Abstract
Metal chalcogenides are technologically important materials. Physical, chemical, electrical and mechanical properties of these materials can be fine-tuned by manipulating their shape, size and composition. Although several methods are employed for their synthesis, single-source molecular precursor route has emerged as a versatile strategy for their synthesis and in controlling shape, size and composition of the material under moderate conditions. This chapter gives a brief coverage on the design and development of single-source molecular precursors which have been employed for the preparation of metal selenide/telluride nanocrystals and for deposition of thin films. The discussion includes synthesis of transition-, main group and f-block metal chalcogenolate and/or chalcogenide clusters as precursors and their conversion into metal chalcogenides in the form of thin films and nanostructures. Precursors for ternary metal chalcogenides are also included.
Abbreviations
- CVD
Chemical vapour deposition
- LPCVD
Low-pressure chemical vapour deposition
- AACVD
Aerosol assisted chemical vapour deposition
- HDA
Hexadecyl amine
- TOPO
n-Trioctylphoshine oxide
- OA
Oleylamine
- dppm
bis(diphenylphosphino)methane
- dppe
1,2-bis(diphenylphosphino)ethane
- dppp
1,3-bis(diphenylphosphino)propane
- dppn
1,2-bis(diphenylphosphino)naphthalene
- Th
2-thienyl
References
[1] Fritzmann E. Über komplexverbindungen des platins mit organischen seleniden I. Z Anorg Allg Chem. 1912;73:239–55.10.1002/zaac.19110730111Search in Google Scholar
[2] Fritzmann E. Complex compounds of platinum with tellurium ethers. J Russ Phys Chem Soc. 1915;47:588–90.Search in Google Scholar
[3] Arnold J. The chemistry of metal complexes with selenolate and tellurolate ligands. Prog Inorg Chem. 1995;43:353–417.10.1002/9780470166444.ch4Search in Google Scholar
[4] Rao GK, Kumar A, Singh MP, Singh AK. Palladium(II) complex of an organotellurium ligand as a catalyst for Suzuki Miyaura coupling: generation and role of nano-sized Pd3Te2. J Organomet Chem. 2014;749:1–6.10.1016/j.jorganchem.2013.08.042Search in Google Scholar
[5] Vivekanada KV, Dey S, Wadawale A, Bhuvanesh N, Jain VK. Syntheses of Pd(II)/Pt(II) complexes with non-chelating 4-pyridylselenolate ligand ranging from mononuclear to macrocyclic structures and their utility as catalysts in Suzuki C–C coupling reaction. Dalton Trans. 2013;42:14158–67.10.1039/c3dt51510aSearch in Google Scholar PubMed
[6] Paluru DK, Dey S, Wadawale A, Maity DK, Bhuvanesh N, Jain VK. Structural variation in [PdX2{RE(CH2)nNMe2}] (E = Se, Te; X = Cl, OAc) complexes: experimental results, computational analysis, and catalytic activity in suzuki coupling reactions. Eur J Inorg Chem. 2015;2015:397–407.10.1002/ejic.201402943Search in Google Scholar
[7] Jain VK, Priyadarsini KI, editors. Organoselenium compounds in biology and medicine. UK: RSC; 2018.10.1039/9781788011907Search in Google Scholar
[8] Jain VK. Synthesis and characterization of single source molecular precursors for the preparation of metal chalcogenides. J Chem Sci. 2006;118:547–52.10.1007/BF02703952Search in Google Scholar
[9] Kedarnath G, Jain VK. Pyridyl and pyrimidyl chalcogen (Se and Te) compounds: a family of multi utility molecules. Coord Chem Rev. 2013;257:1409–35.10.1016/j.ccr.2013.01.003Search in Google Scholar
[10] Vittal JJ, Ng MT. Chemistry of metal thio- and selno-carboxylates: precursors for metal sulfides/selenides materials, thin films and nanocrystals. Acc Chem Res. 2006;39:869–77.10.1021/ar050224sSearch in Google Scholar PubMed
[11] Malik MA, O’Brien P, Otway DJ. Novel approaches to the deposition of selenium containing materials. Phosphorus Sulfur Silicon. 1998;136-138:431–46.10.1080/10426509808545971Search in Google Scholar
[12] Lobana TS, Wang JC, Liu CW. Recent advances in the coordination chemistry of diselenophosphates and allied ligands. Coord Chem Rev. 2007;251:91–110.10.1016/j.ccr.2006.05.010Search in Google Scholar
[13] Song X, Bochmann M. Synthesis of phosphinochalcogenoic amidato complexes of divalent transition metals and their thermolysis to metal selenide and telluride phases. J Chem Soc Dalton Trans. 1997;2689–92.10.1039/a702460fSearch in Google Scholar
[14] Woollins JD. P-N-S/Se- containing metallacycles. J Chem Soc Dalton Trans. 1996;2893–901.10.1039/DT9960002893Search in Google Scholar
[15] Ritch JS, Chivers T, Afzaal M, O’Brien P. The single molecular precursor approach to metal telluride thin films: imino-bis(diisopropylphosphine tellurides) as examples. Chem Soc Rev. 2007;36:1622–31.10.1039/b605535bSearch in Google Scholar PubMed
[16] Iwaoka M. Organoselenium chemistry: synthesis and reactions. Wirth T, editor. GmbH & Co. KGoA: Wiley-VCH Verlag; 2012.Search in Google Scholar
[17] Chauhan RS, Kedarnath G, Wadawale A, Maity DK, Golen JA, Rheingold AL, et al. Cis configured bis phosphine platinum(II) chalcogenolate complexes: structures, NMR and computational studies. J Organomet Chem. 2013;737:40–6.10.1016/j.jorganchem.2013.03.030Search in Google Scholar
[18] Dey S, Jain VK, Varghese B. Synthesis and characterization of benzylselenolate complexes of palladium(II) and platinum(II). J Organomet Chem. 2001;623:48–55.10.1016/S0022-328X(00)00525-8Search in Google Scholar
[19] Hannu-Kuure MS, Komulainen J, Oilunkaniemi R, Laitinen RS, Suontamo R, Ahlgrén M. An experimental and theoretical study of the isomerization of mononuclear bis(arylselenolato)bis(triphenylphosphine)platinum complexes [Pt(SeR)2(PPh3)2]. J Organomet Chem. 2003;666:111–20.10.1016/S0022-328X(02)02108-3Search in Google Scholar
[20] Kumbhare LB, Jain VK, Phadnis PP, Nethaji M. Palladium(II) and platinum(II) 2-(methoxycarbonyl)ethylselenolates: synthesis, spectroscopy, structures and their conversion into metal selenide. J Organomet Chem. 2007;692:1546–56.10.1016/j.jorganchem.2006.12.003Search in Google Scholar
[21] Kumbhare LB, Wadawale AP, Jain VK, Kolay S, Nethaji M. Palladium(II) and platinum(II) complexes of β-functionalized ethyl selenolates: effect of substitution on synthesis, reactivity, spectroscopy, structures and thermal behaviour. J Organomet Chem. 2009;694:3892–901.10.1016/j.jorganchem.2009.08.005Search in Google Scholar
[22] Dey S, Jain VK, Chaudhury S, Knoedler A, Lissner F, Kaim W. 2-(Dimethylamino)ethaneselenolates of palladium(II): synthesis, structure, spectroscopy and transformation into palladium selenide. J Chem Soc Dalton Trans. 2001;723–8.10.1039/b008310kSearch in Google Scholar
[23] Dey S, Jain VK, Knoedler A, Kaim W, Zalis S. Platinum(II) complexes of 2-(Dimethylamino)ethylselenolate − donor−acceptor inter-ligand interactions as evident from experimental and TD-DFT computational analysis. Eur J Inorg Chem. 2001;2001:2965–73.10.1002/1099-0682(200111)2001:11<2965::AID-EJIC2965>3.0.CO;2-7Search in Google Scholar
[24] Dey S, Jain VK, Knödler A, Klein A, Kaim W, Záliš S. Structural basis for unusually long wavelength charge transfer transitions in complexes [MCl(ECH2CH2NMe2)(PR3)] (E = Te, Se; M = Pt, Pd): experimental results and TD-DFT calculations. Inorg Chem. 2002;41:2864–70.10.1021/ic011210vSearch in Google Scholar
[25] Dey S, Jain VK, Varghese B, Schurr T, Niemeyer M, Kaim W, et al. 3-Dimethylaminopropyl chalcogenolate complexes of palladium(II): syntheses and characterization, including the crystal structures of [Pd(OAc)(ECH2CH2CH2NMe2)]2·H2O (E=S, Se) and [PdCl(TeCH2CH2CH2NMe2)]2. Inorg Chim Acta. 2006;359:1449–57.10.1016/j.ica.2005.09.019Search in Google Scholar
[26] Narayan S, Jain VK, Varghese B. Pyridine-2-selenolate complexes of palladium(II) and platinum(II): crystal structure of [(Prn3P)Cl2Pd(NC5H4Se)PdCl(PPrn3)]. J Chem Soc Dalton Trans. 1998;2359–66.10.1039/a800758fSearch in Google Scholar
[27] Dey S, Jain VK, Singh J, Trehan V, Bhasin KK, Varghese B. Pyridine- and 3-/6-Methylpyridine-2-tellurolate complexes of Palladium(II) and Platinum(II). Eur J Inorg Chem. 2003;2003:744–50.10.1002/ejic.200390103Search in Google Scholar
[28] Jain VK, Chauhan RS. New vistas in the chemistry of platinum group metals with tellurium ligands. Coord Chem Rev. 2016;306:270–301.10.1016/j.ccr.2015.07.009Search in Google Scholar
[29] Bochmann M, Webb KJ. Sterically hindered thiolato, selenolato and tellurolato complexes of mercury(II). J Chem Soc Dalton Trans. 1991;2325–9.10.1039/dt9910002325Search in Google Scholar
[30] Cheng Y, Emge TJ, Brennan JG. Pyridineselenolate complexes of copper and indium: precursors to CuSex and In2Se3. Inorg Chem. 1996;35:7339–44.10.1021/ic9603969Search in Google Scholar PubMed
[31] Romero J, Durán ML, Vázquez JAG, Castiñeiras A, Sousa A, Christiaens L, et al. Direct electrochemical synthesis and crystal structure of tris(pyridine-2-selenolato)indium(III). Inorg Chim Acta. 1997;255:307–11.10.1016/S0020-1693(96)05378-9Search in Google Scholar
[32] Rodriguez A, Romero J, Vázquez JA, Durán ML, Pedrares AS, Sousa A, et al. Electrochemical synthesis of copper and silver pyridine-2-selenolato complexes: crystal structure of (6-trimethylsilylpyridine-2-selenolato)silver(I), [Ag6(6-Me3SipySe)6]. Inorg Chim Acta. 1999;284:133–8.10.1016/S0020-1693(98)00280-1Search in Google Scholar
[33] Pedrares AS, Durán-Carril ML, Romero J, Vázquez JA, Sousa A. Synthesis and characterization of copper(I) and silver(I) complexes with heterocyclic bidentate ligands (N, X), X=S, Se. Inorg Chim Acta. 2010;363:1212–21.10.1016/j.ica.2009.08.012Search in Google Scholar
[34] Li HX, Zhu YJ, Cheng ML, Ren ZG, Lang JP, Shen Q. Lanthanide chalcogenolate complexes: syntheses, structures and applications in organic chemistry. Coord Chem Rev. 2006;250:2059–92.10.1016/j.ccr.2006.02.005Search in Google Scholar
[35] Ghavale N, Wadawale A, Dey S, Jain VK. Palladium assisted formation of arylselenoacetone from diaryldiselenides in methanol-acetone. Indian J Chem A. 2009;48:1510–4.Search in Google Scholar
[36] Chakraborty T, Srivastava K, Singh HB, Butcher RJ. Palladium selenolates via oxidative addition of organylselenenyl halides to palladium(0) precursor and via cleavage reaction of diselenides: synthesis, structure and spectroscopic investigation. J Organomet Chem. 2011;696:2782–8.10.1016/j.jorganchem.2011.04.018Search in Google Scholar
[37] Oilunkaniemi R, Laitinen RS, Ahlgrén M. The NMR spectroscopic and X-ray crystallographic study of the oxidative addition of bis(2-thienyl) diselenide to zerovalent palladium and platinum centers. J Organomet Chem. 1999;587:200–6.10.1016/S0022-328X(99)00319-8Search in Google Scholar
[38] Ananikov VP, Beletskaya IP, Aleksandrov GG, Eremenko IL. Mechanistic investigation and new catalyst design in palladium- and platinum-catalyzed Se−Se bond addition to alkynes. Organometallics. 2003;22:1414–21.10.1021/om0205391Search in Google Scholar
[39] Ananikov VP, Kabeshov MA, Beletskaya IP, Aleksandrov GG, Eremenko IL. Mechanistic study of palladium catalyzed S–S and Se–Se bonds addition to alkynes. J Organomet Chem. 2003;687:451–61.10.1016/S0022-328X(03)00795-2Search in Google Scholar
[40] Oilunkaniemi R, Laitinen RS, Ahlgrén M. The X-ray crystallographic study of the reaction of bis(2-thienyl)ditelluride with tetrakis(triphenylphosphine)platinum or –palladium. J Organomet Chem. 2000;595:232–40.10.1016/S0022-328X(99)00630-0Search in Google Scholar
[41] Oilunkaniemi R, Laitinen RS, Ahlgrén M. The oxidative addition of diphenyl diselenide and ditelluride to tetrakis(triphenylphosphine)palladium. J Organomet Chem. 2001;623:168–75.10.1016/S0022-328X(00)00829-9Search in Google Scholar
[42] Chauhan RS, Kedarnath G, Wadawale A, Castro AM, Perez RA, Jain VK, et al. Tellurium(0) as a ligand: synthesis and characterization of 2-pyridyltellurolates of platinum(ii) and structures of [Pt{2-Te-3-(R)C5H3N}2Te(PR′3)] (R = H or Me). Inorg Chem. 2010;49:4179–85.10.1021/ic902347sSearch in Google Scholar PubMed
[43] Chauhan RS, Kedarnath G, Wadawale A, Rheingold AL, Castro AM, Perez RA, et al. Reactivity of dipyridyl ditellurides with (Diphosphine)Pt0 and 2-pyridyltellurolates with (Diphosphine)PtCl2 and isolation of different structural motifs of platinum(II) complexes. Organometallics. 2012;31:1743–50.10.1021/om2010589Search in Google Scholar
[44] Chauhan RS, Kedarnath G, Wadawale A, Slawin AM, Jain VK. Reactivity of 2-chalcogenopyridines with palladium–phosphine complexes: isolation of different complexes depending on the nature of chalcogen atom and phosphine ligand. Dalton Trans. 2013;42:259–69.10.1039/C2DT30535FSearch in Google Scholar PubMed
[45] Dey S, Vivekananda KV, Wadawale AP, Jain VK, Bhuvanesh N. Reactivity of 4-pyridyltellurolate with Pd(II)/Pt(II) complexes. Chem Select. 2017;2:5073–9.10.1002/slct.201700817Search in Google Scholar
[46] Beletskaya IP, Ananikov VP. Addition reactions of E-E and E-H bonds to triple bond of alkynes catalyzed by Pd, Pt, and Ni complexes (E=S, Se). Pure Appl Chem. 2007;79:1041–56.10.1351/pac200779061041Search in Google Scholar
[47] Chauhan RS, Sharma RK, Kedarnath G, Cordes DB, Slawin AM, Jain VK. Reactivity of dipyrimidyldiselenides with [M(PPh3)4] and 2-pyrimidylchalcogenolates with [MCl2(diphosphine)] (M = Pd or Pt). J Organomet Chem. 2012;717:180–6.10.1016/j.jorganchem.2012.06.036Search in Google Scholar
[48] Jain VK, Kannan S, Tiekink ER. J Chem Res (M). 1994;501-32.Search in Google Scholar
[49] Morley CP, Webster CA, Di Vaira M. Oxidative addition of (PhSe)2 and (FcSe)2 to zerovalent palladium and platinum trialkylphosphine complexes (Fc = ferrocenyl, [Fe(η5-C5H5)(η5-C5H4)]). J Organomet Chem. 2006;691:4244–9.10.1016/j.jorganchem.2006.06.035Search in Google Scholar
[50] Karjalainen MM, Wiegand T, Rautiainen JM, Wagner A, Görls H, Weigand W, et al. Competitive Te-Te and C-Te bond cleavage in the oxidative addition of diaryl and dialkyl ditellurides to Pt(0) centers. J Organomet Chem. 2017;836-837:17–25.10.1016/j.jorganchem.2017.03.004Search in Google Scholar
[51] Albano VG, Monari M, Orabona I, Panunzi A, Ruffo F. Oxidative additions of E−E bonds (E = Chalcogen) to group 10 metals: “Tunable” cleavage of Se−Se bonds by Pt(0) complexes. J Am Chem Soc. 2001;123:4352–3.10.1021/ja005870vSearch in Google Scholar PubMed
[52] Albano VG, Monari M, Orabona I, Panunzi A, Roviello G, Ruffo F. Synthesis and characterization of trigonal-bipyramidal platinum(II) olefin complexes with chalcogenide ligands in axial positions. X-ray molecular structures of [Pt(SMe)2(dmphen)(diphenyl fumarate)], its cationic dipositive derivative [Pt(SMe2)2(dmphen)(diphenyl fumarate)][BF4]2, and free diphenyl fumarate. Organometallics. 2003;22:1223–30.10.1021/om020807vSearch in Google Scholar
[53] Albano VG, De Felice V, Monari M, Roviello G, Ruffo F. Oxidative addition of phenylselenyl halides to platinum(0) complexes: characterisation and reactivity of the products [PtX(SePh) (N,N-chelate)(olefin)] (X = Cl, Br, I). Eur J Inorg Chem. 2005;2005:416–22.10.1002/ejic.200400536Search in Google Scholar
[54] Singhal A, Jain VK, Mishra R, Varghese B. Organochalcogenido-bridged dimeric 2-methylallylpalladium complexes: synthesis, structure and their transformation into palladium chalcogenides. J Mater Chem. 2000;10:1121–4.10.1039/a908133jSearch in Google Scholar
[55] Ghavale N, Dey S, Wadawale A, Jain VK. Synthesis and characterization of chalcogenolato-bridged allyl palladium complexes: versatile precursors for palladium chalcogenides. Organometallics. 2008;27:3297–302.10.1021/om8000795Search in Google Scholar
[56] Nayek HP, Niedermeyer H, Dehnen S. Synthesis and properties of the tetranuclear palladium chalcogenolato-acetato complex [Pd(SePh)(OOCCH3)]4 with Pd–Pd bonding: an experimental and theoretical study. Dalton Trans. 2009;4208–12.10.1039/b901126aSearch in Google Scholar PubMed
[57] Tyagi A, Kedarnath G, Wadawale A, Shah AY, Jain VK, Vishwanadh B. Diorganotin(IV) 4,6-dimethyl-2-pyrimidyl selenolates: synthesis, structures and their utility as molecular precursors for the preparation of SnSe2 nano-sheets and thin films. RSC Adv. 2016;6:8367–76.10.1039/C5RA20578FSearch in Google Scholar
[58] Ananikov VP, Orlov NV, Beletskaya IP. Highly efficient nickel-based heterogeneous catalytic system with nanosized structural organization for selective Se−H bond addition to terminal and internal alkynes. Organometallics. 2007;26:740–50.10.1021/om061033bSearch in Google Scholar
[59] Seligson AL, Arnold J. Synthesis, structure, and reactivity of homoleptic tin(II) and lead(II) chalcogenolates and conversion to metal chalcogenides. X-ray crystal structures of {Sn[TeSi(SiMe3)3]2}2 and (PMe3)Sn[TeSi(SiMe3)3]2. J Am Chem Soc. 1993;115:8214–20.10.1021/ja00071a034Search in Google Scholar
[60] Bochmann M, Coleman AP, Webb KJ, Hursthouse MB, Mazid M. Synthesis of sterically hindered tellurophenols and the structure of [Cd(μ-TeC6H2M3)2]∞. Angew Chem Int Ed Engl. 1991;30:973–5.10.1002/anie.199109731Search in Google Scholar
[61] Bochmann M, Webb K, Harman M, Hursthouse MB. Synthesis, structure, and gas-phase decomposition of [Cd(EC6H2tBu3)2]2: first examples of low-coordinate volatile cadmium chalcogenolato complexes. Angew Chem Int Ed Engl. 1990;29:638–9.10.1002/anie.199006381Search in Google Scholar
[62] Bonasia PJ, Christou V, Arnold J. Alkyl-, silyl-, and germyl-substituted thiolate, selenolate, and tellurolate derivatives and interconversion of silyl species by chalcogen metathesis. J Am Chem Soc. 1993;115:6777–81.10.1021/ja00068a039Search in Google Scholar
[63] Bonasia PJ, Gindelberger DE, Dabbousi BO, Arnold J. New reagents for the synthesis of compounds containing metal-tellurium bonds: sterically hindered silyltellurolate derivatives and the x-ray crystal structures of [(THF)2LiTeSi(SiMe3)3]2 and [(12-crown-4)2Li][TeSi(SiMe3)3]. J Am Chem Soc. 1992;114:5209–14.10.1021/ja00039a036Search in Google Scholar
[64] Mugesh G, Singh HB. Heteroatom-directed aromatic lithiation: a versatile route to the synthesis of organochalcogen (Se, Te) compounds. Acc Chem Res. 2002;35:226–36.10.1021/ar010091kSearch in Google Scholar PubMed
[65] Englich U, Ruhlandt-Senge K. Thiolates, selenolates, and tellurolates of the s-block elements. Coord Chem Rev. 2000;210:135–79.10.1016/S0010-8545(00)00319-2Search in Google Scholar
[66] Cowley AH, Jones RA, Harris PR, Atwood DA, Contreras L, Burek CJ. Tetrameric gallium and aluminum chalcogenides, [tBuME]4 (M = Al, Ga; E = S, Se, Te): a new class of heterocubanes. Angew Chem Int Ed Engl. 1991;30:1143–5.10.1002/anie.199111431Search in Google Scholar
[67] Coleman AP, Dickson RS, Deacon GB, Fallon GD, Ke M, McGregor K, et al. The synthesis of some alkyltelluride-manganese(I) complexes, and an assessment of their suitability for MOCVD applications. Polyhedron. 1994;13:1277–90.10.1016/S0277-5387(00)80261-2Search in Google Scholar
[68] Piers WE, MacGillivray LR, Zaworotko M. Reversible interconversion of permethylscandocene tellurolates and tellurides. X-ray structure of [(C5Me5)2Sc]2(µ-Te). Organometallics. 1993;12:4723–5.10.1021/om00036a004Search in Google Scholar
[69] Häkkinen H, Walter M, Grönbeck H. Divide and protect: capping gold nanoclusters with molecular gold−thiolate rings. J Phys Chem B. 2006;110:9927–31.10.1021/jp0619787Search in Google Scholar PubMed
[70] Cecconi F, Ghilardi CA, Midollini S, Orlandini A, Bencini A. Synthesis of the cobalt–tellurium ‘stellated’ octahedral clusters [Co6(µ3-Te)8(PEt3)6]n+ (n = 1 or 2). Molecular structure of [Co6(µ3-Te)8(PEt3)6][PF6]2. J Chem Soc Dalton Trans. 1996;3991–4.10.1039/DT9960003991Search in Google Scholar
[71] Corrigan JF, Fuhr O, Fenske D. Metal chalcogenide clusters on the border between molecules and materials. Adv Mater. 2009;21:1867–71.10.1002/adma.200802897Search in Google Scholar
[72] Dey S, Jain VK, Klein A, Kaim W. Interconversion of structurally characterised complexes [PdCl(Se∩N)]2 and [Pd(Se∩N)2]6 with the hemi-labile ligand Se∩N=Me2NCH2CH2CH2Se–. Inorg Chem Commun. 2004;7:601–3.10.1016/j.inoche.2004.02.005Search in Google Scholar
[73] Tirloni B, Lang ES, de Oliveira GM, Piquini P, Hörner M. Synthesis, crystal structure, and optical characteristics of [Pd2Hg4Cl6{Te(DMB)}6]·2DMF, [HgClTe(DMB)]4, and the ring-forming cluster [Pd12(TePh)24]·2DMF. New J Chem. 2014;38:2394–9.10.1039/C3NJ01455JSearch in Google Scholar
[74] Bochmann M, Powell AK, Song X. Synthesis and characterisation of manganese(II) chalcogenolato complexes. Crystal and molecular structure of [{Mn(µ-SeC6H2Me3-2,4,6)2}∞]. J Chem Soc Dalton Trans. 1995;1645–8.10.1039/DT9950001645Search in Google Scholar
[75] Eichhöfer A, Buth G, Dolci F, Fink K, Mole RA, Wood PT. Homoleptic 1-D iron selenolate complexes-synthesis, structure, magnetic and thermal behaviour of 1∞[Fe(SeR)2] (R = Ph, Mes). Dalton Trans. 2011;40:7022–32.10.1039/c1dt10089kSearch in Google Scholar PubMed
[76] Simon W, Wilk A, Kerbs B, Henkel G. [Fe4Te4(TePh)4]3–, the first telluride–tellurolate complex. Angew Chem Int Ed. 1987;26:1009–10.10.1002/anie.198710091Search in Google Scholar
[77] Barbaro P, Bencini A, Bertini I, Briganti F, Midollini S. The tetranuclear trianion [Fe4Te4(SC6H5)4]3- crystal and molecular structure and magnetic properties. J Am Chem Soc. 1990;112:7238–46.10.1021/ja00176a025Search in Google Scholar
[78] Steigerwald ML, Siegrist T, Stuczynski SM, Kwon YU. Iron telluride (Et3P)4Fe4Te4: an intermediate between molecular reagents and solid state products. J Am Chem Soc. 1992;114:3155–6.10.1021/ja00034a081Search in Google Scholar
[79] Steigerwald ML, Siegrist T, Gyorgy EM, Hessen B, Kwon YU, Tanzler SM. Effect of diverse ligands on the course of a molecules-to-solids process and properties of its intermediates. Inorg Chem. 1994;33:3389–95.10.1021/ic00093a030Search in Google Scholar
[80] Fenske D, Ohmer J, Hachgenei J. New Co and Ni clusters with Se and PPh3 as ligands: [Co4(μ3-Se)4(PPh3)4], [Co6(μ3-Se)8(PPh3)6], [Co9(μ4-Se)3(μ3-Se)8(PPh3)6], and [Ni34(μ5-Se)2(μ4-Se)20(PPh3)10]. Angew Chem Int Ed. 1985;24:993–5.10.1002/anie.198509931Search in Google Scholar
[81] Choi B, Paley DW, Siegrist T, Steigerwald ML, Roy X. Ligand control of manganese telluride molecular cluster core nuclearity. Inorg Chem. 2015;54:8348–55.10.1021/acs.inorgchem.5b01020Search in Google Scholar PubMed
[82] Saito T, Yamamoto N, Nagase T, Tsuboi T, Kobayashi K, Yamagata T, et al. Molecular models of the superconducting chevrel phases: syntheses and structures of [Mo6X8(PEt3)6] and [PPN][Mo6X8(PEt3)6] (X = S, Se; PPN = (Ph3P)2N). Inorg Chem. 1990;29:764–70.10.1021/ic00329a039Search in Google Scholar
[83] Steigerwald ML, Siegrist T, Stuczynski SM. Octatelluridohexakis(triethylphosphine)hexacobalt and a connection between Chevrel clusters and the NiAs structure. Inorg Chem. 1991;30:2256–7.10.1021/ic00010a005Search in Google Scholar
[84] Hessen B, Siegrist T, Palstra T, Tanzler SM, Steigerwald ML. Hexakis(triethylphosphine)octatelluridohexachromium and a molecule-based synthesis of chromium telluride, Cr3Te4. Inorg Chem. 1993;32:5165–9.10.1021/ic00075a037Search in Google Scholar
[85] Stuczynski SM, Kwon YU, Steigerwald ML. The use of phosphine chalcogenides in the preparation of cobalt chalcogenides. J Organomet Chem. 1993;449:167–72.10.1016/0022-328X(93)80120-ZSearch in Google Scholar
[86] Brennan JG, Siegrist T, Stuczynski SM, Steigerwald ML. The transition from molecules to solids: molecular syntheses of Ni9Te6(PEt3)8, Ni20Te18(PEt3)12 and NiTe. J Am Chem Soc. 1989;111:9240–1.10.1021/ja00208a023Search in Google Scholar
[87] Nomikou Z, Schubert B, Hoffmann R, Steigerwald ML. Relationships between extended structures and molecular clusters of nickel and tellurium. Inorg Chem. 1992;31:2201–9.10.1021/ic00037a039Search in Google Scholar
[88] Brennan JG, Siegrist T, Stuczynski SM, Steigerwald ML. Cluster intermediates in an organometallic synthesis of palladium telluride PdTe. J Am Chem Soc. 1990;112:9233–6.10.1021/ja00181a027Search in Google Scholar
[89] Ma AL, Thoden JB, Dahl LF. Synthesis and structural, electrochemical and NMR analysis of the [{Pt(PEt3)2}2Te2]n series (n = 0, 2 +) and the bicapped triplatinum [{Pt(PEt3)2}3(µ3-Te)2]2+ dication: Te–Te bond formation in a cyclo-Pt2Te2 core upon a chemically reversible two-electron oxidation. J Chem Soc Chem Commun. 1992;1516–8.10.1039/C39920001516Search in Google Scholar
[90] Jain VK, Jain L. The chemistry of tri- and high-nuclearity palladium(II) and platinum(II) complexes. Coord Chem Rev. 2010;254:2848–903.10.1016/j.ccr.2010.05.010Search in Google Scholar
[91] Dehnen S, Eichhöfer A, Fenske D. Chalcogen-bridged copper clusters. Eur J Inorg Chem. 2002;2002:279–317.10.1002/1099-0682(20022)2002:2<279::AID-EJIC279>3.0.CO;2-HSearch in Google Scholar
[92] Fuhr O, Stefanie Dehnen S, Fenske D. Chalcogenide clusters of copper and silver from silylated chalcogenide sources. Chem Soc Rev. 2013;42:1871–906.10.1039/C2CS35252DSearch in Google Scholar PubMed
[93] Xie YP, Jin JL, Duan GX, Lu X, Mak TC. High-nuclearity silver(I) chalcogenide clusters: A novel class of supramolecular assembly. Coord Chem Rev. 2017;331:54–72.10.1016/j.ccr.2016.10.007Search in Google Scholar
[94] Pichugina DA, Kuz’menko NE, Shestakov AF. Ligand-protected gold clusters: the structure, synthesis and applications. Russian Chem Rev. 2015;84:1114–44.10.1070/RCR4493Search in Google Scholar
[95] Krautscheid H, Fenske D, Baum G, Semmelmann M. A new copper selenide cluster with PPh3 ligands: [Cu146Se73(PPh3)30]. Angew Chem Int Ed. 1993;32:1303–5.10.1002/anie.199313031Search in Google Scholar
[96] Deveson A, Dehnen S, Fenske D. Syntheses and structures of four new copper(I)–selenium clusters: size dependence of the cluster on the reaction conditions. J Chem Soc Dalton Trans. 1997;4491.10.1039/a705750dSearch in Google Scholar
[97] Fenske D, Krautscheid H. New copper clusters containing Se and PEt3 as ligands: [Cu70Se35(PEt3)22] and [Cu20Se13(PEt3)12]. Angew Chem Int Ed. 1990;29:1452–4.10.1002/anie.199014521Search in Google Scholar
[98] Fuhr O, Meredith A, Fenske D. New copper selenium clusters with a sulfur functionalised ligand shell. J Chem Soc Dalton Trans. 2002;4091–4.10.1039/b205057aSearch in Google Scholar
[99] Eichhöfer A, Fenske D, Scheer P. Investigation of the thermal properties of [Cu20Se13(PEt3)12]. Eur J Inorg Chem. 2004;2004:93–7.10.1002/ejic.200300263Search in Google Scholar
[100] Fu ML, Fenske D, Weinert B, Fuhr O. One-dimensional coordination polymers containing polynuclear (Selenolato)copper complexes linked by bipyridine ligands. Eur J Inorg Chem. 2010;2010:1098–102.10.1002/ejic.200900711Search in Google Scholar
[101] Ohlmann D, Pritzkow H, Grützmacher H, Anthamatten M, Glaser R. A hexanuclear copper arylselenolate: synthesis, structure and proposal for its rearrangement. J Chem Soc Chem Commun. 1995;1011–2.10.1039/C39950001011Search in Google Scholar
[102] Cave D, Corrigan JF, Eichhöfer A, Fenske D, Kowalchuk CM, Rösner H, et al. Investigation of the thermal properties of a series of copper selenide cluster molecules. J Cluster Science. 2007;18:157–72.10.1007/s10876-006-0093-6Search in Google Scholar
[103] Behrens S, Bettenhausen M, Eichhöfer A, Fenske D. Synthesis and crystal structure of [Cd10Se4(SePh)12(PPh3)4] and [Cd16(SePh)32(PPh3)2]. Angew Chem Int Ed. 1997;36:2797–9.10.1002/anie.199727971Search in Google Scholar
[104] Behrens S, Bettenhausen M, Deveson AC, Eichhöfer A, Fenske D, Lohde A, et al. Synthesis and structure of the nanoclusters [Hg32Se14(SePh)36], [Cd32Se14(SePh)36 (PPh3)4], [P(Et)2(Ph)C4H8OSiMe3]5, [Cd18I17(PSiMe3)12], and [N(Et)3C4H8OSiMe3]5, [Cd18I17(PSiMe3)12]. Angew Chem Int Ed. 1996;35:2215–8.10.1002/anie.199622151Search in Google Scholar
[105] Eichhöfer A, Deglmann P. Mercury-chalcogenide clusters: synthesis and structure of [Hg10Te4(SePh)12(PPhnPr2)4], [Hg10Te4(TePh)12(PPhnPr2)4] and [Hg34Te16(SePh)36(PPhnPr2)4]. Eur J Inorg Chem. 2004;2004:349–55.10.1002/ejic.200300447Search in Google Scholar
[106] Fenske D, Persau C, Dehnen S, Anson CE. Syntheses and crystal structures of the Ag-S cluster compounds [Ag70S20(SPh)28(dppm)10] (CF3CO2)2 and [Ag262S100(StBu)62(dppb)6]. Angew Chem Int Ed. 2004;43:305–9.10.1002/anie.200352351Search in Google Scholar PubMed
[107] Back DF, de Oliveira GN, Burrow RA, Castellano EE, Abram U, Lang ES. Mercury bis(phenyltellurolate) as a precursor for the synthesis of binary and ternary nanoclusters. Inorg Chem. 2007;46:2356–8.10.1021/ic070006qSearch in Google Scholar PubMed
[108] Lang ES, Burrow RA, Stieler R, Villetti MA. Cadmium bis(phenylselenolate) as a precursor for the synthesis of polymeric Cd(μ-Se)clusters: crystal and molecular structures of [Cd4(SePh)7(PPh3)X]n (X = Cl, Br). J Organomet Chem. 2009;694:3039–42.10.1016/j.jorganchem.2009.04.027Search in Google Scholar
[109] Casagrande GA, Lang ES, de Oliveira GM, Hörner M, Broch F. Dealing with 1,3-bis(4-nitrophenyl)triazene as intermediary ligand in the synthesis of polymeric (μ-Se)Hg-clusters: one-pot synthetic procedures and X-ray structural characterization of [(PhSe)7Hg4BrPy]n. Inorg. Chim. Acta. 2007;360:1776–9.10.1016/j.ica.2006.09.002Search in Google Scholar
[110] Arnold AP, Canty AJ, Skelton BW, White AH. Mercury(II) selenolates. Crystal structures of polymeric Hg(SeMe)2 and the tetrameric pyridinates [{HgCl(py)(SeEt)}4] and [{HgCl(py)0.5(SeBut)}4]. J Chem Soc Dalton Trans. 1982;607–13.10.1039/dt9820000607Search in Google Scholar
[111] DeGroot MW, Rösner H, Corrigan JF. Control of metal-ion composition in the synthesis of ternary II-II′-VI nanoparticles by using a mixed-metal cluster precursor approach. Chem Eur J. 2006;12:1547–54.10.1002/chem.200501081Search in Google Scholar PubMed
[112] DeGroot MW, Taylor NJ, Corrigan JF. Zinc chalcogenolate complexes as capping agents in the synthesis of ternary II−II‘−VI nanoclusters: structure and photophysical properties of [(N,N’-tmeda)5Zn5Cd11Se13(SePh)6(thf)2]. J Am Chem Soc. 2003;125:864–5.10.1021/ja028800sSearch in Google Scholar PubMed
[113] DeGroot MW, Taylor NJ, Corrigan JF. Controlled synthesis of ternary II−II’−VI nanoclusters and the effects of metal ion distribution on their spectral properties. Inorg Chem. 2005;44:5447–58.10.1021/ic0481576Search in Google Scholar PubMed
[114] Chhowalla M, Liu Z, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem Soc Rev. 2015;44:2584–6.10.1039/C5CS90037ASearch in Google Scholar PubMed
[115] Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides. Chem Soc Rev. 2015;44:2702–12.10.1039/C5CS00151JSearch in Google Scholar PubMed
[116] Miró P, Ghorbani-Asl M, Heine T. Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides. Angew Chem Int Ed. 2014;53:3015–8.10.1002/anie.201309280Search in Google Scholar PubMed
[117] Lv R, Robinso JA, Schaak RE, Sun D, Sun Y, Mallouk TE, et al. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc Chem Res. 2015;48:56–64.10.1021/ar5002846Search in Google Scholar PubMed
[118] Duan X, Wang C, Pan A, Yu R, Duan X. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem Soc Rev. 2015;44:8859–76.10.1039/C5CS00507HSearch in Google Scholar PubMed
[119] Wang H, Yuan H, Hong SS, Li Y, Cui Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem Soc Rev. 2015;44:2664–80.10.1039/C4CS00287CSearch in Google Scholar PubMed
[120] Jiao WH, Tang ZT, Sun YL, Liu Y, Tao Q, Feng CM, et al. Superconductivity in a Layered Ta4Pd3Te16 with PdTe2 Chains. J Am Chem Soc. 2014;136:1284–7.10.1021/ja412094nSearch in Google Scholar PubMed
[121] Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry. 2013;5:263–75.10.1038/nchem.1589Search in Google Scholar PubMed
[122] (a) Dabbousi BO, Bonasia PJ, Arnold J. Tris(trimethylsilyl)silanetellurol: preparation, characterization, and synthetic utility of a remarkably stable telluro. J Am Chem Soc. 1991;113:3186. (b) Gindelberger DE, Arnold J. Preparation, Characterization, and Kinetic Studies of Group 4 Metallocene Complexes with Triphenylsilanetellurolate Ligands. Organometallics 1994, 13, 4462.10.1021/ja00008a065Search in Google Scholar
[123] Chirstou V, Wuller SP, Arnold J. Synthesis, structure, and reactivity of Group 4 metallocenetellurolates. X-ray crystal structures of Cp2Zr[TeSi(SiMe3)3]2, Cp’2Ti[TeSi(SiMe3)3]2, Cp2Zr(η2-COMe)[TeSi(SiMe3)3], and Cp2Ti[TeSi(SiMe3)3]PMe3. J Am Chem Soc. 1993;115:10545.10.1021/ja00076a012Search in Google Scholar
[124] Hector AL, Levason W, Reid G, Reid SD, Webster M. Bis(η5–cyclo–penta–dien–yl)bis–(2,4,6–tri–methyl–phenyl–tellurolato)zirconium(IV). Acta Cryst. 2008;64:667.Search in Google Scholar
[125] Hector AL, Levason W, Reid G, Reid SD, Webster M. Evaluation of group 4 metal bis-cyclopentadienyl complexes with selenolate and tellurolate ligands for CVD of ME2 films (E = Se or Te). Chem Mater. 2008;20:5100–6.10.1021/cm800802gSearch in Google Scholar
[126] Kopf H, Block B, Schmidt M. ZurBildunggemischterPinakolebei der Photoreduktion des Benzophenons. Z Naturforsch. 1967;22b:1077.10.1515/znb-1967-1017Search in Google Scholar
[127] Gautheron B, Tainturier G, Pouly S, Theobald F, Vivier H, Laarif A. Trapping of (aryne)metallocene complexes by elemental selenium. Crystal structure of (η5-tBuC5H4)2ZrSe2C6H4-o. Organometallics. 1984;3:1495–9.10.1021/om00088a008Search in Google Scholar
[128] Chirstou V, Arnold J. Synthesis of reactive homoleptictellurolates of zirconium and hafnium and their conversion to terminal tellurides: a model for the first step in a molecule-to-solid transformation. J Am Chem Soc. 1992;114:6240–2.10.1021/ja00041a049Search in Google Scholar
[129] Gerlach CP, Chirstou V, Arnold J. Synthesis and reactivity of group 4 homolepticselenolates and tellurolates: lewis base induced conversion to terminal and bridging chalcogenides. Inorg Chem. 1996;35:2758–66.10.1021/ic9600689Search in Google Scholar
[130] McKarns PJ, Lewkebandara TS, Yap GP, Liable-Sands LM, Rheingold AL, Winter CH. Adducts of titanium tetrachloride with alkylselenium compounds: molecular precursors to titanium diselenide films. Inorg Chem. 1998;37:418–24.10.1021/ic970945qSearch in Google Scholar PubMed
[131] Boscher ND, Carmalt CJ, Parkin IP. Atmospheric pressure CVD of TiSe2 thin films on glass. Chem Vap Deposition. 2006;12:54–8.10.1002/cvde.200506423Search in Google Scholar
[132] Reid SD, Hector AL, Levason W, Reid G, Waller BJ, Webster M. Thio- and seleno-ether complexes with Group 4 tetrahalides and tin tetrachloride: preparation and use in CVD for metal chalcogenide films. Dalton Trans. 2007;4769–77.10.1039/b708809dSearch in Google Scholar PubMed
[133] Sato M, Yoshida T. Selenium and tellurium derivatives of di-π-cyclopentadienyl-vanadium(IV), -niobium(IV), -molybdenum(IV) and -tungsten(IV). J Organomet Chem. 1975;87:217–22.10.1016/S0022-328X(00)91287-7Search in Google Scholar
[134] Herberhold M, Peukert J, Krüger M, Daschner D, Milius W. Binuclear CpV, Cp*V, and Cp*Ta complexes containing organochalcogenolato bridges, μ-ER (E = sulfur, selenium, tellurium; R = methyl, phenyl, and ferrocenyl). Z Anorg Allg Chem. 2000;626:1289–95.10.1002/(SICI)1521-3749(200006)626:6<1289::AID-ZAAC1289>3.0.CO;2-OSearch in Google Scholar
[135] Galindo A, Gómez M, del Río D, Sánchez F. Synthesis and reactivity of ene-diamido and ene-diolato [(Trimethylsilyl)cyclopentadienyl]niobium(V) complexes and a comparative DFT study of the bonding capabilities of diazabutadiene and butadiene ligands. Eur J Inorg Chem. 2002;2002:1315–25.10.1002/1099-0682(200206)2002:6<1326::AID-EJIC1326>3.0.CO;2-TSearch in Google Scholar
[136] Brandl M, Ebner A, Kubicki MM, Mugnier Y, Wachter J, Vigier-Juteau E, et al. Syntheses, properties and structures of [{(C5Me5)2Nb}2NiTe4] and [(tBuC5H4Nb)2Ni5Te7(Ph2PCH2PPh2)2]: the quest for tetratelluronickelate clusters. Eur J Inorg Chem. 2007;2007:994–1003.10.1002/ejic.200600690Search in Google Scholar
[137] Hector AL, Jura M, Levason W, Reid SD, Reid G. Vanadium selenoether and selenolate complexes, potential single-source precursors for CVD of VSe2 thin films. New J Chem. 2009;33:641–5.10.1039/B817903DSearch in Google Scholar
[138] Benjamin SL, Chang YP, Gurnani C, Hector AL, Huggon M, Levason W, et al. Niobium(V) and tantalum(V) halide chalcogenoether complexes – towards single source CVD precursors for ME2 thin films. Dalton Trans. 2014;43:16640–8.10.1039/C4DT02694BSearch in Google Scholar PubMed
[139] Andrä K. SpezielleOrganoschwefel- und -selenverbindungeneiniger Übergangsmetalle. Z Anorg Allg Chem. 1970;373:209–16.10.1002/zaac.19703730302Search in Google Scholar
[140] Chisholm MH, Huffman JC, Parkin IP, Streib WE. Preparation and characterization of M2(SeAr′)6 and mixed ligand M2(OR)2(SeAr′)4 species (M = Mo, W). Polyhedron. 1990;9:2941–52.10.1016/S0277-5387(00)84205-9Search in Google Scholar
[141] Goh LY, Lim YY, Tay MS, Mak TC, Zhou ZY. Selenolato chromium complexes. Synthesis, thermolytic degradation and crystal structure of [Cr(η-C5H5)(CO)3(SePh)]. J Chem Soc Dalton Trans. 1992;1239–42.10.1039/DT9920001239Search in Google Scholar
[142] Rettenmeier A, Weidenhammer K, Ziegler ML. Strukturuntersuchungen an metallorganischen Chalkogenatokomplexen von Molybdän und Wolfram. Die Molekül- und Kristallstrukturen von Tricarbonyl-1-7-η-cycloheptatrienyl-tris-μ-phenylselenodimolybdän, η7-C7H7Mo(μ-Se(C6H5))3Mo(CO)3; Dicarbonyl-1-7-ηcycloheptatrienylphenyltelluromolybdän, η7-C7H7Mo(CO)2Te(C6H5), und Dicarbonyl-1-7-η-cycloheptatrienylphenylselenowolfram, η7-C7H7W(CO)2Se(C6H5). Z Anorg Allg Chem. 1981;473:91–100.10.1002/zaac.19814730210Search in Google Scholar
[143] Vogt T, Strähle J. Synthese und struktur von [Mo(CO)4(TeC6H5)]2. Z Naturforsch. 1985;40b:1599.10.1515/znb-1985-1201Search in Google Scholar
[144] Bochmann M, Powell AK, Song X. New sterically hindered manganese selenolato complexes. Isolation and structural characterization of a reaction intermediate, [Mn{N(SiMe3)2}(μSeC6H2-Pri3-2,4,6)(THF)]2. Inorg Chem. 1994;33:400–01.10.1021/ic00080a035Search in Google Scholar
[145] Tremel W, Krebs W, Greiwe K, Simon W, Stephan HO, Henkel G. [Mn(SPh)3Cl]2-, [Mn(SPh)3Br)]2-, [Mn(SePh)4]2-, [Mn(TePh)4]2-, and [Co4(SPh)6Cl4]2-: new mixed halide/thiolate and chalcogenolate complexes of manganese and cobalt. Z Naturforsch. 1992;47b:1580.10.1515/znb-1992-1112Search in Google Scholar
[146] McGregor K, Deacon G, Dickson RS, Fallon GD, Rowe RS, West BO. Insertion of tellurium into an alkylpentacarbonylmanganese complex and a convenient new route to manganese telluride. J Chem Soc Chem Commun. 1990;1293–4.10.1039/c39900001293Search in Google Scholar
[147] Jaitner P, Wohlgenannt W, Gieren A, Betz H, Hübner T. Die struktur von [(η5-Cp)Mo(CO)2(μ-TePh)]2, einemdoppelttellurolato-überbrücktendimolybdän complex. J Organomet Chem. 1985;297:1277–90.10.1016/0022-328X(85)80429-0Search in Google Scholar
[148] Lau P, Hüttner G, Zsolnai L. Reversible Öffnung von Metall-Metall-Bindungen: quantitative Untersuchung des RingÖffnungsgleichgewichts von [Cp’(CO)2Mn]2SeAryl+. Z Naturforsch. 1991;46b:719–28.10.1515/znb-1991-0605Search in Google Scholar
[149] Maganas D, Staniland SS, Grigoropoulos A, White F, Parsons S, Robertson N, et al. S tructural, spectroscopic and magnetic properties of M[R2P(E)NP(E)R′2]2 complexes, M = Co, Mn, E = S, Se and R, R′ = Ph or iPr. Covalency of M–S bonds from experimental data and theoretical calculations. Dalton Trans. 2006;2301–15.10.1039/B517938FSearch in Google Scholar PubMed
[150] Cotton FA, Dunbar KR. Conversion of an electron-rich triple bond to a double bond by oxidative addition of diphenyldiselenide to Re2Cl4(μ-dppm)2. Preparation and characterization of Re2Cl4(μ-SePh)2(μdpmo)2 (dpmo = bis(diphenylphosphino)methane). Inorg Chem. 1987;26:1305–9.10.1021/ic00255a022Search in Google Scholar
[151] Matthews PD, Akhtar M, Malik MA, Revaprasadu N, O’Brien P. Synthetic routes to iron chalcogenide nanoparticles and thin films. Dalton Trans. 2016;45:18803–12.10.1039/C6DT03486ASearch in Google Scholar PubMed
[152] Dey S, Jain VK. Platinum group metal chalcogenides. Platinum Metals Rev. 2004;48:16–29.Search in Google Scholar
[153] Fenske D, Fischer A. New selenolato-bridged clusters of iron and nickel; the structures of [Fe12(SePh)24] and [Na2(POPh3)6][Ni20Se12(SeMe)10]. Angew Chem Int Ed Engl. 1995;34:307–9.10.1002/anie.199503071Search in Google Scholar
[154] Akhtar M, Akhtar J, Malik MA, Tuna F, Helliwell M, O’Brien P. Deposition of iron selenide nanocrystals and thin films from tris(N, N-diethyl-N′-naphthoylselenoureato)iron(III). J Mater Chem. 2012;22:14970–5.10.1039/c2jm31291cSearch in Google Scholar
[155] Akhtar M, Malik MA, Raftery J, O’Brien P. Synthesis of iron selenide nanocrystals and thin films from bis(tetraisopropyldiselenoimidodiphosphinato)iron(II) and bis(tetraphenyldiselenoimidodiphosphinato)iron(II) complexes. J Mater Chem A. 2014;2:20612–20.10.1039/C4TA04054FSearch in Google Scholar
[156] Steigerwald ML. Selective syntheses of iron monotelluride and iron ditelluride from organometallic precursors. Synthesis and pyrolysis of [Cp(Et3P)(CO)Fe]2(Te)n. Chem Mater. 1989;1:52–7.10.1021/cm00001a014Search in Google Scholar
[157] Chan SLF, Low KH, So GK, Chui SSY, Che CM. Homoleptic ruthenium(III) chalcogenolates: a single precursor to metal chalcogenide nanoparticles catalyst. Chem Commun. 2011;47:8808–10.10.1039/c1cc12422fSearch in Google Scholar
[158] Matsuzaka H, Ogino T, Nishio M, Hidai M, Nishibayashi YA, Uemura S. Dinuclear (η5-C5Me5)Ru complexes triply bridged by tellurium or selenium ligands–syntheses and characterisation of (η5-C5Me5)Ru(π2-RTeTeR)(π2-TeR)2Ru(η5-C5Me5) and [(η5-C5Me5)Ru(π2-SeR)3Ru(η5-C5Me5)]Cl (R = Tol, Ph). J Chem Soc, Chem Commun. 1994;223.10.1039/C39940000223Search in Google Scholar
[159] Arce AJ, Arrojo P, Sanctis YD, Deeming AJ, West DJ. Addition of diselenides RSe2R to [Os3(CO)10(MeCN)2] to give isomers of [Os3(μ-SeR)2(CO)10]. Polyhedron. 1992;11:1013–21.10.1016/S0277-5387(00)84468-XSearch in Google Scholar
[160] Gilby LM, Piggott B. The synthesis and X-ray structure of cobalt(II) complexes of iminobis(phosphinechalcogenides), [Co{N(XPR2)2–X,X′}2] (X = S or Se; R = Ph or Pri). Polyhedron. 1999;18:1077–82.10.1016/S0277-5387(98)00397-0Search in Google Scholar
[161] Panneerselvam A, Nguyen CQ, Waters J, Malik MA, O’Brien P, Raftery J, et al. Ligand influence on the formation of P/Se semiconductor materials from metal–organic complexes. Dalton Trans. 2008;4499–506.10.1039/b802012dSearch in Google Scholar PubMed
[162] Baidya N, Noll BC, Olmstead MM, Mascharak PK. Nickel(II) complexes with the [NiNxSey] chromophore in different coordination geometries: search for a model of the active site of [FeNiSe] hydrogenases. Inorg Chem. 1992;31:2999–3000.10.1021/ic00040a002Search in Google Scholar
[163] Goldman CM, Olmstead MM, Mascharak PK. Discrete mononuclear and dinuclear nickel(II) complexes of alkane- and areneselenolates: syntheses, structures, and properties of (Et4N)2[Ni2(Se(CH2)3Se)3], (Ph4P)2[Ni(SePh)4], and (Ph4P)2[Ni2(μ-2,4,6-(Me)3C6H2Se)2(2,4,6-(Me)3C6H2Se)4]·8CH3CN. Inorg Chem. 1996;35:2752–7.10.1021/ic951257eSearch in Google Scholar
[164] Maneeprakorn W, Nguyen CQ, Malik MA, O’Brien P, Raftery J. Synthesis of the nickel selenophosphinates [Ni(Se2PR2)2] (R = iPr, tBu and Ph) and their use as single source precursors for the deposition of nickel phosphide or nickel selenide nanoparticles. Dalton Trans. 2009;2103–8.10.1039/b816903aSearch in Google Scholar PubMed
[165] Furlani C, Cervone E, Camassei FD. Transition metal N,N-diethyldiselenocarbamates. Inorg Chem. 1968;7:265–8.10.1021/ic50060a019Search in Google Scholar
[166] Panneerselvam A, Malik MA, Afzaal M, O’Brien P, Helliwell M. The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor. J Am Chem Soc. 2008;130:2420–1.10.1021/ja078202jSearch in Google Scholar PubMed
[167] Li HH, Zhao S, Gong M, Cui CH, He D, Liang HW, et al. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew Chem Int Ed. 2013;52:7472–6.10.1002/anie.201302090Search in Google Scholar PubMed
[168] Dey S, Kumbhare LB, Jain VK, Schurr T, Kaim W, Klein A, et al. Structural variety and multiple isomerism in 1-(Dimethylamino)propyl-2-chalcogenolate and 2-(Dimethylamino)propyl-1-chalcogenolate complexes of palladium(II) and platinum(II): synthesis, spectroscopy and structures. Eur J Inorg Chem. 2004;2004:4510–20.10.1002/ejic.200400524Search in Google Scholar
[169] Kumbhare LB, Jain VK, Varghese B. Palladium(II) and platinum(II) monoselenocarboxylates: synthesis, spectroscopy, structure and their use as molecular precursors for metal selenides. Inorg Chim Acta. 2006;359:409–16.10.1016/j.ica.2005.06.080Search in Google Scholar
[170] Pal MK, Jain VK, Kushwah NK, Wadawale A, Glazun SA, Starikova ZA. Bregadze VI.1-Selenolato-2-phenyl-o-carborane complexes of palladium(II) and platinum(II): synthesis, spectroscopy and structures. J Organomet Chem. 2010;695:2629–34.10.1016/j.jorganchem.2010.08.022Search in Google Scholar
[171] Kumbhare LB, Wadawale A, Zade SS, Jain VK. Oligomeric allyl-palladium(II) complexes of β-substituted ethylselenolates: syntheses, structures and thermal decomposition. Dalton Trans. 2011;40:7957–66.10.1039/c1dt10392jSearch in Google Scholar PubMed
[172] Kolay S, Ghavale N, Wadawale A, Das D, Jain VK. Binuclear orthometalated N,N-dimethylbenzylamine complexes of palladium(II): synthesis, structures and thermal behavior. Phosphorus Sulfur Silicon. 2013;188:1449–61.10.1080/10426507.2012.757608Search in Google Scholar
[173] Ghavale ND, Dey S, Jain VK, Nethaji M. Chalcogenolato-bridged cyclometallated binuclear palladium complexes: synthesis, spectroscopy, structures of [Pd2(μ-Cl)(μ-SMes)(C10H6NMe2–C,N)2] and [Pd2(μ-SePh)2(C10H6NMe2–C,N)2]. Inorg Chim Acta. 2008;361:2462–70.10.1016/j.ica.2008.01.005Search in Google Scholar
[174] Sharma KN, Joshi H, Sharma AK, Prakash O, Singh AK. Single source precursor routes for synthesis of PdTe nanorods and particles: solvent dependent control of shapes. Chem Commun. 2013;49:9344–6.10.1039/c3cc45175eSearch in Google Scholar PubMed
[175] Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound copper chalcogenide nanocrystals. Chem Rev. 2017;117:5865–6109.10.1021/acs.chemrev.6b00376Search in Google Scholar PubMed
[176] Khadka CB, Najafabadi BK, Hesari M, Workentin MS, Corrigan JF. Copper chalcogenide clusters stabilized with ferrocene-based diphosphine ligands. Inorg Chem. 2013;52:6798–805.10.1021/ic3021854Search in Google Scholar PubMed
[177] Xie YP, Jin JL, Duan GX, Lu X, Mak TC. High-nuclearity silver(I) chalcogenide clusters: a novel class of supramolecular assembly. Coord Chem Rev. 2017;331:54–72.10.1016/j.ccr.2016.10.007Search in Google Scholar
[178] Molter A, Mohr M. Gold complexes containing organoselenium and organotellurium ligands. Coord Chem Rev. 2010;254:19–45.10.1016/j.ccr.2009.09.017Search in Google Scholar
[179] Kurashige W, Yamaguchi M, Nobusada K, Negishi Y. J Phys Chem Lett. 2012;3:2649–52.10.1021/jz301191tSearch in Google Scholar PubMed
[180] Hossain S, Kurashige W, Wakayama S, Kumar B, Nair LV, YNiihori Y, et al. Ligand exchange reactions in thiolate-protected Au25 nanoclusters with selenolates or tellurolates: preferential exchange sites and effects on electronic structure. J Phys Chem C. 2016;120:25861–9.10.1021/acs.jpcc.6b08636Search in Google Scholar
[181] Sharma RK, Kedarnath G, Jain VK, Wadawale A, Pillai CG, Nalliath M, et al. Copper(I) 2-pyridyl selenolates and tellurolates: synthesis, structures and their utility as molecular precursors for the preparation of copper chalcogenide nanocrystals and thin films. Dalton Trans. 2011;40:9194–202.10.1039/c1dt10461fSearch in Google Scholar PubMed
[182] Sharma RK, Wadawale A, Kedarnath G, Manna D, Ghanty TK, Vishwanadh B, et al. Synthesis, structures and DFT calculations of 2-(4,6-dimethyl pyrimidyl)selenolate complexes of Cu(I), Ag(I) and Au(I) and their conversion into metal selenide nanocrystals. Dalton Trans. 2014;43:6525–35.10.1039/C4DT00012ASearch in Google Scholar
[183] Kole GK, Vivekananda KV, Kumar M, Ganguly R, Dey S, Jain VK. Hemilabile silver(I) complexes containing pyridyl chalcogenolate (S, Se) ligands and their utility as molecular precursors for silver chalcogenides. CrystEngComm. 2015;17:4367–76.10.1039/C5CE00626KSearch in Google Scholar
[184] Kole GK, Wadawale AP, Nigam S, Majumder C, Jain VK. Intermolecular Aurophilic versus Intramolecular Au⋅⋅⋅N secondary interactions in two-coordinate gold(I) selenolate complexes. Chemistry Select. 2016;1:4131–6.10.1002/slct.201601122Search in Google Scholar
[185] Kowalchuk CM, Schmid G, Meyer-Zaika W, Huang Y, Corrigan JF. Preparation, characterization, and condensation of copper tellurolate clusters in the pores of periodic mesoporous silica MCM-41. Inorg Chem. 2004;43:173–80.10.1021/ic0300868Search in Google Scholar PubMed
[186] Lu Z, Huang W, Vittal JJ. Synthesis, structural characterization, photoluminescence and thermal properties of [(Ph3P)2Cu(μ-SeC{O}R)2Cu(PPh3)]. New J Chem. 2002;26:1122–9.10.1039/B203466BSearch in Google Scholar
[187] Ng MT, Boothroyd C, Vittal JJ. Shape and size control of Ag2Se nanocrystals from a single precursor [(Ph3P)3Ag2(SeC{O}Ph)2]. Chem Commun. 2005;3820–2.10.1039/b506203aSearch in Google Scholar
[188] Bonamico M, Dessy G. Structural studies of metal diselenocarbamates. Crystal and molecular structures of nickel(II), copper(II), and zinc(II) diethyldiselenocarbamates. J Chem Soc A. 1971;264–9.10.1039/j19710000264Search in Google Scholar
[189] Kemmler M, Lazell M, O’Brien P, Otway DJ, Park JH, Walsh JR. The growth of thin films of copper chalcogenide films by MOCVD and AACVD using novel single-molecule precursors. J Mater Sci Mater Electron. 2002;13:531–5.10.1023/A:1019665428255Search in Google Scholar
[190] Malik MA, O’Brien P, Revaprasadu N, Novel A. Route for the preparation of CuSe and CuInSe2 nanoparticles. Adv Mater. 1999;11:1441–4.10.1002/(SICI)1521-4095(199912)11:17<1441::AID-ADMA1441>3.0.CO;2-ZSearch in Google Scholar
[191] Dhayal RS, Liao JH, Hou HN, Ervilita R, Liao PK, Liu CW. Copper(I) diselenocarbamate clusters: synthesis, structures and single-source precursors for Cu and Se composite materials. Dalton Trans. 2015;44:5898–908.10.1039/C4DT03810JSearch in Google Scholar
[192] Hsu YJ, Hung CM, Lin YF, Liaw BJ, Lobana TS, Lu SY, et al. [Cu4{Se2P(OiPr)2}4]: A novel precursor enabling preparation of nonstoichiometric copper selenide (Cu2-xSe) nanowires. Chem Mater. 2006;18:3323–9.10.1021/cm060478nSearch in Google Scholar
[193] Copsey MC, Panneerselvam A, Afzaal M, Chivers T, O’Brien P. Syntheses, X-ray structures and AACVD studies of group 11 ditelluroimidodiphosphinate complexes. Dalton Trans. 2007;1528–38.10.1039/b617429aSearch in Google Scholar PubMed
[194] Bochmann M, Webb KJ, Hursthouse MB, Mazid M. Sterically hindered chalcogenolato complexes. Mono- and di-meric thiolates and selenolates of zinc and cadmium; structure of [{Cd(SeC6H2But3-2,4,6)2}2], the first three-co-ordinate cadmium–selenium complex. J Chem Soc Dalton Trans. 1991;2317–2323.10.1039/DT9910002317Search in Google Scholar
[195] Bochmann M, Bwembya GC, Powell AK, Song X. Zinc(II) arene tellurolato complexes as precursors to zinc telluride. The crystal and molecular structure of [Zn(TeC6H2Me3-2,4,6)2(pyridine)2]. Polyhedron 14. 1995;14:3495–500.10.1016/0277-5387(95)00215-ESearch in Google Scholar
[196] Brennan JG, Siegrist T, Carroll PJ, Stuczynski SM, Brus LE, Steigerwald ML. The preparation of large semiconductor clusters via the pyrolysis of a molecular precursor. J Am Chem Soc. 1989;111:4141–3.10.1021/ja00193a079Search in Google Scholar
[197] Brennan JG, Siegrist T, Carroll PJ, Stuczynski SM, Reynders P, Brus LE, et al. Bulk and nanostructure Group II-VI compounds from molecular organometallic precursors. Chem Mater. 1990;2:403–9.10.1021/cm00010a017Search in Google Scholar
[198] Cheng Y, Emge TJ, Brennan JG. polymeric Cd(Se-2-NC5H4)2 and Square Planar Hg(Se-2-NC5H4)2: volatile CVD Precursors to II-VI Semiconductors. Inorg Chem. 1994;33:3711–4.10.1021/ic00095a014Search in Google Scholar
[199] Steigerwald ML, Sprinkle CR. Organometallic synthesis of II-VI semiconductors. Formation and decomposition of bis(organotelluro)mercury and bis(organotelluro)cadmium compounds. J Am Chem Soc. 1987;109:7200–01.10.1021/ja00257a055Search in Google Scholar
[200] Bonasia PJ, Arnold J. Zinc, cadmium, and mercury tellurolates: hydrocarbon solubility and low coordination numbers enforced by sterically encumbered silyltellurolate ligands. Inorg Chem. 1992;31:2508–14.10.1021/ic00038a037Search in Google Scholar
[201] Jun Y, Koo JE, Cheon J. One-step synthesis of size tuned zinc selenide quantum dots via a temperature controlled molecular precursor approach. Chem Commun. 2000;1243–4.10.1039/b002983lSearch in Google Scholar
[202] Jun J, Choi CS, Cheon J. Size and shape controlled ZnTe nanocrystals with quantum confinement effect. Chem Commun. 2001;101–2.10.1039/b008376nSearch in Google Scholar
[203] Dey S, Jain VK, Chaudhury S, Knoedler A, Kaim W. Synthesis and structure of bis(2-N,N-dimethylamioethyl-selenolato)zinc and its transformation to ZnSe. Polyhedron. 2003;22:489–91.10.1016/S0277-5387(02)01379-7Search in Google Scholar
[204] Kedarnath G, Dey S, Jain VK, Dey GK, Varghese B. 2-(N,N-Dimethylamino)ethylselenolates of cadmium(II): syntheses, structure of [Cd3(OAc)2(SeCH2CH2NMe2)4] and their use as single source precursors for the preparation of CdSe nanoparticles. Polyhedron. 2006;25:2383–91.10.1016/j.poly.2006.02.011Search in Google Scholar
[205] Kedarnath G, Dey S, Jain VK, Dey GK. Synthesis and characterization of metal selenide (ZnSe, CdSe, HgSe) nanoparticles. J Nanosci Nanotechnol. 2006;6:1031–7.10.1166/jnn.2006.154Search in Google Scholar PubMed
[206] Kedarnath G, Dey S, Jain VK, Dey GK, Kadam RM. Synthesis of undoped and manganese-doped HgTe nanoparticles using [Hg(TeCH2CH2NMe2)2] as a single source precursor. J Nanosci Nanotechnol. 2008;8:4500–5.10.1166/jnn.2008.314Search in Google Scholar PubMed
[207] Kedarnath G, Kumbhare LB, Jain VK, Wadawale A, Dey GK, Thinaharan C, et al. Bis(1-methylimidazolyl)diselenide and 1-methylimidazole-2-selenolate complexes of zinc, cadmium, and mercury: synthesis, characterization, and their conversion to metal selenide quantum dot. Bull Chem Soc Jpn. 2008;81:489–94.10.1246/bcsj.81.489Search in Google Scholar
[208] Kedarnath G, Jain VK, Wadawale A, Dey GK. Bis(3-methyl-2-pyridyl)ditelluride and pyridyl tellurolate complexes of zinc, cadmium, mercury: synthesis, characterization and their conversion to metal telluride nanoparticles. Dalton Trans. 2009;8378–85.10.1039/b910466fSearch in Google Scholar PubMed
[209] Sharma RK, Kedarnath G, Wadawale A, Jain VK, Vishwanadh B. Monomeric pyridyl-2-selenolate complexes of cadmium and mercury: synthesis, characterization and their conversion to metal selenide nanoparticles. Inorg Chim Acta. 2011;365:333–9.10.1016/j.ica.2010.09.039Search in Google Scholar
[210] Sharma RK, Wadawale A, Kedarnath G, Vishwanadh B, Jain VK. Pyrimidyl-2-selenolates of cadmium and mercury: synthesis, characterization, structures and their conversion to metal selenide nano-particles. Inorg Chim Acta. 2014;411:90–6.10.1016/j.ica.2013.11.018Search in Google Scholar
[211] Kedarnath G, Kumbhare LB, Jain VK, Phadnis PP, Nethaji M. Group 12 metal monoselenocarboxylates: synthesis, characterization, structure and their transformation to metal selenide (MSe; M = Zn, Cd, Hg) nanoparticles. Dalton Trans. 2006;2714–8.10.1039/b517224aSearch in Google Scholar PubMed
[212] Malik MA, O’Brien P. Mixed methyl and ethylzinc complexes with diethylselenocarbamate: novel precursors for zinc selenide. Chem Mater. 1991;3:999–1000.10.1021/cm00018a007Search in Google Scholar
[213] Malik MA, Motevalli M, Walsh JR, O’Brien P. Neopentyl- or tert-butylzinc complexes with diethylthio- or diethylselenocarbamates: precursors for zinc chalcogens. Organometallics. 1992;11:3136–9.10.1021/om00045a033Search in Google Scholar
[214] Hursthouse MB, Malik MA, Motevalli M, O’Brien P. Synthesis and characterization of some mixed alkyl selenocarbamates of zinc and cadmium: novel precursors for II/VI materials. J Mater Chem. 1992;2:949–55.10.1039/jm9920200949Search in Google Scholar
[215] Abrahams I, Malik M, Motevalli M, O’Brien P. Some complexes of neopentylcadmium species with dithio-and di-selenocarbamates: the synthesis, characterization and single crystal X-ray structure of a mixed neopentyl/diethyldiselenocarbamate of cadmium: [(CH3)3CCH2CdSe2CNEt2]2. J Organomet Chem. 1994;465:73–7.10.1016/0022-328X(94)87038-1Search in Google Scholar
[216] Hursthouse MB, Malik MA, Motevalli M, O’Brien P. The crystal and molecular structure of N,N-diethyldiselenocarbamatocadmium(II): cadmium and zinc diethyldiselenocarbamates as precursors for selenides. Polyhedron. 1992;11:45–8.10.1016/S0277-5387(00)83257-XSearch in Google Scholar
[217] Trindade T, O’Brien P, Zhang X. Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach. Chem Mater. 1997;9:523–30.10.1021/cm960363rSearch in Google Scholar
[218] Chunggaze M, McAleese J, O’Brien P, Otway DJ. Deposition of thin films of CdSe or ZnSe by MOCVD using simple air stable precursors. Chem Commun. 1998;833–4.10.1039/a709273cSearch in Google Scholar
[219] Ludolph B, Malik MA. Novel single molecule precursor routes for the direct synthesis of highly monodispersed quantum dots of cadmium or zinc sulfide or selenide. Chem Commun. 1849-1850;1998.10.1039/a805411hSearch in Google Scholar
[220] Malik MA, Revaprasadu N, O’Brien P. Air-stable single-source precursors for the synthesis of chalcogenide semiconductor nanoparticles. Chem Mater. 2001;13:913–20.10.1021/cm0011662Search in Google Scholar
[221] Cupertino D, Birdsall DJ, Slawin AM, Woollins JD. The preparation and coordination chemistry of iPr2P(E)NHP(E′)iPr2 (E, E′= Se; E = Se, E′ = S; E = S, E′ = O; E, E′ = O). Inorg Chim Acta. 1999;290:1–7.10.1016/S0020-1693(99)00087-0Search in Google Scholar
[222] Afzaal M, Aucott SM, Crouch D, O’Brien P, Woollins JD, Park JH. Deposition of MSe (M = Cd, Zn) films by LP-MOCVD from novel single-source precursors M[(SePPh2)2N]2. Chem Vap Deposit. 2002;8:187–9.10.1002/1521-3862(20020903)8:5<187::AID-CVDE187>3.0.CO;2-5Search in Google Scholar
[223] Crouch DJ, O’Brien P, Malik MA, Skabara PJ, Wright SP. A one-step synthesis of cadmium selenide quantum dots from a novel single source precursor. Chem Commun. 2003;1454–5.10.1039/b301096aSearch in Google Scholar
[224] Afzaal M, Crouch D, Malik MA, Motevalli M, O’Brien P, Park JH, et al. Deposition of II-VI thin films by LP-MOCVD using novel single-source precursors. Eur J Inorg Chem. 2004;2004:171–7.10.1002/ejic.200300101Search in Google Scholar
[225] Garje SS, Ritch JS, Eisler DJ, Afzaal M, O’Brien P, Chivers T. Chemical vapour deposition of II–VI semiconductor thin films using M[(TePiPr2)2N]2 (M = Cd, Hg) as single-source precursors. J Mater Chem. 2006;16:966–9.10.1039/B515362JSearch in Google Scholar
[226] Ahmad K, Afzaal M, Ritch JS, Chivers T, PO’Brien P. Epitaxial CdTe rods on Au/Si Islands from a molecular compound. J Am Chem Soc. 2010;132:5964–5.10.1021/ja1017943Search in Google Scholar PubMed
[227] Bochmann M, Bwembya GC, Hursthouse MB, Coles SJ. Synthesis of phosphinochalcogenoic amidato complexes of zinc and cadmium. The crystal and molecular structure of [Zn{But2P(Se)NPri}2]. J Chem Soc Dalton Trans. 1995;2813–7.10.1039/dt9950002813Search in Google Scholar
[228] Barron AR. MOCVD of group III chalcogenides. Adv Mater Opt Electron. 1995;5:245–58.10.1002/amo.860050502Search in Google Scholar
[229] Malik MA, Afzaal M, O’Brien P. Precursor chemistry for main group elements in semiconducting materials. Chem Rev. 2012;110:4417–46.10.1021/cr900406fSearch in Google Scholar PubMed
[230] Sharma RK, Kedarnath G, Kushwah N, Pal MK, Wadawale A, Vishwanadh B, et al. Indium(III) (3-methyl-2-pyridyl)selenolate: synthesis, structure and its utility as a single source precursor for the preparation of In2Se3 nanocrystals and a dual source precursor with [Cu{SeC5H3(Me-3)N}]4 for the preparation of CuInSe2. J Organomet Chem. 2013;747:113–8.10.1016/j.jorganchem.2013.04.034Search in Google Scholar
[231] Stoll SL, Bott SG, Barron AR. Selenide and selenolate compounds of indium: a comparative study of In–se bond-forming reactions. J Chem Soc Dalton Trans. 1997;1315–22.10.1039/a606755gSearch in Google Scholar
[232] Gysling HJ, Wernberg AA, Blanton TN. Molecular design of single-source precursors for 3-6 semiconductor films: control of phase and stoichiometry in indium selenide (InxSey) films deposited by a spray MOCVD process using single-source reagents. Chem Mater. 1992;4:900–5.10.1021/cm00022a028Search in Google Scholar
[233] Cheon J, Arnold J, Yu KM, Bourret ED. Metalorganic chemical vapor deposition of semiconducting III/VI In2Se3 thin films from the single-source precursor: in[SeC(SiMe3)3]3. Chem Mater. 1995;7:2273–6.10.1021/cm00060a014Search in Google Scholar
[234] O’Brien P, Otway DJ, Walsh JR. The growth of indium selenide thin films from a novel asymmetric dialkyldiselenocarbamate of indium. Chem Vap Deposition. 1997;3:227–9.10.1002/cvde.19970030411Search in Google Scholar
[235] Park JH, Afzaal M, Helliwell M, Malik MA, O’Brien P, Raftery J. Chemical vapor deposition of indium selenide and gallium selenide thin films from mixed alkyl/dialkylselenophosphorylamides. Chem Mater. 2003;15:4205–10.10.1021/cm0310420Search in Google Scholar
[236] Gillan EG, Barron AR. Chemical vapor deposition of hexagonal gallium selenide and telluride films from cubane precursors: understanding the envelope of molecular control. Chem Mater. 1997;9:3037–48.10.1021/cm9703886Search in Google Scholar
[237] Schulz S, Gillan EG, Ross JL, Rogers LM, Rogers RD, Barron AR. Synthesis of gallium chalcogenide cubanes and their use as CVD precursors for Ga2E3 (E = S, Se). Organometallics. 1996;15:4880–3.10.1021/om960480wSearch in Google Scholar
[238] Garje SS, Copsey MC, Afzaal M, O’Brien P, Chivers T. Aerosol-assisted chemical vapour deposition of indium telluride thin films from {In(μ-Te)[N(iPr2PTe)2]}3. J Mater Chem. 2006;16:4542–7.10.1039/B608700KSearch in Google Scholar
[239] Sootsman JR, Chung DY, Kanatzidis MG. New and old concepts in thermoelectric materials. Angew Chem Int Ed. 2009;48:8616–39.10.1002/anie.200900598Search in Google Scholar PubMed
[240] Antunez PD, Buckley JJ, Brutchey RL. Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale. 2011;3:2399–411.10.1039/c1nr10084jSearch in Google Scholar PubMed
[241] Shah AY, Kedarnath G, Tyagi A, Betty CA, Jain VK, Vishwanadh B. Germanium xanthates: versatile precursors for photo responsive germanium sulfide nanostructures. Chemistry Select. 2017;2:4598–604.10.1002/slct.201700486Search in Google Scholar
[242] Davidovich RL, Stavila V, Whitmire KH. Stereochemistry of lead(II) complexes containing sulfur and selenium donor atom ligands. Coord Chem Rev. 2010;254:2193–226.10.1016/j.ccr.2010.05.013Search in Google Scholar
[243] Kedarnath G, Kumbhare LB, Dey S, Wadawale AP, Jain VK, Dey GK. β-Functionalized ethylchalcogenolate complexes of lead(II): synthesis, structures and their conversion into lead chalcogenide nanoparticles. Polyhedron. 2009;28:2749–53.10.1016/j.poly.2009.05.054Search in Google Scholar
[244] Cheng Y, Emge TJ, Brennan JG. Pyridineselenolate complexes of tin and lead: sn(2-SeNC5H4)2, Sn(2-SeNC5H4)4, Pb(2-SeNC5H4)2, and Pb(3-Me3Si-2-SeNC5H3)2. volatile CVD precursors to group IV−group VI semiconductors. Inorg Chem. 1996;35:342–6.10.1021/ic9507326Search in Google Scholar PubMed
[245] Hitchcock PB, Lappert MF, Samways BJ, Weinberg EL. Metal (Li, GeII, GeIII, SnII, and PbII) 2,6-dialkylbenzenethiolates; X-ray crystal structures of Sn(SAr)2(Ar = C6H2But3-2,4,6) and [M(SAr)2]3 (M = Sn or Pb, Ar = C6H3Pri2-2,6). J Chem Soc Chem Commun. 1983;1492–4.10.1039/C39830001492Search in Google Scholar
[246] Eichhöfer A, Jiang JJ, Sommer H, Weigend F, Fuhr O, Fenske D, et al. 1-D-Tin(II) phenylchalcogenolato complexes ∞1[Sn(EPh)2] (E = S, Se, Te) – synthesis, structures, quantum chemical studies and thermal behaviour. Eur J Inorg Chem. 2010;2010:410–8.10.1002/ejic.200900940Search in Google Scholar
[247] Chang WS, Lin YF, Sarkar B, Chang YM, Liu LK, Liu CW. Synthesis and characterization of [Pb{Se2P(OiPr)2}2]n pseudo polymorphs: polymeric, single source precursor enabling preparation of shape-controlled lead selenide structures. Dalton Trans. 2010;39:2821–30.10.1039/b921503dSearch in Google Scholar PubMed
[248] García-Montalvo V, Novosad J, Kilian P, Woollins JD, Slawin AM, García PG, et al. Structural diversity of four-co-ordinatemetal(II) compounds with the bidentatebis(diphenylselenophosphoryl)amide ligand,[M{N(PPh2Se)2-Se,Se′}2] (M = Sn, Pb, Zn, Cd or Hg). J Chem Soc Dalton Trans. 1997;1025–30.10.1039/a604961cSearch in Google Scholar
[249] Cea-Olivares R, Moya-Cabrera M, García-Montalvo V, Castro-Blanco R, Toscano RA, Hernández-Ortega S. True square planar [M{N(SePiPr2)2-Se,Se′}2] [M = Sn, Se] complexes. an extraordinary geometrical arrangement for well known centers [Sn(II), Se(II)]. Dalton Trans. 2005;1017–8.10.1039/B418198KSearch in Google Scholar PubMed
[250] Ritch JS, Chivers T, Ahmad K, Afzaal M, O’Brien P. Synthesis, structures, and multinuclear NMR spectra of tin(II) and lead(II) complexes of tellurium-containing imidodiphosphinate ligands: preparation of two morphologies of phase-pure PbTe from a single-source precursor. Inorg Chem. 2010;49:1198–205.10.1021/ic9021728Search in Google Scholar PubMed
[251] Schlecht S, Budde M, Kienle L. Nanocrystalline tin as a preparative tool: synthesis of unprotected nanoparticles of SnTe and SnSe and a new route to (PhSe)4Sn. Inorg Chem. 2002;41:6001–5.10.1021/ic020272ySearch in Google Scholar PubMed
[252] Bahr SR, Boudjouk P, McCarthy GJ. Tin-sulfur and tin-selenium phenylated ring systems as organometallic precursors to tin sulfide and tin selenide. Chem Mater. 1992;4:383–8.10.1021/cm00020a028Search in Google Scholar
[253] Boudjouk P, Seidler DJ, Bahr SR, McCarthy GJ. Bis(triphenyltin) chalcogenides as convenient precursors to phase-pure binary semiconductors. Chem Mater. 1994;6:2108–12.10.1021/cm00047a034Search in Google Scholar
[254] Chuprakov IS, Dahmen KH, Schneider IJ, Hagon J. Chem Mater. 1998;10:3467.10.1021/cm980247jSearch in Google Scholar
[255] Sharma RK, Kedarnath G, Wadawale A, Betty CA, Vishwanadh B, Jain VK. Diorganotin(IV) 2-pyridyl selenolates: synthesis, structures and their utility as molecular precursors for the preparation of tin selenide nanocrystals and thin films. Dalton Trans. 2012;41:12129–38.10.1039/c2dt31197fSearch in Google Scholar PubMed
[256] Schulz S. Covalently bonded compounds of heavy group 15/16 elements–synthesis, structure and potential application in material sciences. Coord Rev. 2015;297-298:49–76.10.1016/j.ccr.2014.11.003Search in Google Scholar
[257] Bochmann M, Song X, Hursthouse MB, Karaulov A. Chalcogenolato complexes of bismuth and antimony. Syntheses, thermolysis reactions, and crystal structure of Sb(SC6H2Pri3-2,4,6)3. J Chem Soc Dalton Trans. 1995;1649–52.10.1039/dt9950001649Search in Google Scholar
[258] Sharma RK, Kedarnath G, Jain VK, Wadawale A, Nalliath M, Pillai CG, et al. 2-pyridyl selenolates of antimony and bismuth: synthesis, characterization, structures and their use as single source molecular precursor for the preparation of metal selenide nanostructures and thin films. Dalton Trans. 2010;39:8779–87.10.1039/c0dt00263aSearch in Google Scholar PubMed
[259] Sharma RK, Kedarnath G, Vishwanadh B, Jain VK. Antimony and bismuth complexes containing 2-(4,6-dimethylpyrimidyl)selenolate: synthesis, characterization and their conversion to metal selenide nanocrystals. Int J Chem. 2013;2:423–6.Search in Google Scholar
[260] Monteiro OC, Trindade T, Paz FA, Klinowski J, Waters J, O’Brien P. Aerosol-assisted metallo-organic chemical vapour deposition of Bi2Se3 films using single-molecule precursors. The crystal structure of bismuth(III) dibutyldiselenocarbamate. J Mater Chem. 2003;13:3006–10.10.1039/b306662mSearch in Google Scholar
[261] Crouch DJ, Helliwell M, O’Brien P, Park JH, Waters J, Williams DJ. Imino-bis(diisopropylphosphine chalcogenide) complexes of arsenic, antimony and bismuth. Synthesis, CVD studies and X-ray structure of M[N(EPiPr2)2]n (E = Se, S; M = As, Sb, Bi). Dalton Trans. 2003;1500–4.10.1039/b212151dSearch in Google Scholar
[262] Waters J, Crouch D, Raftery J, O’Brien P. Deposition of bismuth chalcogenide thin films using novel single-source precursors by metal-organic chemical vapor deposition. Chem Mater. 2004;16:3289–98.10.1021/cm035287oSearch in Google Scholar
[263] Chang HW, Sarkar B, Liu CW. Synthesis of Sb2Se3 nanowires via a solvothermal route from the single source precursor Sb[Se2P(OiPr)2]3. Cryst Growth Des. 2007;7:2691–5.10.1021/cg060954mSearch in Google Scholar
[264] Lin YF, Chang HW, Lu SY, Liu CW. Preparation, characterization, and electrophysical properties of nanostructured BiPO4 and Bi2Se3 derived from a structurally characterized, single-source precursor Bi[Se2P(OiPr)2]3. J Phys Chem. 2007;111:18538–44.10.1021/jp076886bSearch in Google Scholar
[265] Gupta G, Kim J. Facile synthesis of hexagonal Sb2Te3 nanoplates using Ph2SbTeR (R = Et, Ph) single source precursors. Dalton Trans. 2013;42:8209–11.10.1039/c3dt50808kSearch in Google Scholar PubMed
[266] Schulz S, Heimann S, Friedrich J, Engenhorst M, Schierning G, Assenmacher W. Synthesis of hexagonal Sb2Te3 nanoplates by thermal decomposition of the single-source precursor (Et2Sb)2Te. Chem Mater. 2012;24:2228–34.10.1021/cm301259uSearch in Google Scholar
[267] Bendt G, Schulz S, Zastrow S, Nielsch K. Single-source precursor-based deposition of Sb2Te3 films by MOCVD. Chem Vap Deposition. 2013;19:235–41.10.1002/cvde.201207044Search in Google Scholar
[268] Dickson RS, Heazle KD. The assessment of some Sb-Te single-source compounds for MOCVD applications. J Organomet Chem. 1995;493:189–97.10.1016/0022-328X(94)05327-8Search in Google Scholar
[269] Garje SS, Eisler DJ, Ritch JS, Afzaal M, O’Brien P, Chivers T. A new route to antimony telluride nanoplates from a single-source precursor. J Am Chem Soc. 2006;128:3120–1.10.1021/ja0582408Search in Google Scholar PubMed
[270] Nief F. Complexes containing bonds between group 3, lanthanide or actinide metals and non-first-row main group elements (excluding halogens). Coord Chem Rev. 1998;178-180:13–81.10.1016/S0010-8545(98)00059-9Search in Google Scholar
[271] Kumar GA, Riman RE, Brennan JG. NIR emission from molecules and clusters with lanthanide–chalcogen bonds. Coord Chem Rev. 2014;273-274:111–24.10.1016/j.ccr.2014.04.009Search in Google Scholar
[272] Ephritikhine M. Molecular actinide compounds with soft chalcogen ligands. Coord Chem Rev. 2016;319:35–62.10.1016/j.ccr.2016.04.020Search in Google Scholar
[273] Hillier AC, Liu SY, Sella A, Elsegood MR. Lanthanide chalcogenolate complexes: synthesis and crystal structures of the isoleptic series [Sm(TpMe,Me)2ER] (E = O, S, Se, Te; TpMe,Me = tris-3,5-Dimethylpyrazolylborate). Inorg Chem. 2000;39:2635–44.10.1021/ic9914793Search in Google Scholar PubMed
[274] Strzelecki AR, Timinski PA, Helsel BA, Bianconi PA. Synthesis of lanthanide(II) complexes of aryl chalcogenolate ligands: potential precursors to magnetic semiconductors. J Am Chem Soc. 1992;114:3159–60.10.1021/ja00034a084Search in Google Scholar
[275] Cary DR, Arnold J. Synthesis and characterization of divalent lanthanide selenolates and tellurolates. X-ray crystal structures of Yb[SeSi(SiMe3)3]2(TMEDA)2 and {Eu[TeSi(SiMe3)3]2(DMPE)2}2(μ-DMPE). Inorg Chem. 1994;33:1791–6.10.1021/ic00087a012Search in Google Scholar
[276] Cary DR, Arnold J. Preparation of lanthanide tellurolates and evidence for the formation of cluster intermediates in their thermal decomposition to bulk metal tellurides. J Am Chem Soc. 1993;115:2520–1.10.1021/ja00059a064Search in Google Scholar
[277] Berg DJ, Burns CJ, Andersen RA, Zalkin Z. Electron-transfer reactions of divalent ytterbium metallocenes. Synthesis of the series [(Me5C5)2Yb]2[μ-E] (E = oxygen, sulfur, selenium, or tellurium) and crystal structure of [(Me5C5)2Yb]2[μ-Se]. Organometallics. 1989;8:1865–70.10.1021/om00110a006Search in Google Scholar
[278] Welder M, Recknagel A, Gilje JW, Nottemeyer M, Edelmann FT. Struktur und reaktivität von ytterbiumbenzamidinaten. J Organomet Chem. 1992;426:295–306.10.1016/0022-328X(92)83063-NSearch in Google Scholar
[279] Chen CS, Gong XG, Walsh A, Wei SH. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds. Phys Rev B. 2009;79:165211–10.10.1103/PhysRevB.79.165211Search in Google Scholar
[280] Aldakov DD, Lefrancois A, Reiss P. Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J Mater Chem C. 2013;1:3756–76.10.1039/c3tc30273cSearch in Google Scholar
[281] Fan FJ, Klu L, Yu SH. Energetic I–III–VI2 and I2–II–IV–VI4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energy Environ Sci. 2014;7:190–208.10.1039/C3EE41437JSearch in Google Scholar
[282] Omata T, Nose K, Otsuka-Yao-Matsuo S. Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals. J Appl Phys. 2009;105:073106.10.1063/1.3103768Search in Google Scholar
[283] Coughlan C, Ibanez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound copper chalcogenide nanocrystals. Chem Rev. 2017;117:5865–6109.10.1021/acs.chemrev.6b00376Search in Google Scholar PubMed
[284] Hirpo W, Dhingra S, Sutorik AC, Kanatzidis MG. Synthesis of mixed copper-indium chalcogenolates. Single-source precursors for the photovoltaic materials CuInQ2 (Q = S, Se). J Am Chem Soc. 1993;115:1597–9.10.1021/ja00057a067Search in Google Scholar
[285] Castro SL, Bailey SG, Raffaelle RP, Banger KK, Hepp AF. Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors. Chem Mater. 2003;15:3142–7.10.1021/cm034161oSearch in Google Scholar
[286] Wooten AJ, Werder DJ, Williams DJ, Casson JL, Hollingsworth JA. Solution−liquid−solid growth of ternary Cu−In−Se semiconductor nanowires from multiple- and single-source precursors. J Am Chem Soc. 2009;131:16177–88.10.1021/ja905730nSearch in Google Scholar PubMed
[287] Sun C, Westover RD, Margulieux KR, Zakharov LN, Holland AW, Pak JJ. Divergent syntheses of copper−indium bimetallic single-source precursors via thiolate ligand exchange. Inorg Chem. 2010;49:4756–8.10.1021/ic1006692Search in Google Scholar PubMed
[288] Kluge O, Krautscheid H. Trialkylphosphine-stabilized copper(I) gallium(III) phenylchalcogenolate complexes: crystal structures and generation of ternary semiconductors by thermolysis. Inorg Chem. 2012;51:6655–66.10.1021/ic300278vSearch in Google Scholar PubMed
[289] Kluge O, Biedermann R, Holldorf J, Krautscheid H. Organo-gallium/indium chalcogenide complexes of copper(I): molecular structures and thermal decomposition to ternary semiconductors. Chem Eur J. 2014;20:1318–31.10.1002/chem.201302530Search in Google Scholar PubMed
[290] Ng MT, Boothroyd CB, Vittal JJ. One-pot synthesis of new-phase AgInSe2 nanorods. J Am Chem Soc. 2006;128:7118–9.10.1021/ja060543uSearch in Google Scholar PubMed
[291] Ng MT, Vittal JJ. New Heterobimetallic and polymeric selenocarboxylates derived from [M(SeC{O}Ph)4]– (M = Ga and In) as molecular precursors for ternary selenides. Inorg Chem. 2006;45:10147–54.10.1021/ic0611286Search in Google Scholar PubMed
[292] Ghoshal S, Kumbhare LB, Jain VK, Dey GK. A facile synthesis of MInSe2 (M = Cu, Ag) via low temperature pyrolysis of single source molecular precursors, [(R3P)2MIn(SeCOAr)4]. Bull Mater Sci. 2007;30:173–8.10.1007/s12034-007-0031-8Search in Google Scholar
[293] Tyagi A, Shah AY, Kedarnath G, Wadawale A, Singh V, Tyagi D, et al. Synthesis, characterization and photovoltaic properties of colloidal phase pure Cu2SnSe3 nanostructures using molecular precursors. Mater. Sci.: Mater. Electron. 2018;29:8937–46.Search in Google Scholar
[294] Boudjouk P, Seidler DJ, Grier D, McCarthy GJ. Benzyl-substituted tin chalcogenides. efficient single-source precursors for tin sulfide, tin selenide, and Sn(SxSe1-x) solid solutions. Chem Mater. 1196;8:1189–96.10.1021/cm9504347Search in Google Scholar
[295] Bouska M, Strizik L, Dostal L, Bouška M, Střižík L, Dostál L, et al. Mixed organotin(IV) chalcogenides: from molecules to Sn-S-Se semiconducting thin films deposited by spin-coating. Chem Eur J. 2013;19:1877–81.10.1002/chem.201203573Search in Google Scholar PubMed
[296] Bouška M, Dostál L, de Proft F, Růžička A, Lyčka A, Jambor A. Intramolecularly coordinated tin(II) selenide and triseleneoxostannonic acid anhydride. Chem Eur j. 2011;17:455–9.10.1002/chem.201002641Search in Google Scholar PubMed
[297] Kolay S, Wadawale A, Jain VK Unpublished Results.Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Multi technique and multiscale approaches to the study of ancient and modern art objects on wooden and canvas support
- Characterization of proteins in cultural heritage using MALDI–TOF and LC–MS/MS mass spectrometric techniques
- Organophosphorus-selenium/tellurium reagents: from synthesis to applications
- Selenium– and tellurium–nitrogen reagents
- Applications of metal selenium/tellurium compounds in materials science
- Organoselenium and organotellurium compounds containing chalcogen-oxygen bonds in organic synthesis or related processes
- Templated enantioselective photocatalysis
- Liquid chromatography: Current applications in Heritage Science and recent developments
- Chemical space of naturally occurring compounds
Articles in the same Issue
- Multi technique and multiscale approaches to the study of ancient and modern art objects on wooden and canvas support
- Characterization of proteins in cultural heritage using MALDI–TOF and LC–MS/MS mass spectrometric techniques
- Organophosphorus-selenium/tellurium reagents: from synthesis to applications
- Selenium– and tellurium–nitrogen reagents
- Applications of metal selenium/tellurium compounds in materials science
- Organoselenium and organotellurium compounds containing chalcogen-oxygen bonds in organic synthesis or related processes
- Templated enantioselective photocatalysis
- Liquid chromatography: Current applications in Heritage Science and recent developments
- Chemical space of naturally occurring compounds