocycles. Polyhedron. 2011;30:805–8.10.1016/j.poly.2010.12.018Search in Google Scholar
[150] Bansal RK, Gupta N, Bharatiya N, Gupta G, Surana A, Hackenbracht G, et al. Sulfur and selenium derivatives of 2-phosphaindolizines. Heteroat Chem. 1998;9:445–52.10.1002/(SICI)1098-1071(1998)9:4<445::AID-HC14>3.0.CO;2-RSearch in Google Scholar
[151] Gay IP, Slawin AM, Woollins JD. Synthesis and structure of novel [Ph(RO)PSe2]- complexes. Dalton Trans. 2005;2188–94.10.1039/b503793jSearch in Google Scholar PubMed
[152] Hua G, Woollins JD. Sodium phenyldiselenophosphonate salts and Se-alkyl-O-alkylphenyl-phosphonodiselenoates and Se,Se’-dialkyl-O,O’-dialkyl-bis(phenylphosphonodiselenoate)s. Polyhedron. 2012;23:1170–5.10.1016/j.poly.2012.05.010Search in Google Scholar
[153] Hua G, Randall RA, Slawin AM, Woollins JD. Ammonium phenylphosphonamidodiselenoates and phenylphosphonamidodiselenoic diamides from the selenation of primary and secondary amines. Z Anorg Allg Chem. 2011;637:1800–6.10.1002/zaac.201100257Search in Google Scholar
[154] Fitzmaurice JD, Williams DJ, Wood PT, Woollis JD. Organophosphorus-selenium heterocycles. J Chem Soc Chem Commun. 1988;741–3.10.1039/C39880000741Search in Google Scholar
[155] Bhattacharyya P, Slawin AM, Woollins JD. The reactivity of [PhP(Se)(μ-Se)]2 and (PhP)3Se2 towards acetylenes and cyanamides: X-ray crystal structures of some P-Se-C and P-Se-C-N heterocycles. Chem Eur J. 2002;8:2705–11.10.1002/1521-3765(20020617)8:12<2705::AID-CHEM2705>3.0.CO;2-2Search in Google Scholar
[156] Hua G, Li Y, Slawin AM, Woollins JD. Synthesis of novel vinylic P–Se heterocycles from selenation of alkynes by [PhP(Se)(μ-Se)]2. Eur J Inorg Chem. 2007;891–7.10.1002/ejic.200601066Search in Google Scholar
[157] Hua G, Li Y, Slawin AM, Woollins JD. Unexpected four- and eight-membered organo P-Se heterocycles. Chem Commun. 2007;1465–7.10.1039/B617418CSearch in Google Scholar
[158] Bhattacharyya P, Slawin AM, Woollins JD. Heterocycle formation using [PhP(Se)(μ-Se)]2. The crystal structures of [PhP(Se)(μ-Se)]2, PhP(Se)Se2(C7H10) and PhP(Se)(μ-Se)(μ-NPh)P(Se)Ph. J Chem Soc Dalton Trans. 2001;300–3.10.1039/b008071nSearch in Google Scholar
[159] Silvestru C, Drake JE. Tetraorganodichalcogenoimidodiphosphorus acids and their main group metal derivatives. Coord Chem Rev. 2001;223:117–46.10.1016/S0010-8545(01)00387-3Search in Google Scholar
[160] Foreman MR, Slawin AM, Woollins JD. The reaction of dithiadiphosphetane disulfide with dienes, alkenes and thioaldehydes. J Chem Soc Dalton Trans. 1999;1175–84.10.1039/a808918cSearch in Google Scholar
[161] Foreman MR, Slawin AM, Woollins JD. Novel 1,2-thiaphosphetanes from diferrocenyldithiadiphosphetane disulfide. J Chem Soc Chem Commun. 1997;855–6.10.1039/a607889cSearch in Google Scholar
[162] Hua G, Li Y, Slawin AM, Woollins JD. Synthesis and structure of eight-, nine-, and ten-membered rings with P-Se-Se-P linkages. Angew Chem Int Ed. 2008;47:2857–9.10.1002/anie.200705021Search in Google Scholar
[163] Hua G, Griffin JM, Ashbrook SE, Slawin AM, Woollins JD. Octaselenocyclodecane. Angew Chem Int Ed. 2011;50:4123–6.10.1002/anie.201006081Search in Google Scholar
[164] Bhattacharyya P, Woollins JD. One-pot deracemization of an enol acetate derived from a prochiral cyclohexanone. Tetrahedron Lett. 2001;42:5949–51.10.1016/S0040-4039(01)01113-3Search in Google Scholar
[165] Ostrowski W, Gierczyk B, Franski RJ. Synthesis of monosubstituted 1,3,4-selenadiazoles using Woollins’ reagent. Heterocycl Chem. 2012;49:1266–8.10.1002/jhet.1039Search in Google Scholar
[166] Hua G, Slawin AM, Woollins JD. Stereoselective synthesis of olefins by a reductive coupling reaction. Dalton Trans. 2007;1477–80.10.1039/b702818kSearch in Google Scholar PubMed
[167] Kaschel J, Schmidt CD, Mumby M, Kratzert D, Stalke D, Werz DB. Donor-acceptor cyclopropanes with Lawesson’ and Woollins’ reagents: formation of bisthiophenes and unprecedental cage-like molecules. Chem Commun. 2013;49:4403–5.10.1039/C2CC37631HSearch in Google Scholar
[168] Mandal M, Chatterjee S, Jaisankar O. Woollins’ reagent: a chemoselective reducing agent for 1,4-enediones and 1,4-ynediones to saturated 1,4-diones. Synlett. 2012;2615–8.10.1002/chin.201310048Search in Google Scholar
[169] Yu Y, Furuyama T, Tang J, Wu ZY, Chen JZ, Kobayashi N, et al. Stable iso-bacteriochlorin mimics from porpholactone: effect of a,β-oxazolone moiety on the frontier n-molecular orbitals. Inorg Chem Front. 2015;2:671–7.10.1039/C5QI00054HSearch in Google Scholar
[170] Pizzo C, Mahler G. Woollins’ reagent promotes selective reduction of α,β-unsaturated thiazo and selenazolidinones. Tetrahedron Lett. 2017;58:1445–7.10.1016/j.tetlet.2017.02.053Search in Google Scholar
[171] Hua G, Du J, Fuller AL, Arachchige KS, Cordes DB, Slawin AM, et al. Synthesis and selenation of tandem multicomponent condensation adducts. Synlett. 2015;26:839–45.10.1055/s-0034-1380124Search in Google Scholar
[172] Chivers T. Imido analogues of phosphorus oxo and chalcogenido anions. Top Curr Chem. 2003;229:143–59.10.1007/b11154Search in Google Scholar
[173] Bochmann M, Bwembya GC, Whilton N, Song XJ, Hursthouse MB, Coles SJ, et al. Synthesis of selenophosphinic and tellurophosphinic amides and amidato complexes. Crystal structures of tBu2P(Te)NH(C6H11), [Ti(η-C5H5)Cl2{tBu2P(Se)NCHMe2}] and [TiCl2{tBu2P(Se)N(C6H11)}2]·C7H8. J Chem Soc Dalton Trans. 1995;1887–92.10.1039/DT9950001887Search in Google Scholar
[174] Eichhorn B, Noth H, Seifert T. (N-Lithioamino)diorganophosphines and bis(N-lithioamino)organophosphines. Synthesis and structures. Eur J Inorg Chem. 1999;2355–68.10.1002/(SICI)1099-0682(199912)1999:12<2355::AID-EJIC2355>3.0.CO;2-HSearch in Google Scholar
[175] Briand GG, Chivers T, Krahn M, Parez M. Synthesis and X-ray structures of dilithium complexes of the phosphonate anions [PhP(E)(NtBu)2]2- (E = O, S, Se, Te) and dimethylaluminum derivatives of [PhP(E)(NtBu)(NHtBu)]- (E = S, Se). Inorg Chem. 2002;41:6808–15.10.1021/ic020471hSearch in Google Scholar
[176] Song X, Bochmann M. Synthesis of phosphinochalcogenoic amidato complexes of divalent transition metals and their thermolysis to metal selenide and telluride phases. J Chem Soc Dalton Trans. 1997;2688–92.10.1039/a702460fSearch in Google Scholar
[177] Bochmann M. Metal chalcogenide materials. Chalcogenolato complexes as “single-source” precursors. Chem Vap Deposition. 1996;2:85–96.10.1002/cvde.19960020302Search in Google Scholar
[178] Bwembya GC, Song X, Bochmann M. Phosphinochalcogenoic amidato complexes of zinc and cadmium as novel single-source precursors for the deposition of metal selenide and telluride films. Chem Vap Deposition. 1995;1:78–80.10.1002/cvde.19950010304Search in Google Scholar
[179] Chivers T, Parvez M, Seay MA. An acyclic nitrogen-phosphorus-selenium anion: preparation, structures, and reactions of (K[Ph2P(Se)NSiMe3].THF)2 with iodine and chlorodiphosphine sulfide. Inorg Chem. 1994;33:2147–50.10.1021/ic00088a016Search in Google Scholar
[180] Haiduc I. Thiophopshorus and related ligands in coordination, organometallic and supramolecular chemistry. A personal account. J Organomet Chem. 2001;623:29–42.10.1016/S0022-328X(00)00677-XSearch in Google Scholar
[181] Bhattacharyya P, Woollins JD. Bis(diphenylphosphino)amine and related chemistry. Polyhedron. 1995;14:3367–73.10.1016/0277-5387(95)00103-YSearch in Google Scholar
[182] Woollins JD. P-N-S/Se-contained metallacycles. J Chem Soc Dalton Trans. 1996;2893–901.10.1039/DT9960002893Search in Google Scholar
[183] Briand GG, Chivers T, Parvez M. A new approach to metalated imido and amido tellurophosphoranes. Angew Chem Int Ed. 2002;41:3468–70.10.1002/1521-3773(20020916)41:18<3468::AID-ANIE3468>3.0.CO;2-WSearch in Google Scholar
[184] Chivers T, Eiler DJ, Ritch JS. Synthesis and structures of M[N(TePPri22-Te,Te’]n (n = 2, M = Zn, Cd, Hg; n = 3, M = Sb, Bi): the first ditelluroimidodiphosphinato p- and d-block metal complexes. Dalton Trans. 2005;2675–7.10.1039/b506174aSearch in Google Scholar
[185] Ritch JS, Chivers T, Eiler DJ, Tuononen HM. Experimental and theoretical investigations of structural isomers of dichalcogenoimidodiphosphinate dimers: dichalcogenides or spirocyclic contact ion pairs. Chem Eur J. 2007;13:4643–53.10.1002/chem.200700001Search in Google Scholar
[186] Gaunt AJ, Scott BL, Neu MP. Homoleptic uranium(III) imidodiphosphinochalcogenides including the first structurally characterized molecular trivalent actinide-Se bond. Chem Commun. 2005;3215–7.10.1039/b503106kSearch in Google Scholar PubMed
[187] Chivers T, Ritch JS, Robertson SD, Konu J, Tuononen HM. New insight into the chemistry of imidodiphosphinates from investigations of tellurium-centered systems. Acc Chem Res. 2010;43:1053–62.10.1021/ar900272kSearch in Google Scholar PubMed
[188] Chivers T, Konu J, Ritch JS, Copsey MC, Eisler DJ, Tuononen HM. New tellurium-containing ring systems. J Organomet Chem. 2007;692:2658–68.10.1016/j.jorganchem.2006.11.029Search in Google Scholar
[189] Levasanos N, Robertson SD, Maganas D, Raptopoulou CP, Terzis A, Kyritsis P, et al. Ni[(EPiPr2)2N]2 complexes: stereoisomers (E = Se) and square-planar coordination (E = Te). Inorg Chem. 2008;47:2949–51.10.1021/ic800272vSearch in Google Scholar PubMed
[190] Robertson SD, Ritch JS, Chivers T. Palladium and platinum complexes of tellurium-containing imidodiphosphinate ligands: nucleophilic attack of Li[(PiPr2)(TePiPr2)N] on coordinated 1,5-cyclooctadiene. Dalton Trans. 2009;8582–92.10.1039/b911490dSearch in Google Scholar PubMed
[191] Gaunt AJ, Scott BL, Neu MP. A molecular actinide-tellurium bond and comparison of bonding in [M{N(TePiPr23} (M = U, La). Angew Chem Int Ed. 2006;45:1638–41.10.1002/anie.200503372Search in Google Scholar PubMed
[192] Gaunt AJ, Reilly SD, Enriquez AE, Scott BL, Ibers JA, Sekar P, et al. Experimental and theoretical comparison of actinide and lanthanide bonding in M[N(EPR22]3 complexes (M = U, Pu, La, Ce; E = S, Se, Te; R = Ph, iPr, H). Inorg Chem. 2008;47:29–41.10.1021/ic701618aSearch in Google Scholar PubMed
[193] Ritch JS, Chivers T, Ahmad K, Afzaal M, O’Brien P. Synthesis, structures, and multinuclear NMR spectra of Tin(II) and Lead(II) complexes of tellurium-containing imidodiphoshinate ligands: preparation of two morphologies of phase-pure PbTe from a single-source precursor. Inorg Chem. 2010;49:1198–205.10.1021/ic9021728Search in Google Scholar PubMed
[194] Chivers T, Eisler DJ, Ritch JS, Tuononen HM. An unusual ditelluride: synthesis and molecular and electronic structures of the dimer of the tellurium-centered radical [TePiPr2NiPr2PTe]. Angew Chem Int Ed. 2005;44:4953–6.10.1002/anie.200501138Search in Google Scholar PubMed
[195] Konu J, Chivers T, Tuononen HM. The cyclic [N(PiPr2E)2]+ (E = Se, Te) cations: a new class of inorganic ring system. Chem Commun. 2006;1634–6.10.1039/b600040aSearch in Google Scholar PubMed
[196] Konu J, Chivers T, Tuononen HM. Synthesis, spectroscopic, and structural investigation of the cyclic [N(PR2E)2]+ cations (E = Se, Te; R = iPr, Ph): the effect of anion and R-group exchange. Inorg Chem. 2006;45:10678–87.10.1021/ic061545iSearch in Google Scholar
[197] Briand GG, Chivers T, Krahn M. Coordination complexes of bis(amido)cyclodiphosph(III/V and V/V)azane imides and chalcogenides. Coord Chem Rev. 2002;233:237–54.10.1016/S0010-8545(02)00033-4Search in Google Scholar
[198] Chivers T, Krahn M, Parvez M. An extended network of twenty-membered K6Se6P4N4 rings: X-ray structure of {[(THF)K[tBuN(Se)P(μ-NtBu)2P(Se)NtBu]K(THF)2]2}. Chem Commun. 2000;463–4.10.1039/b000357nSearch in Google Scholar
[199] Chivers T, Krahn M, Parvez M, Schatte G. Preparation and X-ray structures of alkali-metal derivatives of the ambidentate anions [tBuN(E)P(μ-NtBu)2P(E)NtBu]2- (E = S, Se) and [tBuN(Se)P(μ-NtBu)2PN(H)tBu]-. Inorg Chem. 2001;40:2547–53.10.1021/ic001093oSearch in Google Scholar PubMed
[200] Lief GR, Carrow CJ, Stahl L. Trispirocyclic bis(dimethylaluminum)bis(amido)cyclodiphosph(V)azanes. Organometallics. 2001;20:1629–35.10.1021/om000916eSearch in Google Scholar
[201] Plajer AJ, Garcia-Rodriguez R, Benson CG, Matthews PD, Bond AD, Singh S, et al. A modular approach to inorganic phosphazane macrocycles. Angew Chem Int Ed. 2017;56. DOI: 10.1002/anie.201702558.Search in Google Scholar PubMed
[202] Nordheider A, Chivers T, Thirumoorthi R, Athukorala Arachige KS, Slawin AM, Woollins JD, et al. A planar dianionic ditelluride and a cyclic tritelluride supported by P2N2 rings. Dalton Trans. 2013;42:3291–4.10.1039/C2DT32716CSearch in Google Scholar
[203] Nordheider A, Chivers T, Thirumoorthi R, Vargas-Baca I, Woollins JD, Vargas-Baca IA. Planar P6E6 (E = Se, S) macrocycles incorporating P2N2 scaffolds. Chem Commun. 2012;48:6346–8.10.1039/c2cc32809gSearch in Google Scholar PubMed
[204] Nordheider A, Athukorala Arachige KS, Slawin AM, Woollins JD, Chivers T. Sodium and rhodium complexes of a spirocyclic Te5 dianion supported by P2N2 rings. Dalton Trans. 2015;8781–83.10.1039/C4DT03257HSearch in Google Scholar PubMed
[205] Nordheider A, Hull K, Prentis JK, Athukorala Arachige KS, Slawin AM, Woollins JD, et al. Main group tellurium heterocycles anchored by a PV2N2 scaffold and their sulfur/selenium analogues. Inorg Chem. 2015;54:3043–54.10.1021/acs.inorgchem.5b00161Search in Google Scholar PubMed
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Multi technique and multiscale approaches to the study of ancient and modern art objects on wooden and canvas support
- Characterization of proteins in cultural heritage using MALDI–TOF and LC–MS/MS mass spectrometric techniques
- Organophosphorus-selenium/tellurium reagents: from synthesis to applications
- Selenium– and tellurium–nitrogen reagents
- Applications of metal selenium/tellurium compounds in materials science
- Organoselenium and organotellurium compounds containing chalcogen-oxygen bonds in organic synthesis or related processes
- Templated enantioselective photocatalysis
- Liquid chromatography: Current applications in Heritage Science and recent developments
- Chemical space of naturally occurring compounds
Articles in the same Issue
- Multi technique and multiscale approaches to the study of ancient and modern art objects on wooden and canvas support
- Characterization of proteins in cultural heritage using MALDI–TOF and LC–MS/MS mass spectrometric techniques
- Organophosphorus-selenium/tellurium reagents: from synthesis to applications
- Selenium– and tellurium–nitrogen reagents
- Applications of metal selenium/tellurium compounds in materials science
- Organoselenium and organotellurium compounds containing chalcogen-oxygen bonds in organic synthesis or related processes
- Templated enantioselective photocatalysis
- Liquid chromatography: Current applications in Heritage Science and recent developments
- Chemical space of naturally occurring compounds