Startseite X-ray absorption spectroscopy principles and practical use in materials analysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

X-ray absorption spectroscopy principles and practical use in materials analysis

  • Wolfgang Grünert EMAIL logo und Konstantin Klementiev
Veröffentlicht/Copyright: 5. März 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The X-ray Absorption Fine Structure (XAFS) with its subregions X-ray Absorption Near-edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) is a powerful tool for the structural analysis of materials, which is nowadays a standard component of research strategies in many fields. This review covers a wide range of topics related to its measurement and use: the origin of the fine structure, its analytical potential, derived from the physical basis, the environment for measuring XAFS at synchrotrons, including different measurement geometries, detection modes, and sample environments, e. g. for in-situin-situ"?> and operandooperando"?> work, the principles of data reduction, analysis, and interpretation, and a perspective on new methods for structure analysis combining X-ray absorption with X-ray emission. Examples for the application of XAFS have been selected from work with heterogeneous catalysts with the intention to demonstrate the strength of the method providing structural information about highly disperse and disordered systems, to illustrate pitfalls in the interpretation of results (e. g. by neglecting the averaged character of the information obtained) and to show how its merits can be further enhanced by combination with other methods of structural analysis and/or spectroscopy.

References

[1] Rühl E, Heinzel C, Hitchcock AP, Baumgärtel H. Ar 2p spectroscopy of free argon clusters. J Chem Phys. 1993;98:2653–63.10.1063/1.464146Suche in Google Scholar

[2] Nakamura M, Sasanuma M, Sato S, Watanabe M, Yamashita H, Iguchi Y, et al. Absorption structure near L2,3 Edge of Argon Gas. Phys Rev Lett. 1968;21:1303–6.10.1103/PhysRevLett.21.1303Suche in Google Scholar

[3] King GC, Tronc M, Read FH, Bradford RC. Investigation of structure near L2,3 Edges of Argon, M4,5 edges of krypton and N4,5 edges of xenon, using electron-impact with high-resolution. J Phys B At Mol Opt Phys. 1977;10:2479–95.10.1088/0022-3700/10/12/026Suche in Google Scholar

[4] Lytle FW. The EXAFS family tree: a personal history of the development of extended X-ray absorption fine structure. J Synchrotron Rad. 1999;6:123–34.10.1107/S0909049599001260Suche in Google Scholar PubMed

[5] Rehr JJ, Albers RC. Theoretical approaches to X-ray absorption fine structure. Rev Modern Phys. 2000;72:621–54.10.1103/RevModPhys.72.621Suche in Google Scholar

[6] Kozlenkov A. Bull Acad Sci USSR Phys Ser. 1961;24:968–87.Suche in Google Scholar

[7] Lee PA, Pendry JB. Theory of the extended X-ray absorption fine structure. Phys Rev B. 1975;11:2795–811.10.1007/978-1-4757-1238-4_2Suche in Google Scholar

[8] Natoli CR, Benfatto M, Brouder C, Lopez MF, Foulis DL. Multichannel multiple-scattering theory with general potentials. Phys Rev B. 1990;42:1944–68.10.1103/PhysRevB.42.1944Suche in Google Scholar

[9] Chao W, Fischer P, Tyliszczak T, Rekawa S, Anderson E, Naulleau P. Real space soft X-ray imaging at 10 nm spatial resolution. Opt Express. 2012;20:9777–83.10.1364/OE.20.009777Suche in Google Scholar PubMed

[10] Hitchcock AP, Berejnov V, Lee V, West M, Colbow V, Dutta M, et al. Carbon corrosion of proton exchange membrane fuel cell catalyst layers studied by scanning transmission X-ray microscopy. J Power Sources. 2014;266:66–78.10.1016/j.jpowsour.2014.04.119Suche in Google Scholar

[11] Beale AM, Jacques SD, Weckhuysen BM. Chemical imaging of catalytic solids with synchrotron radiation. Chem Soc Rev. 2010;39:4656–72.10.1039/c0cs00089bSuche in Google Scholar PubMed

[12] Grunwaldt J-D, Schroer CG. Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales. Chem Soc Rev. 2010;39:4741–53.10.1039/c0cs00036aSuche in Google Scholar PubMed

[13] Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem Rev. 2013;113:1736–850.10.1021/cr2000898Suche in Google Scholar PubMed

[14] Sun ZH, Liu QH, Yao T, Yan WS, Wei SQ. X-ray absorption fine structure spectroscopy in nanomaterials. Sci China-Mater. 2015;58:313–41.10.1007/s40843-015-0043-4Suche in Google Scholar

[15] Frenkel AI, Yevick A, Cooper C, Vasic R. Modeling the structure and composition of nanoparticles by extended X-ray absorption fine-structure spectroscopy. Ann Rev Analyt Chem. 2011;4:23–39.10.1146/annurev-anchem-061010-113906Suche in Google Scholar PubMed

[16] Brown GE, Catalano JG, Templeton AS, Trainor TP, Farges F, Bostick BC, et al. Environmental interfaces, heavy metals, microbes, and plants: Applications of XAFS spectroscopy and related synchrotron radiation methods to environmental science. Phys Scripta. 2005;T115:80–7.10.1238/Physica.Topical.115a00080Suche in Google Scholar

[17] Kempson IM, Kirkbride KP, Skinner WM, Coumbaros J. Applications of synchrotron radiation in forensic trace evidence analysis. Talanta. 2005;67:286–303.10.1016/j.talanta.2005.05.026Suche in Google Scholar PubMed

[18] Yu SJ, Wang XX, Yang ST, Sheng GD, Alsaedi A, Hayat T, et al. Interaction of radionuclides with natural and manmade materials using XAFS technique. Sci China-Chem. 2017;60:170–87.10.1007/s11426-016-0317-3Suche in Google Scholar

[19] Wende H. Recent advances in X-ray absorption spectroscopy. Rep Progr Phys. 2004;67:2105–81.10.1088/0034-4885/67/12/R01Suche in Google Scholar

[20] Lee PA, Citrin PH, Eisenberger P, Kincaid BM. Extended X-ray absorption fine structure - its strengths and limitations as a structural tool. Rev Mod Phys. 1981;53:769–806.10.1103/RevModPhys.53.769Suche in Google Scholar

[21] Hou ZS, Theyssen N, Brinkmann A, Klementiev KV, Grünert W, Bühl M, et al. Supported palladium nanoparticles on hybrid mesoporous silica: structure/activity-relationship in the aerobic alcohol oxidation using supercritical carbon dioxide. J Catal. 2008;258:315–23.10.1016/j.jcat.2008.07.002Suche in Google Scholar

[22] Hayes TM, Sen PN, Hunter SH. Structure determination using EXAFS in real space: Ge. J Phys C Solid State Phys. 1976;9:4357–64.10.1088/0022-3719/9/24/006Suche in Google Scholar

[23] Bunker G. Application of the ratio method of EXAFS analysis to disordered systems. Nucl Instr Methods Phys Res. 1983;207:437–44.10.1016/0167-5087(83)90655-5Suche in Google Scholar

[24] Ankudinov AL, Ravel B, Rehr JJ, Conradson SD. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys Rev B. 1998;58. Art. No. 7565.10.1103/PhysRevB.58.7565Suche in Google Scholar

[25] Filipponi A, Di Cicco A, Natoli CR. X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. II. Data analysis and applications. Phys Rev B. 1995;52:Art No. 15135.10.1103/PhysRevB.52.15135Suche in Google Scholar

[26] Gurman SJ, Binsted N, Ross I. A rapid, exact, curved-wave theory for EXAFS calculations. II. The multiple-scattering contributions. J Phys C Solid State Phys. 1986;19:1845.10.1088/0022-3719/19/11/021Suche in Google Scholar

[27] Bunau O, Joly Y. Self-consistent aspects of X-ray absorption calculations. J Phys Condens Matter. 2009;21:Art. No. 345501.10.1088/0953-8984/21/34/345501Suche in Google Scholar PubMed

[28] Benfatto M, Della Longa S. Geometrical fitting of experimental XANES spectra by a full multiple-scattering procedure. J Synchrotron Rad. 2001;8:1087–94.10.1107/S0909049501006422Suche in Google Scholar PubMed

[29] Yamamoto T. Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole?. X-Ray Spectrome. 2008;37:572–84.10.1002/xrs.1103Suche in Google Scholar

[30] Wasserman SR. The analysis of mixtures: application of principal component analysis to XAS spectra. J Phys IV France. 1997;7:C2–203–C2-205.10.1051/jp4/1997163Suche in Google Scholar

[31] Grünert W. Auger Electron, X-ray and UV Photoelectron Spectroscopy. In: Che M, Vedrine JC, editor(s). Characterisation of Solid Materials: From Structure to Surface Reactivity Vol. 1. Weinheim: Wiley-VCH, 2012:537–83.Suche in Google Scholar

[32] Levina A, McLeod Andrew I, Lay Peter A. Vanadium Speciation by XANES Spectroscopy: a three-dimensional approach. Chem Eur J. 2014;20:12056–60.10.1002/chem.201403993Suche in Google Scholar PubMed

[33] Meitzner G, Via GH, Lytle FW, Sinfelt JH. Analysis of X-ray absorption edge data on metal catalysts. J Phys Chem. 1992;96:4960–4.10.1021/j100191a043Suche in Google Scholar

[34] Ankudinov AL, Rehr JJ, Low JJ, Bare SR. Theoretical Interpretation of XAFS and XANES in Pt Clusters. Top Catal. 2002;18:3–7.10.1023/A:1013849814153Suche in Google Scholar

[35] Ankudinov AL, Rehr JJ, Low JJ, Bare SR. Sensitivity of Pt X-ray absorption near edge structure to the morphology of small Pt clusters. J Chem Phys. 2002;116:1911–19.10.1063/1.1432688Suche in Google Scholar

[36] Mansour AN, Cook JW, Sayers DE. Quantitative technique for the determination of the number of unoccupied d-electron states in a platinum catalyst using the L2,3 X.ray absorption-edge spectra. J Phys Chem. 1984;88:2330–4.10.1021/j150655a029Suche in Google Scholar

[37] Ramaker DE, Koningsberger DC. The atomic AXAFS and Δμ- XANES techniques as applied to heterogeneous catalysis and electrocatalysis. Phys Chem Chem Phys. 2010;12:5514–34.10.1039/b927120cSuche in Google Scholar

[38] Soldatov AV, Della Longa S, Bianconi A. Relevant role of hydrogen atoms in the XANES of Pd hydride: evidence of hydrogen induced unoccupied states. Solid State Comm. 1993;85:863–8.10.1016/0038-1098(93)90193-QSuche in Google Scholar

[39] Klementiev K, Chernikov R. Powerful scriptable ray tracing package xrt. In: Proc. SPIE 9209, Advances in Computational Methods for X-Ray Optics III, 92090A (5 September 2014). DOI:10.1117/12.2061400.10.1117/12.2061400Suche in Google Scholar

[40] Klementiev K, Chernikov R. XAFSmass: a program for calculating the optimal mass of XAFS samples. J Phys Conf Ser. 2016;712:Art. No. 012008.10.1088/1742-6596/712/1/012008Suche in Google Scholar

[41] McBreen J, O’Grady WE, Pandya KI, Hoffman RW, Sayers DE. EXAFS study of the nickel oxide electrode. Langmuir. 1987;3:428–33.10.1021/la00075a027Suche in Google Scholar

[42] Hannemann S, Casapu M, Grunwaldt JD, Haider P, Trussel P, Baiker A, et al. A versatile in situ spectroscopic cell for fluorescence/transmission EXAFS and X-ray diffraction of heterogeneous catalysts in gas and liquid phase. J Synchrotron Rad. 2007;14:345–54.10.1107/S0909049507024466Suche in Google Scholar PubMed

[43] Grunwaldt JD, Ramin M, Rohr M, Michailovski A, Patzke GR, Baiker A. High pressure in situ X-ray absorption spectroscopy cell for studying simultaneously the liquid phase and the solid/liquid interface. Rev Sci Instr. 2005;76 Art. No. 054104.10.1063/1.1914787Suche in Google Scholar

[44] Kampers FW, Maas TM, van Grondelle J, Brinkgreve DC, Koningsberger DC. An in-situ cell for transmission EXAFS measurements on catalytic samples. Rev Sci Instr. 1989;60:2635–8.10.1063/1.1140684Suche in Google Scholar

[45] Lamberti C, Prestipino C, Bordiga S, Berlier G, Spoto G, Zecchina A, et al. Description of a flexible cell for in situ X-ray and far-IR characterization of the surface of powdered materials. Nucl Instrum Methods Phys Res Sect B. 2003;200:196–201.10.1016/S0168-583X(02)01719-6Suche in Google Scholar

[46] Clausen BS. Combined (Q)EXAFS /XRD: technique and applications. Catal Today. 1998;39:293–300.10.1016/S0920-5861(97)00115-6Suche in Google Scholar

[47] Jacques SD, Leynaud O, Strusevich D, Stukas P, Barnes P, Sankar G, et al. Recent progress in the use of in situ X-ray methods for the study of heterogeneous catalysts in packed-bed capillary reactors. Catal Today. 2009;145:204–12.10.1016/j.cattod.2009.02.012Suche in Google Scholar

[48] Grunwaldt JD, Baiker A. Axial variation of the oxidation state of Pt-Rh/Al2O3 during partial methane oxidation in a fixed-bed reactor: an in situ X-ray absorption spectroscopy study. Catal Lett. 2005;99:5–12.10.1007/s10562-005-0770-3Suche in Google Scholar

[49] Grunwaldt J-D, Kimmerle B, Baiker A, Boye P, Schroer CG, Glatzel P, et al. Catalysts at work: from integral to spatially resolved X-ray absorption spectroscopy. Catal Today. 2009;145:267–78.10.1016/j.cattod.2008.11.002Suche in Google Scholar

[50] Newton MA, van Beek W. Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: a view from a bridge. Chem Soc Rev. 2010;39:4845–486.10.1039/b919689gSuche in Google Scholar PubMed

[51] Roth C, Benker N, Mazurek M, Scheiba F, Fuess H. Development of an in-situ cell for X-ray absorption measurements during fuel cell operation. Adv Eng Mat. 2005;7:952–6.10.1002/adem.200500122Suche in Google Scholar

[52] Petrova O, Kulp C, van den Berg MW, Klementiev KV, Otto B, Otto H, et al. A spectroscopic PEM fuel cell test setup allowing fluorescence XAS measurements during state-of-the-art cell tests. Rev Sci Instr. 2011;82:Art. No. 044191.10.1063/1.3574225Suche in Google Scholar PubMed

[53] Russell AE, Rose A. X-ray absorption spectroscopy of low temperature fuel cells. Chem Rev. 2004;104:4613–35.10.1021/cr020708rSuche in Google Scholar PubMed

[54] Masa J, Sinev I, Mistry H, Ventosa E, de la Mata M, Arbiol J, et al. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv Energy Mat. 2017;7:17.10.1002/aenm.201700381Suche in Google Scholar

[55] Viswanathan R, Hou GY, Liu RX, Bare S, Modica F, Mickelson G, et al. In-situ XANES of carbon-supported Pt-Ru anode electrocatalyst for reformate-air polymer electrolyte fuel cells. J Phys Chem B. 2002;106:3458–65.10.1021/jp0139787Suche in Google Scholar

[56] Klementiev KV. Extraction of the fine structure from X-ray absorption spectra. J Phys D Appl Phys. 2001;34:209.10.1088/0022-3727/34/2/309Suche in Google Scholar

[57] Ravel B, Newville M. ATHENA ARTEMIS HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad. 2005;12:537–41.10.1107/S0909049505012719Suche in Google Scholar PubMed

[58] Kuzmin A. EDA: EXAFS data analysis software package. Phys B Condens Matter. 1995;208–209:175–6.10.1107/S1574870720003365Suche in Google Scholar

[59] Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes. The art of scientific compution. 3rd ed. Cambridge: Cambridge University Press, 2007.Suche in Google Scholar

[60] Stern EA. Number of relevant independent points in X-ray-absorption fine-structure spectra. Phys Rev B. 1993;48:Art. No. 9825.10.1103/PhysRevB.48.9825Suche in Google Scholar PubMed

[61] Newville M. EXAFS analysis using FEFF and FEFFIT. J Synchrotron Rad. 2001;8:96–100.10.1107/S0909049500016290Suche in Google Scholar

[62] Klementiev KV. Statistical evaluations in fitting problems. J Synchrotron Rad. 2001;8:270–2.10.1107/S0909049500015351Suche in Google Scholar PubMed

[63] Mustre de Leon J, Rehr JJ, Zabinsky SI, Albers RC. Ab initio curved-wave X-ray-absorption fine structure. Phys Rev B. 1991;55:Art. No. 4146.10.1103/PhysRevB.44.4146Suche in Google Scholar

[64] Schoch R, Desens W, Werner T, Bauer M. X-ray spectroscopic verification of the active species in iron-catalyzed cross-coupling reactions. Chem Eur J. 2013;19:15816–21.10.1002/chem.201303340Suche in Google Scholar PubMed

[65] Borovski M. Size determination of small Cu-clusters by EXAFS. J Phys IV. 1997;7:C2–259–260.10.1051/jp4/1997190Suche in Google Scholar

[66] Jentys A. Estimation of mean size and shape of small metal particles by EXAFS. Phys Chem Chem Phys. 1999;1:4059.10.1039/a904654bSuche in Google Scholar

[67] Frenkel A. Solving the structure of nanoparticles by multiple-scattering EXAFS analysis. J Synchrotron Rad. 1999;6:293–5.10.1107/S0909049598017786Suche in Google Scholar PubMed

[68] Hwang B-J, Sarma LS, Chen J-M, Chen C-H, Shih S-C, Wang G-R, et al. Atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy. J Am Chem Soc. 2005;127:11140–5.10.1021/ja0526618Suche in Google Scholar PubMed

[69] Makshina EV, Sirotin SV, van den Berg MW, Klementiev KV, Yushchenko VV, Mazo GN, et al. Characterization and catalytic properties of nanosized cobaltate particles prepared by in-situ synthesis inside mesoporous molecular sieves. Appl Catal A. 2006;312:59–66.10.1016/j.apcata.2006.06.021Suche in Google Scholar

[70] Popov AG, Smirnov AV, Knyaseva ER, Yuschenko VV, Kalistratova EE, Klementiev KV, et al. Propane conversion over Ni-, Co-, Fe-, and Zn-containing silicalites-1. Microporous Mesopor Mater. 2010;134:124–34.10.1016/j.micromeso.2010.05.017Suche in Google Scholar

[71] Medici L, Prins R. The influence of chelating ligands on the sulfidation of Ni and Mo in NiMo/SiO2 hydrotreating catalysts. J Catal. 1996;163:38–49.10.1006/jcat.1996.0303Suche in Google Scholar

[72] Wilmer H, Kurtz M, Klementiev KV, Tkachenko OP, Grünert W, Hinrichsen O, et al. Methanol synthesis over ZnO - a structure-sensitive reaction? Phys Chem Chem Phys. 2003;5:4736–42.10.1039/B304425DSuche in Google Scholar

[73] Pettifer RF, Mathon O, Pascarelli S, Cooke MD, Gibbs MR. Measurement of femtometre-scale atomic displacements by X-ray absorption spectroscopy. Nature. 2005;435:78–81.10.1038/nature03516Suche in Google Scholar PubMed

[74] Purans J, Dalba G, Fomasini P, Kuzmin A, De Panfilis S, Rocca F. EXAFS and XRD studies with subpicometer accuracy: the case of ReO3. AIP Conf Proc. 2007;882:422–4.10.1063/1.2644546Suche in Google Scholar

[75] Bordiga S, Bonino F, Lillerud KP, Lamberti C. X-ray absorption spectroscopies: useful tools to understand metallorganic frameworks structure and reactivity. Chem Soc Rev. 2010;39:4885–927.10.1039/c0cs00082eSuche in Google Scholar

[76] Stakheev AY, Mashkovski IS, Tkachenko OP, Klementiev KV, Grünert W, Baeva GN, et al. Formation of palladium hydride nanoparticles in Pd/C catalyst as evidenced by in-situ XAS data. Russian Chem Bull Intern Ed. 2009;58:280–3.10.1007/s11172-010-0002-xSuche in Google Scholar

[77] Vaarkamp M, Miller JT, Modica FS, Koningsberger DC. On the relation between particle morphology, structure of the metal-support interface, and catalytic properties of Pt/γ-Al2O3. J Catal. 1996;163:294–305.10.1006/jcat.1996.0330Suche in Google Scholar

[78] Tkachenko OP, Klementiev KV, van den Berg MW, Koc N, Bandyopadhyay M, Birkner A, et al. Reduction of copper in porous matrices. Stepwise and autocatalytic reduction routes. J Phys Chem B. 2005;109:20979–88.10.1021/jp054033iSuche in Google Scholar

[79] Kim JY, Rodriguez JA, Hanson JC, Frenkel AI, Lee PI. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J Am Chem Soc. 2003;125:10684–92.10.1021/ja0301673Suche in Google Scholar

[80] Beutel T, Sarkany J, Lei GD, Yan JY, Sachtler WM. Redox chemistry of Cu/ZSM-5. J Phys Chem. 1996;100:845–51.10.1021/jp952455uSuche in Google Scholar

[81] Sarkany J, d’Itri JL, Sachtler WM. Redox chemistry in excessively ion-exchanged Cu/Na-ZSM-5. Catal Lett. 1992;16:241–9.10.1007/BF00764336Suche in Google Scholar

[82] Tkachenko OP, Klementiev KV, van den Berg MW, Gies H, Grünert W. The reduction of copper in porous matrices - The role of electrostatic stabilisation. Phys Chem Chem Phys. 2005;8:1539–49.10.1039/B514744ASuche in Google Scholar

[83] Torre-Abreu C, Ribeiro ME, Henriques C, Delahay G, . NO TPD and H2-TPR studies for characterisation of CuMOR catalysts. The role of Si/Al ratio, copper content and cocation. Appl Catal B. 1997;14:261–72.10.1016/S0926-3373(97)00028-3Suche in Google Scholar

[84] Bond GC, Louis C, Thompson DT. Catalyis by gold. London: Imperial College Press, 2006:384.10.1142/p450Suche in Google Scholar

[85] Zhao JB, Jin RC. Heterogeneous catalysis by gold and gold-based bimetal nanoclusters. Nano Today. 2018;18:86–102.10.1016/j.nantod.2017.12.009Suche in Google Scholar

[86] Corma A, Garcia H. Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev. 2008;37:2096–126.10.1039/b707314nSuche in Google Scholar

[87] Haruta M, Date M. Advances in the catalysis of Au nanoparticles. Appl Catal A. 2001;222:427–37.10.1016/S0926-860X(01)00847-XSuche in Google Scholar

[88] Haruta M. Catalysis of gold nanoparticles deposited on metal oxides. Cattech. 2002;6:102–15.10.1023/A:1020181423055Suche in Google Scholar

[89] Kotobuki M, Leppelt R, Hansgen DA, Widmann D, Behm RJ. Reactive oxygen on a Au/TiO2 supported catalyst. J Catal. 2009;264:67–76.10.1016/j.jcat.2009.03.013Suche in Google Scholar

[90] Camellone MF, Zhao JL, Jin LY, Wang YM, Muhler M, Marx D. Molecular understanding of reactivity and selectivity for methanol oxidation at the Au/TiO2 interface. Angew Chem Intern Ed. 2013;52:5780–4.10.1002/anie.201301868Suche in Google Scholar PubMed

[91] Saavedra J, Doan HA, Pursell CJ, Grabow LC, Chandler BD. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science. 2014;345:1599–602.10.1126/science.1256018Suche in Google Scholar PubMed

[92] Lopez N, Norskov JK. Catalytic CO oxidation by a gold nanoparticle: A density functional study. J Am Chem Soc. 2002;124:11262–3.10.1021/ja026998aSuche in Google Scholar PubMed

[93] Fierro-Gonzalez JC, Bhirud VA, Gates BC. A highly active catalyst for CO oxidation at 298 K: mononuclear Au complexes anchored to La2O3 nanoparticles. Chem Comm. 2005;41:5275–7.10.1039/b509629dSuche in Google Scholar PubMed

[94] Carrettin S, Corma A, Iglesias M, Sánchez F. Stabilization of Au(III) on heterogeneous catalysts and their catalytic similarities with homogeneous Au(III) metal organic complexes. Appl Catal A. 2005;291:247–52.10.1016/j.apcata.2005.01.047Suche in Google Scholar

[95] Wang F, Zhang D, Xu X, Ding Y. Theoretical Study of the CO Oxidation Mediated by Au3+, Au3, and Au3-: Mechanism and Charge State Effect of Gold on Its Catalytic Activity. J Phys Chem C. 2009;113:18032–9.10.1021/jp903392wSuche in Google Scholar

[96] van den Berg MW, De Toni A, Bandyopadhyay M, Gies H, Grünert W. CO oxidation with Au/TiO2 aggregates encapsulated in the mesopores of MCM-48: model studies on activation, deactivation and metal-support interaction. Appl Catal A. 2011;391:268–80.10.1016/j.apcata.2010.06.022Suche in Google Scholar

[97] Grünert W, Großmann D, Noei H, Pohl MM, Sinev I, De Toni A, et al. Low-temperature CO oxidation with TiO2-supported Au3+ ions. Angew Chem Int Ed. 2014;53:3245–9.10.1002/anie.201308206Suche in Google Scholar

[98] Grünert W, Hayes NW, Joyner RW, Shpiro ES, Siddiqui MR, Baeva GN. Structure, chemistry, and activity of Cu-ZSM-5 catalysts for the selective reduction of NOx in the presence of oxygen. J Phys Chem. 1994;98:10832–46.10.1021/j100093a026Suche in Google Scholar

[99] Turnes Palomino G, Fisicaro P, Bordiga S, Zecchina A, Giamello E, Lamberti C. Oxidation States of Copper Ions in ZSM-5 Zeolites. A Multitechnique Investigation. J Phys Chem B. 2000;104:4064–73.10.1021/jp993893uSuche in Google Scholar

[100] Neylon MK, Marshall CL, Kropf AJ. in-situ EXAFS analysis of the temperature-programmed reduction of Cu-ZSM-5. J Am Chem Soc. 2002;124:5457–65.10.1021/ja0176696Suche in Google Scholar

[101] Sexton BA, Smith TD, Sanders JV. Characterization of copper-exchanged Na-A, X and Y zeolites with X-ray photoelectron spectroscopy and transmission electron microscopy. J Electron Spectrosc Relat Phenom. 1985;35:27–43.10.1016/0368-2048(85)80040-2Suche in Google Scholar

[102] Morales J, Espinos JP, Caballero A, Gonzalez-Elipe AR, Mejias JA. XPS study of interface and ligand effects in supported Cu2O and CuO nanometric particles. J Phys Chem B. 2005;109:7758–65.10.1021/jp0453055Suche in Google Scholar PubMed

[103] Deka U, Juhin A, Eilertsen EA, Emerich H, Green MA, Korhonen ST, et al. Confirmation of Isolated Cu2+ Ions in SSZ-13 Zeolite as Active Sites in NH3-Selective Catalytic Reduction. J Phys Chem C. 2012;116:4809–18.10.1021/jp212450dSuche in Google Scholar

[104] McEwen JS, Anggara T, Schneider WF, Kispersky VF, Miller JT, Delgass WN, et al. Integrated operando X-ray absorption and DFT characterization of Cu-SSZ-13 exchange sites during the selective catalytic reduction of NOx with NH3. Catal Today. 2012;184:129–44.10.1016/j.cattod.2011.11.037Suche in Google Scholar

[105] Kwak JH, Zhu H, Lee JH, Peden CHF, Szanyi J. Two different cationic positions in Cu-SSZ-13? Chem Comm. 2012;48:4758–60.10.1039/c2cc31184dSuche in Google Scholar

[106] Feng X, Hall WK. On the unusual stability of overexchanged Fe-ZSM-5. Catal Lett. 1996;41:45.10.1007/BF00811711Suche in Google Scholar

[107] Chen H-Y, Sachtler WM. Activity and durability of Fe/ZSM-5 catalysts for lean-burn NOx reduction in the presence of water vapor. Catal Today. 1998;42:73–83.10.1016/S0920-5861(98)00078-9Suche in Google Scholar

[108] Ma A-Z, Grünert W. Selective catalytic reduction of NO by ammonia over Fe-ZSM-5 catalysts. Chem Comm. 1999;35:71–2.10.1039/a807490iSuche in Google Scholar

[109] Long RQ, Yang RT. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. J Am Chem Soc. 1999;121:5595–6.10.1021/ja9842262Suche in Google Scholar

[110] Voskoboinikov TV, Chen H-Y, Sachtler WM. On the nature of active sites in Fe/ZSM-5 catalysts for NOx abatement. Appl Catal B. 1998;19:279–87.10.1016/S0926-3373(98)00082-4Suche in Google Scholar

[111] Battiston AA, Bitter JH, Koningsberger DC. XAFS characterization of the binuclear iron complex in overexchanged Fe-ZSM-5 - structure and reactivity. Catal Lett. 2000;66:75–9.10.1023/A:1019079002486Suche in Google Scholar

[112] Marturano P, Drozdova L, Pirngruber D, Kogelbauer A, Prins R. The mechanism of formation of the Fe species in Fe/ZSM-5 prepared by CVD. Phys Chem Chem Phys. 2001;3:5585–95.10.1039/b107266hSuche in Google Scholar

[113] Heinrich F, Schmidt C, Löffler E, Menzel M, Grünert W. Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with isobutane - the problem of the active sites. J Catal. 2002;212:157–72.10.1006/jcat.2002.3775Suche in Google Scholar

[114] Marturano P, Drozdova L, Kogelbauer A, Prins R. Fe/ZSM-5 prepared by sublimation of FeCl3: the structure of the fe species as determined by IR, 27Al-NMR and EXAFS spectroscopy. J Catal. 2000;192:236–47.10.1006/jcat.2000.2837Suche in Google Scholar

[115] Battiston AA, Bitter JH, de Groot FM, Overweg AR, Stephan O, van Bokhoven JA, et al. Evolution of Fe species during the synthesis of over-exchanged Fe/ZSM5 obtained by chemical vapor deposition of FeCl3. J Catal. 2003;213:251–71.10.1016/S0021-9517(02)00051-9Suche in Google Scholar

[116] Heijboer WM, Koningsberger DC, Weckhuysen BM, de Groot FM. New frontiers in X-ray spectroscopy in heterogeneous catalysis: using Fe/ZSM-5 as test-system. Catal Today. 2005;110:238–48.10.1016/j.cattod.2005.09.038Suche in Google Scholar

[117] Pirngruber GD, Roy PK, Prins R. On determining the nuclearity of iron sites in Fe-ZSM-5 - a critical evaluation. Phys Chem Chem Phys. 2006;8:3939–50.10.1039/B606205ASuche in Google Scholar

[118] Padmalekha KG, Huang H, Ellmers I, Velez RP, van Leusen J, Brückner A, et al. DeNO(x) active iron sites in iron loaded ZSM-5-a multitechnique analysis of a complex heterogeneous catalyst based on Mössbauer spectroscopy. Hyperfine Interact. 2017;238:Art. No. 8010.1007/s10751-017-1444-4Suche in Google Scholar

[119] Boubnov A, Carvalho HW, Doronkin DE, Gunter T, Gallo E, Atkins AJ, et al. Selective catalytic reduction of NO Over Fe-ZSM-5: mechanistic insights by operando HERFD-XANES and valence-to-core X-ray emission spectroscopy. J Am Chem Soc. 2014;136:13006–15.10.1021/ja5062505Suche in Google Scholar PubMed

[120] Stöhr J. NEXAFS spectroscopy. Berlin/ Heidelberg: Springer Nature, 1992.10.1007/978-3-662-02853-7Suche in Google Scholar

[121] Singh J, Lamberti C, van Bokhoven JA. Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem Soc Rev. 2010;39:4754–66.10.1039/c0cs00054jSuche in Google Scholar PubMed

[122] Hämäläinen K, Siddons DP, Hastings JB, Berman LE. Elimination of the inner-shell lifetime broadening in X-ray-absorption spectroscopy. Phys Rev Lett. 1991;67 Art. No. 2850.10.1103/PhysRevLett.67.2850Suche in Google Scholar PubMed

[123] Glatzel P, Bergmann U. High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes - electronic and structural information. Coord Chem Rev. 2005;249:65–95.10.1016/j.ccr.2004.04.011Suche in Google Scholar

[124] Carra P, Fabrizio M, Thole BT. High resolution X-ray resonant Raman scattering. Phys Rev Lett. 1995;74 Art. No. 3700.10.1103/PhysRevLett.74.3700Suche in Google Scholar PubMed

[125] Günter T, Carvalho HW, Doronkin DE, Sheppard T, Glatzel P, Atkins AJ, et al. Structural snapshots of the SCR reaction mechanism on Cu-SSZ-13. Chem Comm. 2015;51:9227–30.10.1039/C5CC01758KSuche in Google Scholar

[126] Bauer M. HERFD-XAS and valence-to-core-XES: new tools to push the limits in research with hard X-rays ? Phys Chem Chem Phys. 2014;16:13827–37.10.1039/C4CP00904ESuche in Google Scholar PubMed

[127] Szlachetko J, Nachtegaal M, Sá J, Dousse J-C, Hoszowska J, Kleymenov E, et al. High energy resolution off-resonant spectroscopy at sub-second time resolution: (Pt(acac)2) decomposition. Chem Comm. 2012;48:10898–900.10.1039/c2cc35086fSuche in Google Scholar PubMed

[128] Blachucki W, Hoszowska J, Dousse J-C, Kayser Y, Stachura R, Tyrala K, et al. High energy resolution off-resonant spectroscopy: a review. Spectrochim Acta B Atomic Spectrosc. 2017;136:23–33.10.1016/j.sab.2017.08.002Suche in Google Scholar

[129] Kavčič M, Žitnik M, Bučar K, Mihelič A, Marolt B, Szlachetko L, et al. Hard X-ray absorption spectroscopy for pulsed sources. Phys Rev B. 2013;87 Art. No. 075106.10.1103/PhysRevB.87.075106Suche in Google Scholar

[130] Błachucki W, Szlachetko J, Hoszowska J, Dousse J-C, Kayser Y, Nachtegaal M, et al. High energy resolution off-resonant spectroscopy for X-Ray absorption spectra free of self-absorption effects. Phys Rev Lett. 2014;112:Art. No. 173003.10.1103/PhysRevLett.112.173003Suche in Google Scholar PubMed

[131] Visser H, Anxolabéhère-Mallart E, Bergmann U, Glatzel P, Robblee JH, Cramer SP, et al. Mn K-Edge XANES and Kβ XES studies of two Mn-Oxo binuclear complexes: investigation of three different oxidation states relevant to the oxygen-evolving complex of photosystem II. J Am Chem Soc. 2001;123:7031–9.10.1021/ja004306hSuche in Google Scholar PubMed PubMed Central

[132] Heijboer WM, Glatzel P, Sawant KR, Lobo RF, Bergmann U, Barrea RA, et al. Kβ-Detected XANES of framework-substituted FeZSM-5 zeolites. J Phys Chem B. 2004;108:10002–11.10.1021/jp048368wSuche in Google Scholar

[133] Safonov VA, Vykhodtseva LN, Polukarov YM, Safonova OV, Smolentsev G, Sikora M, et al. Valence-to-core X-ray emission spectroscopy identification of carbide compounds in nanocrystalline Cr coatings deposited from Cr(III) electrolytes containing organic substances. J Phys Chem B. 2006;110:23192–6.10.1021/jp064569jSuche in Google Scholar PubMed

[134] Klementiev K, Preda I, Carlson S, Sigfridsson K, Norén K. High performance emission spectrometer at Balder/MAX IV beamline. J Phys Conf Ser. 2016;712:012018.10.1088/1742-6596/712/1/012018Suche in Google Scholar

[135] van Bokhoven JA, Lamberti C, editors. X-Ray absorption and X-Ray emission spectroscopy: theory and applications. Chichester (UK): John Wiley & Sons Ltd., 2016.10.1002/9781118844243Suche in Google Scholar

Published Online: 2020-03-05

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2017-0181/pdf?lang=de
Button zum nach oben scrollen