Home Synthesis and coordination chemistry of cyclic seleno- and telluroureas
Article
Licensed
Unlicensed Requires Authentication

Synthesis and coordination chemistry of cyclic seleno- and telluroureas

  • Jamie S. Ritch EMAIL logo
Published/Copyright: July 10, 2018
Become an author with De Gruyter Brill

Abstract

Chalcogenated derivatives of N-heterocyclic carbene ligands have received increasing attention due to their diverse chemical reactivity and potential applications in fields such as medicine and materials chemistry. This chapter summarizes the synthetic methods for the preparation of cyclic heavy chalcogenoureas featuring heterocyclic cores and explores their diverse coordination chemistry with p- and d-block metals.

Funding statement: Financial support from the Natural Sciences and Engineering Research Council (Canada) and the University of Winnipeg is gratefully acknowledged. Prof. Neil Burford is thanked for hosting JSR's sabbatical visit to the University of Victoria in summer 2017, during which a portion of this chapter was written.

Abbreviations

DBU

1,8-diazabicyclo[5.4.0]undec-7-ene

Mes

2,4,6-trimethylphenyl (mesityl)

Dipp*OMe

2,6-bis(diphenylmethyl)-4-methoxyphenyl

Dipp*

2,6-bis(diphenylmethyl)-4-methylphenyl

Dipp

2,6-diisopropylphenyl

DippOMe

2,6-diisopropyl-4-methoxyphenyl

Bn

benzyl

Bmise

bis(N-methylimidazole selone)methane

dba

dibenzylideneacetone

HCU

heavy chalcogenourea

MW

microwave

NHC

N-heterocyclic carbene

dmise

N,N′-dimethylimidazole selone

IPr

N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene

IMes

N,N′-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene

THF

tetrahydrofuran

OTf

trifluoromethanesulfonate (triflate)

References

[1] García-Rodríguez R, Hendricks MP, Cossairt BM, Liu H, Owen JS. Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem Mater. 2013;25:1233–49.10.1021/cm3035642Search in Google Scholar

[2] Campos MP, Hendricks MP, Beecher AN, Walravens W, Swain RA, Cleveland GT, et al. A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit. J Am Chem Soc. 2017;139:2296–305.10.1021/jacs.6b11021Search in Google Scholar PubMed

[3] Lippolis V. The relevant chemistry of imidazoline-2-selone donors with potential biological applications. In: Jain V.K., Priyadarsini K.I., editor(s). Organoselenium compounds in biology and medicine. London, UK: Royal Society of Chemistry, 2017:122–49.10.1039/9781788011907-00122Search in Google Scholar

[4] Stadelman BS, Brumaghim JL. Thione- and selone-containing compounds, their late first row transition metal coordination chemistry, and their biological potential. In: Bayse C.A., Brumaghim J.L., editor(s). Biochalcogen chemistry: The biological chemistry of sulfur, selenium, and tellurium. Washington, DC, USA: American Chemical Society, 2013:33–70.10.1021/bk-2013-1152.ch003Search in Google Scholar

[5] Hussain RA, Badshah A, Shah A. Synthesis and biological applications of selenoureas. Appl Organomet Chem. 2014;28:61–73.10.1002/aoc.3093Search in Google Scholar

[6] Roy G, Jayaram PN, Mugesh G. Inhibition of lactoperoxidase-catalyzed oxidation by imidazole-based thiones and selones: A mechanistic study. Chem – Asian J. 2013;8:1910–21.10.1002/asia.201300274Search in Google Scholar PubMed

[7] Kuhn N, Al-Sheikh A. 2, 3-dihydroimidazol-2-ylidenes and their main group element chemistry. Coord Chem Rev. 2005;249:829–57.10.1016/j.ccr.2004.10.003Search in Google Scholar

[8] Kirmse W. Carbene complexes of nonmetals. Eur J Org Chem. 2005;237–60.10.1002/ejoc.200400415Search in Google Scholar

[9] Benhamou L, Chardon E, Lavigne G, Bellemin-Laponnaz S, César V. Synthetic routes to N-heterocyclic carbene precursors. Chem Rev. 2011;111:2705–33.10.1021/cr100328eSearch in Google Scholar PubMed

[10] Arduengo AJ, Harlow RL, Kline M. A stable crystalline carbene. J Am Chem Soc. 1991;113:361–3.10.1021/ja00001a054Search in Google Scholar

[11] Kuhn N, Kratz T. Synthesis of imidazol-2-ylidenes by reduction of imidazole-2(3H)-thiones. Synthesis. 1993;561–2.10.1055/s-1993-25902Search in Google Scholar

[12] Kuhn N, Henkel G, Kratz T. Beiträge zur chemie des Imidazols, III. 2-telluroimidazoline — Stabile tellurocarbonyl-verbindungen. Chem Ber. 1993;126:2047–9.10.1002/cber.19931260914Search in Google Scholar

[13] Arduengo AJ, Davidson F, Dias HV, Goerlich JR, Khasnis D, Marshall WJ, et al. An air stable carbene and mixed carbene “dimers". J Am Chem Soc. 1997;119:12742–9.10.1021/ja973241oSearch in Google Scholar

[14] Kuhn N, Henkel G, Kratz T. 2-selenoimidazoline/2-selenoimidazolines. Z Für Naturforschung B. 1993;48:973–7.10.1515/znb-1993-0721Search in Google Scholar

[15] Schönberg A, Singer E, Stephan W. C=C-doppelbindungen mit extremer reaktivität, II. 1,3-diphenyl-2-imidazolidinselenon aus 1,1′,3,3′-tetraphenyl-Δ2,2′-biimidazolidin und selen. Chem Ber. 1983;116:2068–73.10.1002/cber.19831160604Search in Google Scholar

[16] Lappert MF, Martin TR, McLaughlin GM. Telluroureas and derived transition metal complexes: The crystal and molecular structure of [Cr(CO)5{TeCN(Et)CH2CH2NEt}]. J Chem Soc Chem Commun. 1980;635–7.10.1039/C39800000635Search in Google Scholar

[17] Ansell GB, Forkey DM, Moore DW. The molecular structure of 1,3-dimethyl-2(3H)-imidazolethione (C5H8N2S). J Chem Soc Chem Commun 1970 56b–7.10.1039/c2970000056bSearch in Google Scholar

[18] Thompson DP, Boudjouk P. A convenient synthesis of alkali metal selenides and diselenides in tetrahydrofuran and the reactivity differences exhibited by these salts toward organic bromides. Effect of ultrasound. J Org Chem. 1988;53:2109–12.10.1021/jo00244a051Search in Google Scholar

[19] Bigoli F, Pellinghelli MA, Deplano P, Devillanova FA, Lippolis V, Mercuri ML, et al. Reaction of imidazole-2-selone derivatives with diiodine: Synthesis, structural and spectroscopic characterization of the adduct 1,1ʹ-bis(3-methyl-4-imidazoline-2-selone)methane bis(diiodine) and of the first examples of I-Se-I hypervalent selenium compounds: 1,3-dimethyl-4-imidazolin-2-ylium diiodo selenanide and 1,2-bis(3-methyl-4-imidazolin-2-ylium diiodo selenanide)ethane bis(dichloromethane). Gazzetta Chim Ital. 1993;124:445–54.Search in Google Scholar

[20] Bhabak KP, Satheeshkumar K, Jayavelu S, Mugesh G. Inhibition of peroxynitrite- and peroxidase-mediated proteintyrosine nitration by imidazole-based thiourea and selenourea derivatives. Org Biomol Chem. 2011;9:7343–50.10.1039/c1ob05773aSearch in Google Scholar PubMed

[21] Aroz MT, Gimeno MC, Kulcsar M, Laguna A, Lippolis V. Group 11 complexes with imidazoline-2-thione or selone derivatives. Eur J Inorg Chem. 2011;2884–94.10.1002/ejic.201100124Search in Google Scholar

[22] Ghavale N, Manjare ST, Singh HB, Butcher RJ. Bis(chalcogenones) as pincer ligands: isolation and heck activity of the selone-ligated unsymmetrical C,C,Se–Pd pincer complex. Dalton Trans. 2015;44:11893–900.10.1039/C5DT01565KSearch in Google Scholar

[23] Zhou Y, Denk MK. Synthesis and reactivity of subvalent compounds. Part 13: Reaction of triethyl orthoformate with amines and selenium—A convenient one-step three-component synthesis for selenoureas. Tetrahedron Lett. 2003;44:1295–9.10.1016/S0040-4039(02)02818-6Search in Google Scholar

[24] Williams DJ, Fawcett-Brown MR, Raye RR, VanDerveer D, Pang YT, Jones RL, et al. Synthesis, characterization, and X-ray crystallographic structure of 1,3-dimethyl-2(3H)-imidazoleselone. Heteroat Chem. 1993;4:409–14.10.1002/hc.520040416Search in Google Scholar

[25] Banerjee M, Karri R, Rawat KS, Muthuvel K, Pathak B, Roy G. Chemical detoxification of organomercurials. Angew Chem Int Ed. 2015;54:9323–7.10.1002/anie.201504413Search in Google Scholar PubMed

[26] Roy G, Das D, Mugesh G. Bioinorganic chemistry aspects of the inhibition of thyroid hormone biosynthesis by anti-hyperthyroid drugs. Inorganica Chim Acta. 2007;360:303–16.10.1016/j.ica.2006.07.052Search in Google Scholar

[27] Bhabak KP, Mugesh G. Antithyroid drugs and their analogues protect against peroxynitrite-mediated protein tyrosine nitration—A mechanistic study. Chem – Eur J. 2010;16:1175–85.10.1002/chem.200902145Search in Google Scholar

[28] Arca M, Demartin F, Devillanova FA, Isaia F, Lelj F, Lippolis V, et al. An experimental and theoretical approach to the study of the properties of parabanic acid and related compounds: Synthesis and crystal structure of diethylimidazolidine-2-selone-4,5-dione. Can J Chem. 2000;78:1147–57.10.1139/v00-117Search in Google Scholar

[29] Klayman DL, Shine RJ. Synthesis of selenoureas and selenothiocarbamic esters from thioureas. J Org Chem. 1969;34:3549–51.10.1021/jo01263a070Search in Google Scholar

[30] Nakayama J, Kitahara T, Sugihara Y, Sakamoto A, Ishii A. Isolable, stable diselenocarboxylate and selenothiocarboxylate salts: Syntheses, structures, and reactivities of 2-(1,3-dimethylimidazolidinio)diselenocarboxylate and 2-(1,3-dimethylimidazolidinio)selenothiocarboxylate. J Am Chem Soc. 2000;122:9120–6.10.1021/ja001213rSearch in Google Scholar

[31] Segi M, Maeda H, Sakata K, Takashima M, Honda M, Watanabe T. Synthesis of selenohydantoins from isoselenocyanates and α-amino acids. Heterocycles. 2010;82:1709–17.10.3987/COM-10-S(E)116Search in Google Scholar

[32] Manjare ST, Sharma S, Singh HB, Butcher RJ. Facile synthesis of benzimidazolin-2-chalcogenones: Nature of the carbon–chalcogen bond. J Organomet Chem. 2012;717:61–74.10.1016/j.jorganchem.2012.07.025Search in Google Scholar

[33] Rong Y, Al-Harbi A, Kriegel B, Parkin G. Structural characterization of 2-imidazolones: Comparison with their heavier chalcogen counterparts. Inorg Chem. 2013;52:7172–82.10.1021/ic400788gSearch in Google Scholar PubMed

[34] Cordero B, Gómez V, Platero-Prats AE, Réves M, Echeverría J, Cremades E, et al. Covalent radii revisited. Dalton Trans. 2008;2832–8.10.1039/b801115jSearch in Google Scholar PubMed

[35] Aygun M, Çetinkaya E, Gök Y, Kendi E, Çetinkaya B. Synthesis and crystal structure of hexahydrobis[(1,3-p-dimethylaminobenzyl)-1,3-diazepine]-2-selenone, C23H32N4Se. Anal Sci. 2003;19:1093–4.10.2116/analsci.19.1093Search in Google Scholar PubMed

[36] Vummaleti SV, Nelson DJ, Poater A, Gómez-Suárez A, Cordes DB, Slawin AMZ, et al. What can NMR spectroscopy of selenoureas and phosphinidenes teach us about the π-accepting abilities of N-heterocyclic carbenes?. Chem Sci. 2015;6:1895–904.10.1039/C4SC03264KSearch in Google Scholar

[37] Liske A, Verlinden K, Buhl H, Schaper K, Ganter C. Determining the π-acceptor properties of N-heterocyclic carbenes by measuring the 77Se NMR chemical shifts of their selenium adducts. Organometallics. 2013;32:5269–72.10.1021/om400858ySearch in Google Scholar

[38] Verlinden K, Buhl H, Frank W, Ganter C. Determining the ligand properties of N-heterocyclic carbenes from 77Se NMR parameters. Eur J Inorg Chem. 2015;2416–25.10.1002/ejic.201500174Search in Google Scholar

[39] Back O, Henry-Ellinger M, Martin CD, Martin D, Bertrand G. 31P NMR chemical shifts of carbene–phosphinidene adducts as an indicator of the π-accepting properties of carbenes. Angew Chem Int Ed. 2016;52:2939–43.10.1002/anie.201209109Search in Google Scholar PubMed

[40] Arca M, Aroz T, Concepción Gimeno M, Kulcsar M, Laguna A, Lasanta T, et al. Homopolynuclear TlI and heteropolynuclear AuI–TlI complexes with organodiselone ligands: Activation of luminescence by intermetallic interactions. Eur J Inorg Chem. 2011;2288–97.10.1002/ejic.201100004Search in Google Scholar

[41] Manjare ST, Yadav S, Singh HB, Butcher RJ. Redox reaction between main-group elements (Te, Sn, Bi) and N-heterocyclic-carbene-derived selenium halides: A facile method for the preparation of monomeric halides. Eur J Inorg Chem. 2013;5344–57.10.1002/ejic.201300850Search in Google Scholar

[42] Srinivas K, Suresh P, Babu CN, Sathyanarayana A, Prabusankar G. Heavier chalcogenone complexes of bismuth(III)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. RSC Adv. 2015;5:15579–90.10.1039/C4RA17144FSearch in Google Scholar

[43] Burford N, Phillips AD, Spinney HA, Robertson KN, Cameron TS, McDonald R. Chalcogeno-urea ligands on a phosphadiazonium Lewis acceptor: A new synthetic approach to Ch−P bonds (Ch = O, S, Se). Inorg Chem. 2003;42:4949–54.10.1021/ic034182kSearch in Google Scholar

[44] Williams DJ, White KM, VanDerveer D, Wilkinson AP. Dichlorobis[1,3-dimethyl-2(3H)-imidazoleselone]zinc(II): A potential zinc selenide synthon. Inorg Chem Commun. 2002;5:124–6.10.1016/S1387-7003(01)00360-4Search in Google Scholar

[45] Yadav S, Singh HB, Butcher RJ. Synthesis and reactivity of selones and dihaloselones: Complexation of selones with d8- and d10-metal ions. Eur J Inorg Chem. 2017;2968–79.10.1002/ejic.201700218Search in Google Scholar

[46] Babu CN, Srinivas K, Prabusankar G. Facile access to zinc and cadmium selones: Highly active catalysts for barbier reactions in aqueous media. Dalton Trans. 2016;45:6456–65.10.1039/C5DT04871KSearch in Google Scholar

[47] Williams DJ, McKinney BJ, Baker B, Gwaltney KP, VanDerveer D. The preparation, characterization and X-ray structural analysis of tetrakis[1,3-dimethyl-2(3H)-imidazoleselone]cadmium(II) hexafluorophosphate. J Chem Crystallogr. 2007;37:691–4.10.1007/s10870-007-9233-6Search in Google Scholar

[48] Choi J, Park SY, Yang HY, Kim HJ, Ihm K, Nam JH, et al. Submicro-polymer particles bearing imidazoline-2-selenone: Dual mode adsorbents with color-sensing for halogens and mercury ions. Polym Chem. 2011;2:2512–7.10.1039/c1py00260kSearch in Google Scholar

[49] Srinivas K, Babu CN, Prabusankar G. Linear Cu(I) chalcogenones: synthesis and application in borylation of unsymmetrical alkynes. Dalton Trans. 2015;44:15636–44.10.1039/C5DT02320CSearch in Google Scholar

[50] Parvin N, Pal S, Khan S, Das S, Pati SK, Roesky HW. Unique approach to copper(I) silylene chalcogenone complexes. Inorg Chem. 2017;56:1706–12.10.1021/acs.inorgchem.6b02833Search in Google Scholar PubMed

[51] Kimani MM, Bayse CA, Brumaghim JL. Synthesis, characterization, and DFT studies of thione and selone Cu(I) complexes with variable coordination geometries. Dalton Trans. 2011;40:3711–23.10.1039/c1dt10104hSearch in Google Scholar PubMed

[52] Kimani MM, Wang HC, Brumaghim JL. Investigating the copper coordination, electrochemistry, and Cu(II) reduction kinetics of biologically relevant selone and thione compounds. Dalton Trans. 2012;41:5248–59.10.1039/c2dt11731bSearch in Google Scholar PubMed

[53] Kimani MM, Brumaghim JL, VanDerveer D. Probing the antioxidant action of selenium and sulfur using Cu(I)-chalcogenone tris(pyrazolyl)methane and -borate complexes. Inorg Chem. 2010;49:9200–11.10.1021/ic100668bSearch in Google Scholar PubMed

[54] Blake AJ, Lippolis V, Pivetta T, Verani G. (1,3-Dimethyl­imidazolidine-2-selone-κSe)bis­(1,10-phenanthroline-κ2N,N′)copper(II) bis­(perchlorate) and bis­(2,2′-bipyridyl-κ2N,N′)(imidazolidine-2-thione-κS)copper(II) bis­(perchlorate). Acta Crystallogr C. 2007;63:m364–7.10.1107/S0108270107026753Search in Google Scholar PubMed

[55] Kimani MM, Watts D, Graham LA, Rabinovich D, Yap GP, Brumaghim JL. Dinuclear copper(I) complexes with N-heterocyclic thione and selone ligands: synthesis, characterization, and electrochemical studies. Dalton Trans. 2015;44:16313–24.10.1039/C5DT02232KSearch in Google Scholar

[56] Nelson DJ, Nahra F, Patrick SR, Cordes DB, Slawin AM, Nolan SP. Exploring the coordination of cyclic selenoureas to gold(I). Organometallics. 2014;33:3640–5.10.1021/om500610wSearch in Google Scholar

[57] Perras JH, Mezibroski SM, Wiebe MA, Ritch JS. Diverse silver(I) coordination chemistry with cyclic selenourea ligands. Dalton Trans. 2018;47:1471–8.10.1039/C7DT04243DSearch in Google Scholar

[58] Nahra F, Patrick SR, Bello D, Brill M, Obled A, Cordes DB, et al. Hydrofluorination of alkynes catalysed by gold bifluorides. ChemCatChem. 2015;7:240–4.10.1002/cctc.201402891Search in Google Scholar PubMed PubMed Central

[59] Zhang H-N, Jia W-G, Xu Q-T, Ji C-C. Synthesis, characterization and catalytic activity of gold complexes with pyridine-based selone ligands. Inorg Chim Acta. 2016;450:315–20.10.1016/j.ica.2016.06.023Search in Google Scholar

[60] Jia W-G, Huang Y-B, Lin Y-J, Wang G-L, Jin G-X. Nickel complexes and cobalt coordination polymers with organochalcogen (S, Se) ligands bearing an N-methylimidazole moiety: Syntheses, structures, and properties. Eur J Inorg Chem. 2008;4063–73.10.1002/ejic.200800559Search in Google Scholar

[61] Blake AJ, Casabò J, Devillanova FA, Esriche L, Garau A, Isaia F, et al. Mixed aza–thia crowns containing the 1,10-phenanthroline sub-unit. Substitution reactions in [NiL(MeCN)][BF4]2 {L = 2,5,8-trithia[9](2,9)-1,10-phenanthrolinophane}. J Chem Soc Dalton Trans. 1999;1085–92.10.1039/a808062cSearch in Google Scholar

[62] Wang C, Tong Y, Huang Y, Zhang H, Yang Y. Selone behavior towards palladium(II) extraction with hydrophobic ionic liquids and mechanism studies. RSC Adv. 2015;5:63087–94.10.1039/C5RA06334ESearch in Google Scholar

[63] Rani V, Singh HB, Butcher RJ. Bis(selone) complexes of palladium(II), platinum(II), and gold(III): Synthesis and structural studies. Eur J Inorg Chem. 2017;3720–8.10.1002/ejic.201700377Search in Google Scholar

[64] Williams DJ, Jones TA, Rice ED, Davis KJ, Ritchie JA, Pennington WT, et al. Dichlorobis[1,3-dimethylimidazole-2(3H)selone-Se]cobalt(II). Acta Crystallogr C. 1997;53:837–8.10.1107/S0108270196013947Search in Google Scholar

[65] Jia W-G, Huang Y-B, Lin Y-J, Jin G-X. Syntheses and structures of half-sandwich iridium(III) and rhodium(III) complexes with organochalcogen (S, Se) ligands bearing N-methylimidazole and their use as catalysts for norbornene polymerization. Dalton Trans. 2008;5612–20.10.1039/b801862fSearch in Google Scholar PubMed

[66] Sharma AK, Joshi H, Bhaskar R, Singh AK. Complexes of (η5-Cp*)Ir(III) with 1-benzyl-3-phenylthio/selenomethyl-1,3-dihydrobenzoimidazole-2-thione/selenone: Catalyst for oxidation and 1,2-substituted benzimidazole synthesis. Dalton Trans. 2017;46:2228–37.10.1039/C6DT04271FSearch in Google Scholar PubMed

[67] Stadelman BS, Kimani MM, Bayse CA, McMillen CD, Brumaghim JL. Synthesis, characterization, DFT calculations, and electrochemical comparison of novel iron(II) complexes with thione and selone ligands. Dalton Trans. 2016;45:4697–711.10.1039/C5DT03384ESearch in Google Scholar

[68] Sharma AK, Joshi H, Sharma KN, Gupta PL, Singh AK. 2-Propanol vs glycerol as hydrogen source in catalytic activation of transfer hydrogenation with (η6-benzene)ruthenium(II) complexes of unsymmetrical bidentate chalcogen ligands. Organometallics. 2014;33:3629–39.10.1021/om500579rSearch in Google Scholar

[69] Choi B, Paley DW, Siegrist T, Steigerwald ML, Roy X. Ligand control of manganese telluride molecular cluster core nuclearity. Inorg Chem. 2015;54:8348–55.10.1021/acs.inorgchem.5b01020Search in Google Scholar PubMed

[70] Engl PS, Santiago CB, Gordon CP, Liao W-C, Fedorov A, Copéret C, et al. Exploiting and understanding the selectivity of Ru-N-heterocyclic carbene metathesis catalysts for the ethenolysis of cyclic olefins to α,ω-dienes. J Am Chem Soc. 2017;139:13117–25.10.1021/jacs.7b06947Search in Google Scholar PubMed

[71] Wonner P, Vogel L, Düser M, Gomes L, Kniep F, Mallick B, et al. Carbon–halogen bond activation by selenium-based chalcogen bonding. Angew Chem Int Ed. 2017;56:12009–12.10.1002/anie.201704816Search in Google Scholar PubMed PubMed Central

[72] Rodríguez H, Gurau G, Holbrey JD, Rogers RD. Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones: direct evidence for ionic liquids as proto-carbenes. Chem Commun. 2011;47:3222–4.10.1039/c0cc05223jSearch in Google Scholar PubMed

[73] Kuhn N, Fawzi R, Kratz T, Steimann M, Henkel G. Heterocyclen Als liganden Xxii. 2-chalkogenoimidazoline Als liganden in pentacarbonylmetall-komplexen. Phosphorus Sulfur Silicon Relat Elem. 1996;108:107–19.10.1080/10426509608029645Search in Google Scholar

[74] Liu L, Zhu D, Cao LL, Stephan DW. N-heterocyclic carbene stabilized parent sulfenyl, selenenyl, and tellurenyl cations (XH+, X = S, Se, Te). Dalton Trans. 2017;46:3095–9.10.1039/C7DT00186JSearch in Google Scholar

Published Online: 2018-07-10

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2017-0128/html?lang=en
Scroll to top button