Fundamental principles of battery design
-
Matthias Zschornak
, Falk Meutzner
Abstract
With an increasing diversity of electrical energy sources, in particular with respect to the pool of renewable energies, and a growing complexity of electrical energy usage, the need for storage solutions to counterbalance the discrepancy of demand and offer is inevitable. In principle, a battery seems to be a simple device since it just requires three basic components – two electrodes and an electrolyte – in contact with each other. However, only the control of the interplay of these components as well as their dynamics, in particular the chemical reactions, can yield a high-performance system. Moreover, specific aspects such as production costs, weight, material composition and morphology, material criticality, and production conditions, among many others, need to be fulfilled at the same time. They present some of the countless challenges, which make battery design a long-lasting, effortful task. This chapter gives an introduction to the fundamental concepts of batteries. The principles are exemplified for the basic Daniell cell followed by a review of Nernst equation, electrified interface reactions, and ionic transport. The focus is addressed to crystalline materials. A comprehensive discussion of crystal chemical and crystal physical peculiarities reflects favourable and unfavourable local structural aspects from a crystallographic view as well as considerations with respect to electronic structure and bonding. A brief classification of battery types concludes the chapter.
References
[1] Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7:845–54.10.1038/nmat2297Suche in Google Scholar PubMed
[2] Linpo Y, Chen GZ. Redox electrode materials for supercapatteries. J Power Sources. 2016;326:604–12.10.1016/j.jpowsour.2016.04.095Suche in Google Scholar
[3] Meyer DC, Leisegang T, Stöcker H, Zschornak M. Electrochemical storage materials: from crystallography to manufacturing technology. Berlin, Germany: De Gruyter Oldenbourg Publishing House, 2018.Suche in Google Scholar
[4] Nernst W. Die elektrolytische Zersetzung wässriger Lösungen. Eur J Inorg Chem. 1897;30:1547–63.10.1002/cber.18970300273Suche in Google Scholar
[5] Atkins PW, de Paula J. Physikalische Chemie, 4. vollständig überarbeitete Auflage ed. Weinheim, Germany: Wiley-VCH Verlag, 2006. ISBN: 978-3-527-31807-0.Suche in Google Scholar
[6] Mortimer CE, Müller U. Chemie: Das Basiswissen der Chemie, 10. Auflage ed. Stuttgart, Germany: Georg Thieme Verlag, 2007. ISBN: 978-3134843095.10.1055/b-002-35703Suche in Google Scholar
[7] Hollemann AF, Wiberg N. Lehrbuch der Anorganischen Chemie, 102. Auflage ed. Berlin, Germany: Walter de Gruyter Verlag, 2007. ISBN: 978-3110177701.10.1515/9783110177701Suche in Google Scholar
[8] Schmidt VM. Elektrochemische Verfahrenstechnik – Grundlagen, Reaktionskinetik, Prozessoptimierung. Weinheim, Germany: Wiley-VCH Verlag, 2003. ISBN: 978-3-527-29958-4.10.1002/3527602143Suche in Google Scholar
[9] Riedel E, Janiak C. Anorganische Chemie, 7. Auflage ed. Berlin, Germany: Walter de Gruyter Verlag, 2007. ISBN: 978-3110189032.10.1515/9783110189032Suche in Google Scholar
[10] Gupta SV. Units of measurement: past, present and future. international system of units. In: Hull R, et al., editor(s). Springer series in materials science, Vol. 122. Heidelberg, Germany: Springer Science & Business Media, 2009. ISBN: 9783642007378.Suche in Google Scholar
[11] Kuchling H. Taschenbuch der Physik, 11. Auflage ed. Thun and Frankfurt/Main, Germany: Verlag Harri Deutsch, 1988:635. ISBN: 3-8171-1020-0.Suche in Google Scholar
[12] Bergmann L, Schaefer C, Kassing R. Lehrbuch der Experimentalphysik. Band 6: Festkörper, 2. Auflage ed. Berlin, Germany: Walter de Gruyter, 2005:361. ISBN: 3-11-017485-5.Suche in Google Scholar
[13] Nernst W. Theoretical Chemistry from the Standpoint of Avogardro’s Rule & Thermodynamics, 4th ed. London,UK, New York, USA: The MacMillan Company, 1904.Suche in Google Scholar
[14] von Helmholtz H. Über einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. Ann Phys Chem. 1853;89:353–77.10.1002/andp.18531650702Suche in Google Scholar
[15] Lippmann G. Beziehungen zwischen den Capillaren und elektrischen Erscheinungen. Ann Phys. 1873;225:546–61.10.1002/andp.18732250807Suche in Google Scholar
[16] Gouy M. Sur la constitution de la charge électrique à la surface d'un électrolyte. J Phys Theor Appl. 1910;9:457–68.10.1051/jphystap:019100090045700Suche in Google Scholar
[17] Chapman DL. LI. A contribution to the theory of electrocapillarity. Lond Edinb Dubl Phil Mag J Sci. 1913;25:475–81.10.1080/14786440408634187Suche in Google Scholar
[18] Stern O. The theory of the electrolytic double-layer. Z Elektrochem. 1924;30:1014–20.Suche in Google Scholar
[19] Bikerman J. Structure and capacity of electrical double layer. Lond Edinb Dubl Phil Mag J Sci. 1942;33:384–97.10.1080/14786444208520813Suche in Google Scholar
[20] Freise V. Zur Theorie der diffusen Doppelschicht. Z Elektrochem Ber Bunsenges physik Chem. 1952;56:822–7.Suche in Google Scholar
[21] Grahame DC. The electrical double layer and the theory of electrocapillarity. Chem Rev. 1947;41:441–501.10.1021/cr60130a002Suche in Google Scholar PubMed
[22] Erdey-Gruz T, Volmer M. Zur Theorie der Wasserstoff Überspannung. Z Phys Chem. 1930;150:203–13.10.1515/zpch-1930-15020Suche in Google Scholar
[23] Erdey-Gruz T, Volmer M. Zur Frage der elektrolytischen Metallüberspannung. Z Phys Chem. 1931;157:165–81.10.1515/zpch-1931-15710Suche in Google Scholar
[24] Butler JAV. The mechanism of overvoltage and its relation to the combination of hydrogen atoms at metal electrodes. Trans Faraday Soc. 1932;28:379–82.10.1039/tf9322800379Suche in Google Scholar
[25] Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc. 1993;140:1526–33.10.1149/1.2221597Suche in Google Scholar
[26] Frumkin A. Wasserstoffüberspannung und Struktur der Doppelschicht. Z Phys Chem. 1933;164:121–33.10.1515/zpch-1933-16411Suche in Google Scholar
[27] Van Soestbergen M. Frumkin-Butler-Volmer theory and mass transfer in electrochemical cells. Russ J Electrochem. 2012;48:570–9.10.1134/S1023193512060110Suche in Google Scholar
[28] Latz A, Zausch J. Thermodynamic derivation of a Butler–Volmer model for intercalation in Li-ion batteries. Electrochim Acta. 2013;110:358–62.10.1016/j.electacta.2013.06.043Suche in Google Scholar
[29] Rubi J, Kjelstrup S. Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler−Volmer and Nernst Equations. J Phys Chem B. 2003;107:13471–7.10.1021/jp030572gSuche in Google Scholar
[30] Zeng Y, Smith RB, Bai P, Bazant MZ. Simple formula for Marcus–Hush–Chidsey kinetics. J Electroanalytical Chem. 2014;735:77–83.10.1016/j.jelechem.2014.09.038Suche in Google Scholar
[31] Lück J, Latz A. Theory of reactions at electrified interfaces. Phys Chem Chem Phys. 2016;18:17799–804.10.1039/C6CP02681HSuche in Google Scholar PubMed
[32] Fick A. Über Diffusion. Annalen der Physik 170.1 (1855): 59-86. Fick A. On liquid diffusion. Phil Mag Series. 1855;4:30–9 .10.1080/14786445508641925Suche in Google Scholar
[33] Hanzig J, Zschornak M, Mehner E, Hanzig F, Münchgesang W, Leisegang T, et al. The anisotropy of oxygen vacancy migration in SrTiO3. J Phy Cond Matter. 2016;28:225001.10.1088/0953-8984/28/22/225001Suche in Google Scholar PubMed
[34] Hanzig J, Zschornak M, Nentwich M, Hanzig F, Gemming S, Leisegang T, et al. Strontium titanate: an all-in-one rechargeable energy storage material. J Power Sources. 2014;267:700–5.10.1016/j.jpowsour.2014.05.095Suche in Google Scholar
[35] Adams S, Prasado Rao R. High power lithium ion battery materials by computational design. Phys Status Solidi. 2011;208:1746–53.10.1002/pssa.201001116Suche in Google Scholar
[36] Pearson RG. Hard and soft acids and bases, HSAB, part 1: fundamental principles. J Chem Educ. 1968;45:581–7.10.1021/ed045p581Suche in Google Scholar
[37] Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, et al. Design principles for solid-state lithium superionic conductors. Nat Mater. 2015;14:1026–31.10.1038/nmat4369Suche in Google Scholar PubMed
[38] Meutzner F, Münchgesang W, Kabanova NA, Zschornak M, Leisegang T, Blatov VA, et al. On the way to new possible na-ion conductors: the voronoi–dirichlet approach, data mining and symmetry considerations in ternary Na oxides. Chem Eur J. 2015;21:16601–8.10.1002/chem.201501975Suche in Google Scholar PubMed
[39] Huggins RA. Chapter 9: Very Rapid Transport in Solids. In: Nowick AS, editor(s). Diffusion in solids: recent developments. New York, USA: Academic Press, 1975:445–86. ISBN: 0-12-522660-8.10.1016/B978-0-12-522660-8.50014-3Suche in Google Scholar
[40] Neumann F. In: Meyer OE, editor(s). Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers. Leipzig, Germany: B. G. Teubner-Verlag, 1885.Suche in Google Scholar
[41] van der Veen A, Bhattacharya J, Belak AA. Understanding Li Diffusion in Li-Intercalation Compounds. Acc Chem Res. 2013;46:1216–25.10.1021/ar200329rSuche in Google Scholar PubMed
[42] Rong Z, Malik R, Canepa P, Sai Gautam G, Liu M, Jain A, et al. Materials design rules for multivalent ion mobility in intercalation structures. Chem Mater. 2015;27:6016–21.10.1021/acs.chemmater.5b02342Suche in Google Scholar
[43] Yakovenko AA, Wei ZW, Wriedt M, Li JR, Halder GJ, Zhou HC. Study of guest molecules in metal organic frameworks by powder X-ray diffraction: analysis of difference envelope density. Cryst Growth Des. 2014;14:5397–407.10.1021/cg500525gSuche in Google Scholar
[44] Zschornak M, Richter C, Nentwich M, Stöcker H, Gemming S, Meyer DC. Probing a crystal’s short‐range structure and local orbitals by Resonant X‐ray Diffraction methods. Crystal Res Technol. 2014;49:43–5410.1002/crat.201300430Suche in Google Scholar
[45] Richter C, Zschornak M, Novikov D, Mehner E, Nentwich M, Hanzig J, Gorfman S, Meyer DC. Picometer polar atomic displacements in strontium titanate determined by resonant X-ray diffraction. Nat Comms. 2018;9:178.10.1038/s41467-017-02599-6Suche in Google Scholar PubMed PubMed Central
[46] Wengert S, Nesper R, Andreoni W, Parrinello M. Ionic diffusion in a ternary superconductor: an ab initio molecular dynamics study. Phys Rev Lett. 1996;77:5083–5.10.1103/PhysRevLett.77.5083Suche in Google Scholar PubMed
[47] Shi SQ, Lu P, Liu ZY, Qi Y, Hector LG, Li H, et al. Direct calculation of li-ion transport in the solid electrolyte interphase. J Am Chem Soc. 2012;134:15476–87.10.1021/ja305366rSuche in Google Scholar PubMed
[48] Soto FA, Yan P, Engelhard MH, Marzouk A, Wang C, Xu G, et al. Tuning the solid electrolyte interphase for selective li- and na-ion storage in hard carbon. Adv Mater. 2017;29:1606860.10.1002/adma.201606860Suche in Google Scholar PubMed
[49] Maiser E. Battery packaging – technology review. AIP Conf Proc. 2014;1597:204–8.10.1063/1.4878489Suche in Google Scholar
[50] Korthauer R. Handbuch Lithium-Ionen-Batterien. Berlin/Heidelberg, Germany: Springer-Verlag, 2013. ISBN: 978-3-642-30652-5.10.1007/978-3-642-30653-2Suche in Google Scholar
[51] Johnson Matthey Battery Systems (former Axeon © 2012). Our Guide to Batteries. Rooksley, Milton Keynes, UK: Johnson Matthey, Precedent House. 2nd edition, 2018. accessed on Jan 26th.Suche in Google Scholar
[52] Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery of choices. Science. 2011;334:928–35.10.1126/science.1212741Suche in Google Scholar PubMed
[53] Kraytsberg A, Ein-Eli Y. Higher, stronger, better? a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Ene Mat. 2012;2:922–39.10.1002/aenm.201200068Suche in Google Scholar
[54] Reddy TD, Linden D. Chapter 19 – 21: Nickel-Cadmium Batteries. Linden’s handbook of batteries, 4th ed. New York City, USA: McGrawHill Verlag, 2011. ISBN: 978-0071624213.Suche in Google Scholar
[55] Page KA, Soles CL, Runt J. Polymers for energy storage and delivery: polyelectrolytes for batteries and fuel cells, Vol. 1096. Washington D.C., USA: American Chemical Society, 2012. ISBN: 9780841226319.10.1021/bk-2012-1096Suche in Google Scholar
[56] Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M. Progress in flow battery research and development. J Electrochem Soc. 2011;158:R55–R79.10.1149/1.3599565Suche in Google Scholar
[57] Wang W, Luo Q, Li B, Wei X, Li L, Yang Z. Recent progress in redox flow battery research and development. Adv Funct Mater. 2013;23:970–86.10.1002/adfm.201200694Suche in Google Scholar
[58] Ponce De León C, Frías-Ferrer A, González-García J, Szánto DA, Walsh FC. Redox flow cells for energy conversion. J Power Sources. 2006;160:716–32.10.1016/j.jpowsour.2006.02.095Suche in Google Scholar
[59] Cheng F, Chen J. Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev. 2012;41:2172–92.10.1039/c1cs15228aSuche in Google Scholar PubMed
[60] Reddy TD, Linden D. Chapter 16 & 17: Lead-Acid Batteries & Valve Regulated Lead-Acid Batteries. Linden’s Handbook of Batteries, 4th ed. New York City, Vereinigte Staaten: McGrawHill Verlag, 2011. ISBN: 978-0071624213.Suche in Google Scholar
[61] Beattie GW. Nernst’s theory of the concentration cell. Charleston SC, USA: BiblioBazaar, 2015. ISBN: 9781343047952.Suche in Google Scholar
[62] Hahn T (Hrsg.). International tables for crystallography. Bd. A: Space-group symmetry. 5., rev. ed., repr. with corr. Dordrecht: Kluwer Academic Publishers, 2002. ISBN: 0-7923-6591-7.Suche in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Raman microspectroscopy for Cultural Heritage studies
- Fundamental principles of battery design
- Nanostructured anode materials
- Photocatalysis with nucleic acids and peptides
- Size-controlled atomically precise copper nanoclusters: Synthetic protocols, spectroscopic properties and applications
- 10.1515/psr-2017-0178
- Synthesis and characterization of size-controlled silver nanowires
- Synthesis of “three-legged” tri-dentate podand ligands incorporating long-chain aliphatic moieties, for water remediators, and for isolating metal ions in non-aqueous solution
- Size and shape control of metal nanoparticles in millifluidic reactors
Artikel in diesem Heft
- Raman microspectroscopy for Cultural Heritage studies
- Fundamental principles of battery design
- Nanostructured anode materials
- Photocatalysis with nucleic acids and peptides
- Size-controlled atomically precise copper nanoclusters: Synthetic protocols, spectroscopic properties and applications
- 10.1515/psr-2017-0178
- Synthesis and characterization of size-controlled silver nanowires
- Synthesis of “three-legged” tri-dentate podand ligands incorporating long-chain aliphatic moieties, for water remediators, and for isolating metal ions in non-aqueous solution
- Size and shape control of metal nanoparticles in millifluidic reactors