Home Physical Sciences CO2-based hydrogen storage – Hydrogen generation from formaldehyde/water
Article
Licensed
Unlicensed Requires Authentication

CO2-based hydrogen storage – Hydrogen generation from formaldehyde/water

  • Monica Trincado , Hansjörg Grützmacher and Martin H. G. Prechtl EMAIL logo
Published/Copyright: April 7, 2018
Become an author with De Gruyter Brill

Abstract

Formaldehyde (CH2O) is the simplest and most significant industrially produced aldehyde. The global demand is about 30 megatons annually. Industrially it is produced by oxidation of methanol under energy intensive conditions. More recently, new fields of application for the use of formaldehyde and its derivatives as, i.e. cross-linker for resins or disinfectant, have been suggested. Dialkoxymethane has been envisioned as a combustion fuel for conventional engines or aqueous formaldehyde and paraformaldehyde may act as a liquid organic hydrogen carrier molecule (LOHC) for hydrogen generation to be used for hydrogen fuel cells. For the realization of these processes, it requires less energy-intensive technologies for the synthesis of formaldehyde. This overview summarizes the recent developments in low-temperature reductive synthesis of formaldehyde and its derivatives and low-temperature formaldehyde reforming. These aspects are important for the future demands on modern societies’ energy management, in the form of a methanol and hydrogen economy, and the required formaldehyde feedstock for the manufacture of many formaldehyde-based daily products.

Funding statement: This work was supported by the Schweizer Nationalfonds (SNF), Eidgenössische Hochschule Zürich, the Ministerium für Innovation, Wissenschaft und Forschung (NRW-returnee award 2009 to M. H. G. P.) and the Heisenberg-Program (Deutsche Forschungsgemeinschaft). Additionally, M. H. G. P. gratefully acknowledges financial support provided by the Alexander-von-Humboldt Foundation, DAAD and the COST Actions CARISMA and CHAOS.

References

[1] Crespy D, Bozonnet M, Meier M. 100 years of bakelite, the material of a 1000 uses. Angew Chem Int Ed. 2008;47:3322.10.1002/anie.200704281Search in Google Scholar PubMed

[2] Blum J. Der Formaldehyd als Haertungsmittel. Zool Anz. 1893;16:450.Search in Google Scholar

[3] Tang X, Bai Y, Duong A, Smith MT, Li L, Zhang L. Formaldehyde in China: production, consumption, exposure levels, and health effects. Environ Int. 2009;35:1210.10.1016/j.envint.2009.06.002Search in Google Scholar PubMed

[4] Tuazon EC, Winer AM, Pitts JN. Trace pollutant concentrations in a multiday smog episode in the California South Coast Air Basin by long path length Fourier transform infrared spectroscopy. Env Sci Tech. 1981;15:1232.10.1021/es00092a014Search in Google Scholar PubMed

[5] Snyder LE, Buhl D, Zuckerman B, Palmer. P. Microwave Detection of Interstellar Formaldehyde. Phys Rev Lett. 1969;22:679.10.1103/PhysRevLett.22.679Search in Google Scholar

[6] Reuss G, Disteldorf W, Gamer AO, Hilt A. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley; 2003.Search in Google Scholar

[7] Bone WA, Smith HL. XCIV.—The thermal decomposition of formaldehyde and acetaldehyde. J Chem Soc Trans. 1905;87:910.10.1039/CT9058700910Search in Google Scholar

[8] Beck CM, Rathmill SE, Park YJ, Chen J, Crabtree RH, Liable-Sands LM, et al. (a). Aldehyde decarbonylation catalysis under mild conditions. Organometallics. 1999;18:5311 (b) Lenges CP, Brookhart M. Isomerization of Aldehydes Catalyzed by Rhodium(I) Olefin Complexes. Angew Chem Int Ed. 1999;38:3533.10.1021/om9905106Search in Google Scholar

[9] Dorokhov YL, Shindyapina AV, Sheshukova EV, Komarova TV. Metabolic methanol: molecular pathways and physiological roles. Physiol Rev. 2015;95:603.10.1152/physrev.00034.2014Search in Google Scholar PubMed

[10] Blakley RL. The biochemistry of folic acid and related pteridines. London: North Holland, 1969.Search in Google Scholar

[11] Reuss G, Disteldorf W, Gamer AO, Hilt A. Ullmann’s encyclopedia of industrial chemistry, 7th Edn ed., vol. A11. Weinheim: Wiley-VCH Verlag GmbH, 2008: 619.Search in Google Scholar

[12] Brenk M. Silver catalyst for formaldehyde preparation. PCT/EP2009/006170, 2010.Search in Google Scholar

[13] Adkins H, Peterson WR. The oxidation of methanol with air over iron, molybdenum, and iron-molybdenum oxides. J Am Chem Soc. 1931;53:1512.10.1021/ja01355a050Search in Google Scholar

[14] Tadenumar H. Hydrocarbon Process. 1966;45:195.10.1001/jama.1966.03100060021009Search in Google Scholar

[15] Ipatieff VN, Monroe GS. Synthesis of Methanol from Carbon Dioxide and Hydrogen over Copper-Alumina Catalysts. Mechanism of Reaction. J Am Chem Soc. 1945;67:2168.10.1021/ja01228a032Search in Google Scholar

[16] Huang F, Lu G, Zhao L, Li H, Wang Z-X. (a). The catalytic role of N-heterocyclic carbene in a metal-free conversion of carbon dioxide into methanol: a computational mechanism study. J Am Chem Soc. 2010;132:12388 (b) Huang F, Zhang C, Jiang J, Wang Z-X, Guan H. How Does the Nickel Pincer Complex Catalyze the Conversion of CO2 to a Methanol Derivative? A Computational Mechanistic Study. Inorg Chem. 2011;50:3816.10.1021/ja103531zSearch in Google Scholar

[17] Lee D-K, Kim D-S, Kim S-W. Selective formation of formaldehyde from carbon dioxide and hydrogen over PtCu/SiO2. Appl Organomet Chem. 2001;15:148.10.1002/1099-0739(200102)15:2<148::AID-AOC104>3.0.CO;2-NSearch in Google Scholar

[18] Bahmanpour AM, Hoadleya A, Tanksale A. Formaldehyde production via hydrogenation of carbon monoxide in the aqueous phase. Green Chem. 2015;17:3500.10.1039/C5GC00599JSearch in Google Scholar

[19] Chan Fan Liang, Altinkaya Garen, Fung Nicholas, Tanksale Akshat. Low temperature hydrogenation of carbon dioxide into formaldehyde in liquid media. Catalysis Today. 2017;6. DOI: 10.1016/j.cattod.2017.06.012.Search in Google Scholar

[20] Nakata K, Ozaki T, Terashima C, Fujishima A, Einaga Y. High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew Chem Int Ed. 2014;53:871.10.1002/anie.201308657Search in Google Scholar

[21] Qin GH, Zhang Y, Ke XB, Tong XL, Sun Z, Liang M, et al. See, for example: (a). Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dye-sensitized TiO2 film. Appl Catal B. 2013;129:599 (b) Tennakone K, Jayatissa AH, Punchihewa S. Selective photoreduction of carbon dioxide to methanol with hydrous cuprous oxide. J Photochem Photobiol A. 1989;49:369; (c) Matsumoto Y, Obata M, Hombo J. Photocatalytic Reduction of Carbon Dioxide on p-Type CaFe2O4 Powder. J Phys Chem. 1994;98:2950; (d) Inoue T, Fujishima A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature. 1979;277:637; (e) Li K, An X, Park KH, Khraisheh M, Tang J. A critical review of CO2 photoconversion: Catalysts and reactors. Catal Today. 2014;224:3; (f) Aurianblajeni B, Halmann M, Manassen J. Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials. Sol Energy. 1980;25:165.10.1016/j.apcatb.2012.10.012Search in Google Scholar

[22] Shi J, Wang X, Jiang Z, Liang Y, Zhu Y, Zhang C. Constructing spatially separated multienzyme system through bioadhesion-assisted bio-inspired mineralization for efficient carbon dioxide conversion. Bioresour Technol. 2012;118:359.10.1016/j.biortech.2012.04.099Search in Google Scholar PubMed

[23] Fachinetti G, Floriani C, Roselli A, Pucci S. (a). Stoicheiometric reduction of CO and CO2 to methanol: evidence for carbon monoxide insertion into zirconium–hydrogen bond. J Chem Soc Chem Commun. 1978;6:269 (b) Gambarotta S, Strologo S, Floriani C, Chiesi-Villa A, Guastini C. Stepwise reduction of carbon dioxide to formaldehyde and methanol: Reactions of CO2 and CO2-like molecules with hydridochlorobis(cyclopentadienyl)zirconium(IV). J Am Chem Soc. 1985;107:6278.10.1039/C39780000269Search in Google Scholar

[24] Aresta M, Dibenedetto A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans. 2007;28:2975.10.1039/b700658fSearch in Google Scholar

[25] Schloerer NE, Berger S. (a). First Spectroscopical Evidence of a Dioxomethylene Intermediate in the Reaction of CO2 with Cp2Zr(H)Cl:  A 13C NMR Study. Organometallics. 2001;20:1703 (b) Schloerer NE, Cabrita EJ, Berger S. Characterization of Reactive Intermediates by Diffusion-Ordered NMR Spectroscopy: A Snapshot of the Reaction of 13CO2 with [Cp2Zr(Cl)H]. Angew Chem Int Ed. 2002;41:107.10.1021/om000598jSearch in Google Scholar

[26] Rankin MA, Cummins CC. Carbon dioxide reduction by terminal tantalum hydrides: formation and isolation of bridging methylene diolate complexes. J Am Chem Soc. 2010;132:10021.10.1021/ja104761nSearch in Google Scholar PubMed

[27] Bontemps S, Vendier L, Sabo-Etienne S. Borane-Mediated Carbon Dioxide Reduction at Ruthenium: Formation of C1 and C2 Compounds. Angew Chem Int Ed. 2012;51:1671.10.1002/anie.201107352Search in Google Scholar

[28] Bontemps S, Vendier L, Sabo-Etienne S. Ruthenium-Catalyzed Reduction of Carbon Dioxide to Formaldehyde. J Am Chem Soc. 2014;136:4419.10.1021/ja500708wSearch in Google Scholar PubMed

[29] Metsaenen TT, Oestreich M. Temperature-Dependent Chemoselective Hydrosilylation of Carbon Dioxide to Formaldehyde or Methanol Oxidation State. Organometallics. 2015;34:543.10.1021/om501279aSearch in Google Scholar

[30] Jiang Y, Blacque O, Fox T, Berke H. Catalytic CO2 Activation Assisted by Rhenium Hydride/B(C6F5)3 Frustrated Lewis Pairs—Metal Hydrides Functioning as FLP Bases. J Am Chem Soc. 2013;135:7751.10.1021/ja402381dSearch in Google Scholar PubMed

[31] LeBlanc FA, Piers WE, Parvez M. Selective hydrosilation of CO2 to a bis(silylacetal) using an anilido bipyridyl-ligated organoscandium catalyst. Angew Chem Int Ed. 2014;53:789.10.1002/anie.201309094Search in Google Scholar

[32] Rios P, Curado N, Lopez-Serrano J, Rodriguez A. Selective reduction of carbon dioxide to bis(silyl)acetal catalyzed by a PBP-supported nickel complex. Chem Comm. 2016;52:2114.10.1039/C5CC09650BSearch in Google Scholar

[33] Khan MMT, Halligudi SB, Shukla S. Reduction of CO2 by molecular hydrogen to formic acid and formaldehyde and their decomposition to CO and H2O. J Mol Cat. 1989;57:47.10.1016/0304-5102(89)80126-9Search in Google Scholar

[34] Stein T, Meuresch M, Limper D, Schmitz M, Hölscher M, Coetzee J, et al. Highly Versatile Catalytic Hydrogenation of Carboxylic and Carbonic Acid Derivatives using a Ru-Triphos Complex: Molecular Control over Selectivity and Substrate Scope. J Am Chem Soc. 2014;136:13217.10.1021/ja506023fSearch in Google Scholar PubMed

[35] Cannizzaro S. Ueber den der Benzoësäure entsprechenden Alkohol. Liebigs Ann. 1853;88:129.10.1002/jlac.18530880114Search in Google Scholar

[36] Ashby EC, Doctorovich F, Liotta CL, Neumann HM, Barefield EK, Konda A, et al. (a). Concerning the formation of hydrogen in nuclear waste. Quantitative generation of hydrogen via a Cannizzaro intermediate. J Am Chem Soc. 1993;1171 (b) Kapoor, S., Barnabas, F.A., Sauer Jr., M.C., Meisel, D., Jonah, C.D. Kinetics of Hydrogen Formation from Formaldehyde in Basic Aqueous Solutions. J. Phys. Chem. 1995, 99, 6857. (c) Kapoor, S.; Naumov, S. On the origin of hydrogen in the formaldehyde reaction in alkaline solution. Chem. Phys. Lett. 2004, 387, 322.10.1021/ja00056a065Search in Google Scholar

[37] Yingpu B, Gongxuan L. Nano-Cu catalyze hydrogen production from formaldehyde solution at room temperature. Int J Hydrogen Energy. 2008;33:2225.10.1016/j.ijhydene.2008.02.064Search in Google Scholar

[38] Preti D, Squarcialupi S, Fachinetti G. Carbon Dioxide Hydrogenation to Formic Acid by Using a Heterogeneous Gold Catalyst. Angew Chem Int Ed. 2009;48:4763.10.1002/anie.200805860Search in Google Scholar PubMed

[39] Gao H, Zhang J, Wang R, Wang M. Highly efficient hydrogen production and formaldehyde degradation by Cu2O microcrystals. Appl Catal B Environ. 2015;172:1.10.1016/j.apcatb.2015.02.004Search in Google Scholar

[40] Machida KI, Enyo M. Formaldehyde Electro-oxidation on Copper Metal and Copper-based Amorphous Alloys in Alkaline Media. Bull Chem Soc Jpn. 1985;58:2043.10.1246/bcsj.58.2043Search in Google Scholar

[41] Jin Z, Li P, Liu G, Zheng B, Yuan H, Xiao D. Enhancing catalytic formaldehyde oxidation on CuO–Ag2O nanowires for gas sensing and hydrogen evolution. J Mater Chem A. 2013;1:14736.10.1039/c3ta13277cSearch in Google Scholar

[42] Bi Y, Hu H, Li Q, Lu G. Efficient generation of hydrogen from biomass without carbon monoxide at room temperature – Formaldehyde to hydrogen catalyzed by Ag nanocrystals. Int J Hydrogen Energy. 2010;35:7177.10.1016/j.ijhydene.2009.12.142Search in Google Scholar

[43] Li Y, Chen T, Wang T, Zhang Y, Lu G, Bi Y. Highly efficient hydrogen production from formaldehyde over Ag/γ-Al2O3 catalyst at room temperature. Int J Hydrogen Energy. 2014;39:9114.10.1016/j.ijhydene.2014.03.257Search in Google Scholar

[44] Li R, Zhu X, Yan X, Kobayashi H, Yoshida S, Chen W, et al. Oxygen-Controlled Hydrogen Evolution Reaction: Molecular Oxygen Promotes Hydrogen Production from Formaldehyde Solution Using Ag/MgO Nanocatalyst. ACS Catal. 2017;7:1478.10.1021/acscatal.6b03370Search in Google Scholar

[45] Gao S, Feng T, Wu Q, Feng C, Shang N, Wang C. Immobilizing AgPd alloy on Vulcan XC-72 carbon: a novel catalyst for highly efficient hydrogen generation from formaldehyde aqueous solution. RSC Adv. 2016;6:105638.10.1039/C6RA22761ASearch in Google Scholar

[46] Pan X, Wang L, Ling F, Li Y, Han D, Pang Q, et al. A novel biomass assisted synthesis of Au–SrTiO3 as a catalyst for direct hydrogen generation from formaldehyde aqueous solution at low temperature. Int J Hydrogen Energy. 2015;40:1752.10.1016/j.ijhydene.2014.11.130Search in Google Scholar

[47] Dalcin Fornari AM, De Araujo MB, Bergamin Duarte C, Machado G, Teixeira SR, Weibel DE. Photocatalytic reforming of aqueous formaldehyde with hydrogen generation over TiO2 nanotubes loaded with Pt or Au nanoparticles. Int J Hydrogen Energy. 2016;41:11599.10.1016/j.ijhydene.2016.02.055Search in Google Scholar

[48] Hu H, Jiao Z, Ye J, Lu G, Bi Y. Highly efficient hydrogen production from alkaline aldehyde solutions facilitated by palladium nanotubes. Nano Energy. 2014;8:103.10.1016/j.nanoen.2014.05.015Search in Google Scholar

[49] Li S, Hu H, Bi Y. Ultra-thin TiO2 nanosheets decorated with Pd quantum dots for high-efficiency hydrogen production from aldehyde solution. J Mat Chem A. 2016;4:796.10.1039/C5TA08720ASearch in Google Scholar

[50] Feng L, Okonkwo A, Qiong X, Mingping L, Xinwei P, Lishan J, et al. PdO/LaCoO3 heterojunction photocatalysts for highly hydrogen production from formaldehyde aqueous solution under visible light. Int J Hydrogen Energy. 2016;41:6115.10.1016/j.ijhydene.2015.10.036Search in Google Scholar

[51] Jeroro E, Vohs JM. Zn Modification of the Reactivity of Pd(111) Toward Methanol and Formaldehyde. J Am Chem Soc. 2008;130:10199.10.1021/ja8001265Search in Google Scholar PubMed

[52] Zou S, Liu J, Kobayashi H, Chen C, Qiao P, Li R, et al. Boosting Hydrogen Evolution Activities by Strong Interfacial Electronic Interaction in ZnO@Bi(NO3)3 Core–Shell Structures. J Phys Chem C. 2017;121:4343.10.1021/acs.jpcc.6b12346Search in Google Scholar

[53] Nielsen M, Alberico E, Baumann W, Drexler H-J, Junge H, Gladiali S, et al. (a). Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature. 2013;495:85 (b) Monney A, Barsch E, Sponholz P, Junge H, Ludwig R, Beller M. Base-free hydrogen generation from methanol using a bi-catalytic system. Chem Commun. 2014;50:707; (c) Sponholz P, Mellmann D, Cordes C, Alsabeh PG, Li B, Li Y, Nielsen M, Junge H, Dixneuf P, Beller M. Efficient and Selective Hydrogen Generation from Bioethanol using Ruthenium Pincer-type Complexes. Chem Sus Chem. 2014;7:2419; (d) Alberico E, Sponholz P, Cordes C, Nielsen M, Drexler H-J, Baumann W, Junge H, Beller M. Selective Hydrogen Production from Methanol with a Defined Iron Pincer Catalyst under Mild Conditions. Angew Chem Int Ed. 2013;52:14162; (e) Hu P, Diskin-Posner Yl, Ben-David Y, Milstein D. Reusable Homogeneous Catalytic System for Hydrogen Production from Methanol and Water. ACS Catal. 2014;4:2649; (f) Rodríguez-Lugo RE, Trincado M, Vogt M, Tewes F, Santiso-Quinones G, Grützmacher H. A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures. Nat Chem. 2013;5:342.10.1038/nature11891Search in Google Scholar PubMed

[54] Heim LE., Konnerth H, Prechtl MHG. Future perspectives for formaldehyde: pathways for reductive synthesis and energy storage. Green Chemistry. 2017;19(10):2347.10.1039/C6GC03093ASearch in Google Scholar

[55] Heim LE, Vallazza S, Van Der Waals D, Prechtl MHG. Water decontamination with hydrogen production using microwave-formed minute-made ruthenium catalysts. Green Chem. 2016;18:1469.10.1039/C5GC01798JSearch in Google Scholar

[56] Cook J, Hamlin JE, Nutton A, Maitlis PM. Homogeneously catalysed disproportionation of acetaldehyde into ethanol and acetic acid. J C S Chem Soc. 1980;144.10.1039/c39800000144Search in Google Scholar

[57] Heim LE, Schloerer NE, Choi JH, Prechtl MHG. Selective and mild hydrogen production using water and formaldehyde. Nat Commun. 2014;5:3621.10.1038/ncomms4621Search in Google Scholar PubMed

[58] Heim LE, Thiel D, Gedig C, Deska J, Prechtl MHG. Bioinduced room-temperature methanol reforming. Angew Chem Int Ed. 2015;54:10308.10.1002/anie.201503737Search in Google Scholar PubMed

[59] Van Der Waals D, Heim LE, Vallazza S, Gedig C, Deska J, Prechtl MHG. Self-Sufficient Formaldehyde-to-Methanol Conversion by Organometallic Formaldehyde Dismutase Mimic. Chem Eur J. 2016;22:11568.10.1002/chem.201602679Search in Google Scholar PubMed

[60] van der Waals D, Heim LE, Gedig C, Herbrik F, Vallazza S, Prechtl MHG. Ruthenium-Catalyzed Methylation of Amines with Paraformaldehyde in Water under Mild Conditions. ChemSusChem. 2016 8 5;9(17):2343–2347. 10.1002/cssc.201600824.Search in Google Scholar PubMed

[61] Suenobu T, Isaka Y, Shibata S, Fukuzumi S. Catalytic hydrogen production from paraformaldehyde and water using an organoiridium complex. Chem Commun. 2015;51:1670.10.1039/C4CC06581FSearch in Google Scholar

[62] Fujita K, Kawahara R, Aikawa T, Yamaguchi R. Hydrogen production from a methanol–water solution catalyzed by an anionic iridium complex bearing a functional bipyridonate ligand under weakly basic conditions. Angew Chem Int Ed. 2015;54:9057.10.1002/anie.201502194Search in Google Scholar PubMed

[63] Trincado M, Sinha V, Rodriguez-Lugo RE, Pribanic B, De Bruin B, Grützmacher H. Homogeneously catalysed conversion of aqueous formaldehyde to H2 and carbonate. Nature Comm. 2017;8:14990.10.1038/ncomms14990Search in Google Scholar PubMed PubMed Central

[64] Knijnenburg Q, Gambarottab S, Budzelaar PHM. Ligand-centred reactivity in diiminepyridine complexes. Dalton Trans. 2006;5442.10.1039/b612251eSearch in Google Scholar PubMed

[65] Bielinski EA, Forster M, Zhang Y, Bernskoetter WH, Hazari N, Holthausen MC. Base-Free Methanol Dehydrogenation Using a Pincer-Supported Iron Compound and Lewis Acid Co-catalyst. ACS Catal. 2015;5:2404.10.1021/acscatal.5b00137Search in Google Scholar

[66] Andérez-Fernández M, Vogt LK, Fischer S, Zhou W, Jiao H, Garbe M, et al. A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol. Angew Chem Int Ed. 2017;56:559.10.1002/anie.201610182Search in Google Scholar PubMed PubMed Central

Published Online: 2018-4-7

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2017-0013/html
Scroll to top button