Abstract
Alcohols are a promising source for the sustainable production of hydrogen that may also serve as rechargeable liquid organic hydrogen carriers (LOHCs). Metal-catalyzed acceptorless dehydrogenation of alcohols produces carbonyl derivatives as H2-depleted by-products, which by means of a hydrogenation reaction can be reconverted to the initial alcohols. Hence, reversible H2-storage systems based on pairs of secondary alcohols/ketones and primary alcohols/carboxylic acid derivatives may be envisaged. In this contribution, the hydrogenation of carbonyl derivatives, including ketones, esters, amides and carboxylic acids, is reviewed from the perspective of the hydrogen storage in alcohols.
Funding statement: Financial support (FEDER contribution) from the Spanish MINECO (CTQ2016-80814-R and CTQ2016-81797-REDC) is gratefully acknowledged.
References
[1] Dalebrook AF, Gan W, Grasemann M, Moret S, Laurenczy G. Hydrogen storage: beyond conventional methods. Chem Commun. 2013;49:8735.10.1039/c3cc43836hSearch in Google Scholar PubMed
[2] Zhu QL, Xu Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ Sci. 2015;8:478.10.1039/C4EE03690ESearch in Google Scholar
[3] Preuster P, Papp C, Wasserscheid P. Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy. Acc Chem Res. 2017;50:74.10.1021/acs.accounts.6b00474Search in Google Scholar PubMed
[4] Campos J. Dehydrogenation of alcohols and polyols from a hydrogen production perspective. In: Zell T, Langer R, editors. Hydrogen Storage. Berlin, Germany and Boston, MA, USA: De Gruyter, forthcoming 2018.10.1515/9783110536423-007Search in Google Scholar
[5] Trincado M, Banerjeea D, Grützmacher H. Molecular catalysts for hydrogen production from alcohols. Energy Environ Sci. 2014;7:2464.10.1039/C4EE00389FSearch in Google Scholar
[6] Johnson TC, Morris DJ, Wills M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev. 2010;39:81.10.1039/B904495GSearch in Google Scholar PubMed
[7] Crabtree RH. Homogeneous transition metal catalysis of acceptorless dehydrogenative alcohol oxidation: applications in hydrogen storage and to heterocycle synthesis. Chem Rev. 2017;117:9228.10.1021/acs.chemrev.6b00556Search in Google Scholar PubMed
[8] Chamoun R, Demirci UB, Miele P. Cyclic dehydrogenation-(re)hydrogenation with hydrogen-storage materials: an overview. Energy Technol. 2015;3:100.10.1002/ente.201402136Search in Google Scholar
[9] Teichmann D, Arlt W, Wasserscheid P, Freymann R. A future energy supply based on liquid organic hydrogen carriers (LOHC). Energy Environ Sci. 2011;4:2767.10.1039/c1ee01454dSearch in Google Scholar
[10] De Vries JG, Elsevier CJ, Eds. Handbook of homogeneous hydrogenation. Weinheim: Wiley-VCH; 2007.10.1002/9783527619382Search in Google Scholar
[11] Dub PA, Ikariya T. Catalytic reductive transformations of carboxylic and carbonic acid derivatives using molecular hydrogen. ACS Catal. 2012;2:1718.10.1021/cs300341gSearch in Google Scholar
[12] Khusnutdinova JR, Milstein D. Metal–ligand cooperation. Angew Chem Int Ed. 2015;54:12236.10.1002/anie.201503873Search in Google Scholar PubMed
[13] Zhao B, Han Z, Ding K. The N–H functional group in organometallic catalysis. Angew Chem Int Ed. 2013;52:4744.10.1002/anie.201204921Search in Google Scholar PubMed
[14] Gunanathan C, Milstein D. Bond activation by metal–ligand cooperation: Design of “green” catalytic reactions based on aromatization–dearomatization of pincer complexes. Top Organomet Chem. 2011;37:55.10.1007/3418_2011_6Search in Google Scholar
[15] Wang D, Astruc D. The golden age of transfer hydrogenation. Chem Rev. 2015;115:6621.10.1021/acs.chemrev.5b00203Search in Google Scholar PubMed
[16] Kawahara R, Fujita K, Yamaguchi R. Cooperative catalysis by iridium complexes with a bipyridonate ligand: versatile dehydrogenative oxidation of alcohols and reversible dehydrogenation–hydrogenation between 2-propanol and acetone. Angew Chem Int Ed. 2012;51:12790.10.1002/anie.201206987Search in Google Scholar PubMed
[17] Adair GRA, Williams JMJ. Oxidant-free oxidation: ruthenium catalysed dehydrogenation of alcohols. Tetrahedron Lett. 2005;46:8233.10.1016/j.tetlet.2005.09.083Search in Google Scholar
[18] Junge H, Beller M. Ruthenium-catalyzed generation of hydrogen from iso-propanol. Tetrahedron Lett. 2005;46:1031.10.1016/j.tetlet.2004.11.159Search in Google Scholar
[19] Blum Y, Czarkle D, Rahamlm Y, Shvo Y. (Cyclopentadienone)ruthenium carbonyl complexes - A new class of homogeneous hydrogenation catalysts. Organometallics. 1985;4:1459.10.1021/om00127a027Search in Google Scholar
[20] Conley BL, Pennington-Boggio MK, Boz E, Williams TJ. Discovery, applications, and catalytic mechanisms of Shvo’s catalyst. Chem Rev. 2010;110:2294.10.1021/cr9003133Search in Google Scholar PubMed
[21] Choi JH, Kim N, Shin YJ, Park JH, Park J. Heterogeneous Shvo-type ruthenium catalyst: dehydrogenation of alcohols without hydrogen acceptors. Tetrahedron Lett. 2004;45:4607.10.1016/j.tetlet.2004.04.113Search in Google Scholar
[22] Doucet H, Ohkuma T, Murata K, Yokozawa T, Kozawa M, Katayama E, et al. trans-[RuCl2(phosphane)2(1,2-diamine)] and chiral trans-[RuCl2(diphosphane)(1,2-diamine)]: shelf-stable precatalysts for the rapid, productive, and stereoselective hydrogenation of ketones. Angew Chem Int Ed. 1998;37:1703.10.1002/(SICI)1521-3773(19980703)37:12<1703::AID-ANIE1703>3.0.CO;2-ISearch in Google Scholar
[23] Noyori R, Ohkuma T. Asymmetric catalysis by architectural and functional molecular engineering: practical chemo- and stereoselective hydrogenation of ketones. Angew Chem Int Ed. 2001;40:40.10.1002/1521-3773(20010105)40:1<40::AID-ANIE40>3.0.CO;2-5Search in Google Scholar
[24] Baratta W, Barbato C, Magnolia S, Siega K, Rigo P. Chiral and nonchiral [OsX2(diphosphane)(diamine)] (X: Cl, OCH2CF3). Complexes for fast hydrogenation of carbonyl compounds. Chem Eur J. 2010;16:3201.10.1002/chem.200902809Search in Google Scholar
[25] Baratta W, Bossi G, Putignano E, Rigo P. Pincer and diamine Ru and Os diphosphane complexes as efficient catalysts for the dehydrogenation of alcohols to ketones. Chem Eur J. 2011;17:3474.10.1002/chem.201003022Search in Google Scholar
[26] Ohkuma T, Sandoval CA, Srinivasan R, Lin Q, Wei Y, Muñiz K, et al. Asymmetric hydrogenation of tert-alkyl ketones. J Am Chem Soc. 2005;127:8288.10.1021/ja052071+Search in Google Scholar PubMed
[27] Baratta W, Ballico M, Del Zotto A, Siega K, Magnolia S, Rigo P. Osmium pyme complexes for fast hydrogenation and asymmetric transfer hydrogenation of ketones. Chem Eur J. 2008;14:2557.10.1002/chem.200701719Search in Google Scholar
[28] Putignano E, Bossi G, Rigo P, Baratta W. MCl2(ampy)(dppf) (M = Ru, Os): multitasking catalysts for carbonyl compound/alcohol interconversion reactions. Organometallics. 2012;31:1133.10.1021/om201189rSearch in Google Scholar
[29] Baratta W, Ballico M, Chelucci G, Siega K, Rigo P. Osmium(II) CNN pincer complexes as efficient catalysts for both asymmetric transfer and H2 hydrogenation of ketones. Angew Chem Int Ed. 2008;47:4362.10.1002/anie.200800339Search in Google Scholar
[30] Baratta W, Chelucci G, Magnolia S, Siega K, Rigo P. Highly productive CNN pincer ruthenium catalysts for the asymmetric reduction of alkyl aryl ketones. Chem Eur J. 2009;15:726.10.1002/chem.200802112Search in Google Scholar
[31] Baratta W, Fanfoni L, Magnolia S, Siega K, Rigo P. Benzo[h]quinoline pincer ruthenium and osmium catalysts for hydrogenation of ketones. Eur J Inorg Chem. 2010;1419.10.1002/ejic.200901253Search in Google Scholar
[32] Nielsen M, Kammer A, Cozzula D, Junge H, Gladiali S, Beller M. Efficient hydrogen production from alcohols under mild reaction conditions. Angew Chem Int Ed. 2011;50:9593.10.1002/anie.201104722Search in Google Scholar PubMed
[33] Kuriyama W, Matsumoto T, Ogata O, Ino Y, Aoki K, Tanaka S, et al. Catalytic hydrogenation of esters. Development of an efficient catalyst and processes for synthetising (R)-1,2-propanediol and 2-(L-menthoxy)ethanol. Org Process Res Dev. 2012;16:166.10.1021/op200234jSearch in Google Scholar
[34] Zhang J, Gandelman M, Shimon LJW, Rozenberg H, Milstein D. Electron-rich, bulky ruthenium PNP-type complexes. Acceptorless catalytic alcohol dehydrogenation. Organometallics. 2004;23:4026.10.1021/om049716jSearch in Google Scholar
[35] Zhang J, Gandelman M, Shimon LJW, Milstein D. Electron-rich, bulky PNN-type ruthenium complexes: synthesis, characterization and catalysis of alcohol dehydrogenation. Dalton Trans. 2007;107.10.1039/B613438FSearch in Google Scholar PubMed
[36] Zhang J, Balaraman E, Leitus G, Milstein D. Electron-rich PNP- and PNN-type ruthenium(II) hydrido borohydride pincer complexes. Synthesis, structure, and catalytic dehydrogenation of alcohols and hydrogenation of esters. Organometallics. 2011;30:5716.10.1021/om200595mSearch in Google Scholar
[37] Fujita K, Tanino N, Yamaguchi R. Ligand-promoted dehydrogenation of alcohols catalyzed by Cp*Ir complexes. A new catalytic system for oxidant-free oxidation of alcohols. Org Lett. 2007;9:109.10.1021/ol062806vSearch in Google Scholar PubMed
[38] Fujita K, Yoshida T, Imori Y, Yamaguchi R. Dehydrogenative oxidation of primary and secondary alcohols catalyzed by a Cp*Ir complex having a functional C,N-chelate ligand. Org Lett. 2011;13:2278.10.1021/ol2005424Search in Google Scholar PubMed
[39] Kawahara R, Fujita K, Yamaguchi R. Dehydrogenative oxidation of alcohols in aqueous media using water-soluble and reusable Cp*Ir catalysts bearing a functional bipyridine ligand. J Am Chem Soc. 2012;134:3643.10.1021/ja210857zSearch in Google Scholar PubMed
[40] Royer AM, Rauchfuss TB, Gray DL. Organoiridium pyridonates and their role in the dehydrogenation of alcohols. Organometallics. 2010;29:6763.10.1021/om100901bSearch in Google Scholar
[41] Chakraborty S, Lagaditis PO, Förster M, Bielinski EA, Hazari N, Holthausen MC, et al. Well-defined iron catalysts for the acceptorless reversible dehydrogenation-hydrogenation of alcohols and ketones. ACS Catal. 2014;4:3994.10.1021/cs5009656Search in Google Scholar
[42] Bonitatibus PJ, Chakraborty S, Doherty MD, Siclovan O, Jones WD, Soloveichik GL. Reversible catalytic dehydrogenation of alcohols for energy storage. Proc Natl Acad Sci USA. 2015;112:1687.10.1073/pnas.1420199112Search in Google Scholar
[43] Zhang G, Scott BL, Hanson SK. Mild and homogeneous cobalt-catalyzed hydrogenation of C=C, C=O, and C=N bonds. Angew Chem Int Ed. 2012;51:12102.10.1002/anie.201206051Search in Google Scholar
[44] Zhang G, Hanson SK. Cobalt-catalyzed acceptorless alcohol dehydrogenation. Org Lett. 2013;15:650.10.1021/ol303479fSearch in Google Scholar PubMed
[45] Zhang G, Vasudevan KV, Scott BL, Hanson SK. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions. J Am Chem Soc. 2013;135:8668.10.1021/ja402679aSearch in Google Scholar PubMed
[46] Chakraborty S, Piszel PE, Brennessel WW, Jones WD. A single nickel catalyst for the acceptorless dehydrogenation of alcohols and hydrogenation of carbonyl compounds. Organometallics. 2015;34:5203.10.1021/acs.organomet.5b00824Search in Google Scholar
[47] Pritchard J, Filonenko GA, Van Putten R, Hensen EJM, Pidko EA. Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chem Soc Rev. 2015;44:3808.10.1039/C5CS00038FSearch in Google Scholar PubMed
[48] Grey RA, Pez GP, Wallo A. Anionic metal hydride catalysts. 2. Application to the hydrogenation of ketones, aldehydes, carboxylic acid esters, and nitriles. J Am Chem Soc. 1981;103:7536.10.1021/ja00415a022Search in Google Scholar
[49] Teunissen HT, Elsevier CJ. Homogeneous ruthenium catalyzed hydrogenation of esters to alcohols. Chem Commun. 1998;1367.10.1039/a801807cSearch in Google Scholar
[50] Nomura K, Ogura H, Imanishi Y. Ruthenium catalyzed hydrogenation of methyl phenylacetate under low hydrogen pressure. J Mol Catal A. 2002;178:105.10.1016/S1381-1169(01)00281-3Search in Google Scholar
[51] Zhang J, Leitus G, Ben-David Y, Milstein D. Efficient homogeneous catalytic hydrogenation of esters to alcohols. Angew Chem Int Ed. 2006;45:1113.10.1002/anie.200503771Search in Google Scholar PubMed
[52] Zhang J, Leitus G, Ben-David Y, Milstein D. Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes. J Am Chem Soc. 2005;127:10840.10.1021/ja052862bSearch in Google Scholar PubMed
[53] Fogler E, Balaraman E, Ben-David Y, Leitus G, Shimon LJW, Milstein D. New CNN-type ruthenium pincer NHC complexes. Mild, efficient catalytic hydrogenation of esters. Organometallics. 2011;30:3826.10.1021/om200367jSearch in Google Scholar
[54] Sun Y, Koehler C, Tan R, Annibale VT, Song D. Ester hydrogenation catalyzed by Ru-CNN pincer complexes. Chem Commun. 2011;47:8349.10.1039/c1cc12601fSearch in Google Scholar PubMed
[55] Filonenko GA, Cosimi E, Lefort L, Conley MP, Coperet C, Lutz M, et al. Lutidine-derived Ru-CNC hydrogenation pincer catalysts with versatile coordination properties. ACS Catal. 2014;4:2667.10.1021/cs500720ySearch in Google Scholar
[56] Kim D, Le L, Drance MJ, Jensen KH, Bogdanovski K, Cervarich TN, et al. Ester hydrogenation catalyzed by CNN-pincer complexes of ruthenium. Organometallics. 2016;35:982.10.1021/acs.organomet.6b00009Search in Google Scholar
[57] Li W, Xie J-H, Yuan M-L, Zhou Q-L. Ruthenium complexes of tetradentate bipyridine ligands: highly efficient catalysts for the hydrogenation of carboxylic esters and lactones. Green Chem. 2014;16:4081.10.1039/C4GC00835ASearch in Google Scholar
[58] Saudan LA, Saudan CM, Debieux C, Wyss P. Dihydrogen reduction of carboxylic esters to alcohols under the catalysis of homogeneous ruthenium complexes: high efficiency and unprecedented chemoselectivity. Angew Chem Int Ed. 2007;46:7473.10.1002/anie.200701015Search in Google Scholar PubMed
[59] Nielsen M, Junge H, Kammer A, Beller M. Towards a green process for bulk-scale synthesis of ethyl acetate: efficient acceptorless dehydrogenation of ethanol. Angew Chem Int Ed. 2012;51:5711.10.1002/anie.201200625Search in Google Scholar PubMed
[60] Spasyuk D, Smith S, Gusev DG. From esters to alcohols and back with ruthenium and osmium catalysts. Angew Chem Int Ed. 2012;51:2772.10.1002/anie.201108956Search in Google Scholar PubMed
[61] Spasyuk D, Gusev DG. Acceptorless dehydrogenative coupling of ethanol and hydrogenation of esters and imines. Organometallics. 2012;31:5239.10.1021/om300670rSearch in Google Scholar
[62] Spasyuk D, Vicent C, Gusev DG. Chemoselective hydrogenation of carbonyl compounds and acceptorless dehydrogenative coupling of alcohols. J Am Chem Soc. 2015;137:3743.10.1021/ja512389ySearch in Google Scholar PubMed
[63] Wang Z, Chen X, Liu B, Liu Q, Solan GA, Yang X, et al. Cooperative interplay between a flexible PNN-Ru(II) complex and a NaBH4 additive in the efficient catalytic hydrogenation of esters. Catal Sci Technol. 2017;7:1297.10.1039/C6CY02413KSearch in Google Scholar
[64] Pan B, Liu B, Yue E, Liu Q, Yang X, Wang Z, et al. A ruthenium catalyst with unprecedented effectiveness for the coupling cyclization of γ-amino alcohols and secondary alcohols. ACS Catal. 2016;6:1247.10.1021/acscatal.5b02638Search in Google Scholar
[65] Fogler E, Garg JA, Hu P, Leitus G, Shimon LJW, Milstein D. System with potential dual modes of metal–ligand cooperation: highly catalytically active pyridine-based PNNH–Ru pincer complexes. Chem Eur J. 2014;20:15727.10.1002/chem.201405295Search in Google Scholar PubMed
[66] Tan X, Wang Y, Liu Y, Wang F, Shi L, Lee K-H, et al. Highly efficient tetradentate ruthenium catalyst for ester reduction: especially for hydrogenation of fatty acid esters. Org Lett. 2015;17:454.10.1021/ol503456jSearch in Google Scholar PubMed
[67] Wang F, Tan X, Lv H, Zhang X. New ruthenium complexes based on tetradentate bipyridine ligands for catalytic hydrogenation of esters. Chem Asian J. 2016;11:2103.10.1002/asia.201600506Search in Google Scholar PubMed
[68] Spasyuk D, Smith S, Gusev DG. Replacing phosphorus with sulfur for the efficient hydrogenation of esters. Angew Chem Int Ed. 2013;52:2538.10.1002/anie.201209218Search in Google Scholar PubMed
[69] Filonenko GA, Aguila MJB, Schulpen EN, Van Putten R, Wiecko J, Müller C, et al. Bis-N-heterocyclic carbene aminopincer ligands enable high activity in Ru-catalyzed ester hydrogenation. J Am Chem Soc. 2015;137:7620.10.1021/jacs.5b04237Search in Google Scholar PubMed
[70] Wylie WN, Morris RH. Ester hydrogenation catalyzed by a ruthenium(II) complex bearing an N-heterocyclic carbene tethered with an “NH2” group and a DFT study of the proposed bifunctional mechanism. ACS Catal. 2013;3:32.10.1021/cs300619qSearch in Google Scholar
[71] Junge K, Wendt B, Westerhaus FA, Spannenberg A, Jiao H, Beller M. Phosphine–imidazolyl ligands for the efficient ruthenium-catalyzed hydrogenation of carboxylic esters. Chem Eur J. 2012;18:9011.10.1002/chem.201200408Search in Google Scholar PubMed
[72] Westerhaus FA, Wendt B, Dumrath A, Wienhöfer G, Junge K, Beller M. Ruthenium catalysts for hydrogenation of aromatic and aliphatic esters: make use of bidentate carbene ligands. ChemSusChem. 2013;6:1001.10.1002/cssc.201200825Search in Google Scholar PubMed
[73] Junge K, Wendt B, Jiao H, Beller M. Iridium-catalyzed hydrogenation of carboxylic acid esters. ChemCatChem. 2014;6:2810.10.1002/cctc.201402421Search in Google Scholar
[74] Brewster TP, Rezayee NM, Culakova Z, Sanford MS, Goldberg KI. Base-free iridium-catalyzed hydrogenation of esters and lactones. ACS Catal. 2016;6:3113.10.1021/acscatal.6b00263Search in Google Scholar
[75] Zell T, Ben-David Y, Milstein D. Unprecedented iron-catalyzed ester hydrogenation. Mild, selective, and efficient hydrogenation of trifluoroacetic esters to alcohols catalyzed by an iron pincer complex. Angew Chem Int Ed. 2014;53:4685.10.1002/anie.201311221Search in Google Scholar PubMed
[76] Chakraborty S, Dai H, Bhattacharya P, Fairweather NT, Gibson MS, Krause JA, et al. Iron-based catalysts for the hydrogenation of esters to alcohols. J Am Chem Soc. 2014;136:7869.10.1021/ja504034qSearch in Google Scholar PubMed
[77] Werkmeister S, Junge K, Wendt B, Alberico E, Jiao H, Baumann W, et al. Hydrogenation of esters to alcohols with a well-defined iron complex. Angew Chem Int Ed. 2014;53:8722.10.1002/anie.201402542Search in Google Scholar PubMed
[78] Elangovan S, Wendt B, Topf C, Bachmann S, Scalone M, Spannenberg A, et al. Improved second generation iron pincer complexes for effective ester hydrogenation. Adv Synth Catal. 2016;358:820.10.1002/adsc.201500930Search in Google Scholar
[79] Qu S, Dai H, Dang Y, Song C, Wang Z-X, Guan H. Computational mechanistic study of Fe-catalyzed hydrogenation of esters to alcohols: improving catalysis by accelerating precatalyst activation with a Lewis base. ACS Catal. 2014;4:4377.10.1021/cs501089hSearch in Google Scholar
[80] Korstanje TJ, Van Der Vlugt JI, Elsevier CJ, De Bruin B. Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst. Science. 2015;350:298.10.1126/science.aaa8938Search in Google Scholar PubMed
[81] Srimani D, Mukherjee A, Goldberg AFG, Leitus G, Diskin-Posner Y, Shimon LJW, et al. Cobalt-catalyzed hydrogenation of esters to alcohols: unexpected reactivity trend indicates ester enolate intermediacy. Angew Chem Int Ed. 2015;54:12357.10.1002/anie.201502418Search in Google Scholar PubMed
[82] Yuwen J, Chakraborty S, Brennessel WW, Jones WD. Additive-free cobalt-catalyzed hydrogenation of esters to alcohols. ACS Catal. 2017;7:3735.10.1021/acscatal.7b00623Search in Google Scholar
[83] Elangovan S, Garbe M, Jiao H, Spannenberg A, Junge K, Beller M. Hydrogenation of esters to alcohols catalyzed by defined manganese pincer complexes. Angew Chem Int Ed. 2016;55:15364.10.1002/anie.201607233Search in Google Scholar PubMed
[84] Widegren MB, Harkness GJ, Slawin AMZ, Cordes DB, Clarke ML. A highly active manganese catalyst for enantioselective ketone and ester hydrogenation. Angew Chem Int Ed. 2017;56:5825.10.1002/anie.201702406Search in Google Scholar PubMed
[85] Espinosa-Jalapa NA, Nerush A, Shimon LJW, Leitus G, Avram L, Ben-David Y, et al. Manganese-catalyzed hydrogenation of esters to alcohols. Chem Eur J. 2017;23:5934.10.1002/chem.201604991Search in Google Scholar PubMed
[86] Van Putten R, Uslamin EA, Garbe M, Liu C, Gonzalez-de-Castro A, Lutz M, et al. Non-pincer-type manganese complexes as efficient catalysts for the hydrogenation of esters. Angew Chem Int Ed. 2017;56:7531.10.1002/anie.201701365Search in Google Scholar PubMed PubMed Central
[87] Hu P, Fogler E, Diskin-Posner Y, Iron MA, Milstein D. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nat Commun. 2015;6:6859.10.1038/ncomms7859Search in Google Scholar PubMed PubMed Central
[88] Hu P, Ben-David Y, Milstein D. Rechargeable hydrogen storage system based on the dehydrogenative coupling of ethylenediamine with ethanol. Angew Chem Int Ed. 2016;55:1061.10.1002/anie.201505704Search in Google Scholar PubMed
[89] Ito M, Koo LW, Himizu A, Kobayashi C, Sakaguchi A, Ikariya T. Hydrogenation of N-acylcarbamates and N-acylsulfonamides catalyzed by a bifunctional [Cp*Ru(PN)] complex. Angew Chem Int Ed. 2009;48:1324.10.1002/anie.200805307Search in Google Scholar PubMed
[90] Balaraman E, Gnanaprakasam B, Shimon LJW, Milstein D. Direct hydrogenation of amides to alcohols and amines under mild conditions. J Am Chem Soc. 2010;132:16756.10.1021/ja1080019Search in Google Scholar PubMed
[91] Barrios-Francisco R, Balaraman E, Diskin-Posner Y, Leitus G, Shimon LJW, Milstein D. PNN ruthenium pincer complexes based on phosphinated 2,2′-dipyridinemethane and 2,2′-oxobispyridine. Metal−ligand cooperation in cyclometalation and catalysis. Organometallics. 2013;32:2973.10.1021/om400194wSearch in Google Scholar
[92] Gnanaprakasam B, Milstein D. Synthesis of amides from esters and amines with liberation of H2 under neutral conditions. J Am Chem Soc. 2011;133:1682.10.1021/ja109944nSearch in Google Scholar PubMed
[93] Ito M, Ootsuka T, Watari R, Shiibashi A, Himizu A, Ikariya T. Catalytic hydrogenation of carboxamides and esters by well-defined Cp*Ru complexes bearing a protic amine ligand. J Am Chem Soc. 2011;133:4240.10.1021/ja1117254Search in Google Scholar PubMed
[94] John JM, Bergens SH. A highly active catalyst for the hydrogenation of amides to alcohols and amines. Angew Chem Int Ed. 2011;50:10377.10.1002/anie.201103137Search in Google Scholar PubMed
[95] John JM, Loorthuraja R, Antoniuk E, Bergens SH. Catalytic hydrogenation of functionalized amides under basic and neutral conditions. Catal Sci Technol. 2015;5:1181.10.1039/C4CY01227ESearch in Google Scholar
[96] Kita Y, Higuchi T, Mashima K. Hydrogenation of amides catalyzed by a combined catalytic system of a Ru complex with a zinc salt. Chem Commun. 2014;50:11211.10.1039/C4CC04481ASearch in Google Scholar PubMed
[97] Miura T, Held IE, Oishi S, Naruto M, Saito S. Catalytic hydrogenation of unactivated amides enabled by hydrogenation of catalyst precursor. Tetrahedron Lett. 2013;54:2674.10.1016/j.tetlet.2013.03.047Search in Google Scholar
[98] Cabrero-Antonino JR, Alberico E, Drexler H-J, Baumann W, Junge K, Junge H, et al. Efficient base free hydrogenation of amides to alcohols and amines catalyzed by well-defined pincer imidazolyl−ruthenium complexes. ACS Catal. 2016;6:47.10.1021/acscatal.5b01955Search in Google Scholar
[99] Shi L, Tan X, Long J, Xiong X, Yang S, Xue P, et al. Direct catalytic hydrogenation of simple amides: A highly efficient approach from amides to amines and alcohols. Chem Eur J. 2017;23:546.10.1002/chem.201604904Search in Google Scholar PubMed
[100] Garg JA, Chakraborty S, Ben-David Y, Milstein D. Unprecedented iron-catalyzed selective hydrogenation of activated amides to amines and alcohols. Chem Commun. 2016;52:5285.10.1039/C6CC01505KSearch in Google Scholar PubMed
[101] Schneck F, Assmann M, Balmer M, Harms K, Langer R. Selective hydrogenation of amides to amines and alcohols catalyzed by improved iron pincer complexes. Organometallics. 2016;35:1931.10.1021/acs.organomet.6b00251Search in Google Scholar
[102] Rezayee NM, Samblanet DC, Sanford MS. Iron-catalyzed hydrogenation of amides to alcohols and amines. ACS Catal. 2016;6:6377.10.1021/acscatal.6b01454Search in Google Scholar
[103] Jayarathne U, Zhang Y, Hazari N, Bernskoetter WH. Selective iron-catalyzed deaminative hydrogenation of amides. Organometallics. 2017;36:409.10.1021/acs.organomet.6b00816Search in Google Scholar
[104] Papa V, Cabrero-Antonino JR, Alberico E, Spanneberg A, Junge K, Junge H, et al. Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese–PNN pincer complex. Chem Sci. 2017;8:3576.10.1039/C7SC00138JSearch in Google Scholar PubMed PubMed Central
[105] Balaraman E, Khaskin E, Leitus G, Milstein D. Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source. Nat Chem. 2013;5:122.10.1038/nchem.1536Search in Google Scholar PubMed
[106] Zhang L, Nguyen DH, Raffa G, Trivelli X, Capet F, Desset S, et al. Catalytic conversion of alcohols into carboxylic acid salts in water: scope, recycling, and mechanistic insights. ChemSusChem. 2016;9:1413.10.1002/cssc.201600243Search in Google Scholar PubMed
[107] Brewster TP, Miller AJM, Heinekey DM, Goldberg KI. Hydrogenation of carboxylic acids catalyzed by half-sandwich complexes of iridium and rhodium. J Am Chem Soc. 2013;135:16022.10.1021/ja408149nSearch in Google Scholar PubMed
[108] Tsurusaki A, Murata K, Onishi N, Sordakis K, Laurenczy G, Himeda Y. Investigation of hydrogenation of formic acid to methanol using H2 or formic acid as a hydrogen source. ACS Catal. 2017;7:1123.10.1021/acscatal.6b03194Search in Google Scholar
[109] Vom Stein T, Meuresch M, Limper D, Schmitz M, Hölscher M, Coetzee J, et al. Highly versatile catalytic hydrogenation of carboxylic and carbonic acid derivatives using a Ru-Triphos complex: molecular control over selectivity and substrate scope. J Am Chem Soc. 2014;136:13217.10.1021/ja506023fSearch in Google Scholar PubMed
[110] Cui X, Li Y, Topf C, Junge K, Beller M. Direct ruthenium-catalyzed hydrogenation of carboxylic acids to alcohols. Angew Chem Int Ed. 2015;54:10596.10.1002/anie.201503562Search in Google Scholar PubMed
[111] Li Y, Topf C, Cui X, Junge K, Beller M. Lewis acid promoted ruthenium(II)-catalyzed etherifications by selective hydrogenation of carboxylic acids/esters. Angew Chem Int Ed. 2015;54:5196.10.1002/anie.201500062Search in Google Scholar PubMed
[112] Deng L, Kang B, Englert U, Klankermayer J, Palkovits R. Direct hydrogenation of biobased carboxylic acids mediated by a nitrogen-centered tridentate phosphine ligand. ChemSusChem. 2016;9:177.10.1002/cssc.201501461Search in Google Scholar PubMed
[113] Naruto M, Saito S. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids. Nat Commun. 2015;6:8140.10.1038/ncomms9140Search in Google Scholar PubMed PubMed Central
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- CO2-based hydrogen storage – Hydrogen generation from formaldehyde/water
- Selenium and tellurium nanomaterials
- Industrial uses and applications of ionic liquids
- Hydrogenation of carbonyl compounds of relevance to hydrogen storage in alcohols
- Electronic wastes
- Energy industry
Articles in the same Issue
- CO2-based hydrogen storage – Hydrogen generation from formaldehyde/water
- Selenium and tellurium nanomaterials
- Industrial uses and applications of ionic liquids
- Hydrogenation of carbonyl compounds of relevance to hydrogen storage in alcohols
- Electronic wastes
- Energy industry