Startseite Enhancement of the sacrificial material for synergistic molding of microvascular composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enhancement of the sacrificial material for synergistic molding of microvascular composites

  • Taizhi Liu ORCID logo , Zhikang He , Rulin Shen EMAIL logo , Guanyu Liu und Yanling Gong
Veröffentlicht/Copyright: 21. November 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Poly(propylene carbonate) (PPC) is a promising material for the synergistic molding of microvascular composites due to its thermal depolymerization characteristics. However, its low mechanical strength makes it susceptible to deformation under the high vacuum pressures required during composite fabrication. To address this limitation, this study investigates the effects of polylactic acid (PLA), poly(vinyl alcohol) (PVA), and nano-sized silicon dioxide (SiO2) as modifying additives, using blending and filling techniques to enhance the mechanical properties of PPC. The results show that all three additives improve the properties of PPC, with the formulation containing 7.5 wt% SiO2 exhibiting the most significant enhancement. The tensile strength increased from 30.15 MPa to 40.63 MPa (a 34.76 % improvement), and the Young’s modulus increased from 393.05 MPa to 668.23 MPa (a 75.1 % increase). The onset decomposition temperature is 115.5 °C, and the fastest decomposition temperature is 159.3 °C. Microvascular composites were successfully fabricated using the vacuum-assisted resin transfer molding (VARTM) process combined with frontal polymerization. Under a vacuum pressure of −0.95 bar, the aspect ratio (AR) of the microvascular cross section improved from 1.67 ± 0.15 to 1.03 ± 0.01, confirming that the optimized, SiO2-reinforced PPC is suitable for use as a sacrificial template in high-pressure composite molding processes.


Corresponding author: Rulin Shen, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, People’s Republic of China, E-mail:

Funding source: Special Funds for Construction of Innovative Provinces in Hunan

Award Identifier / Grant number: No. 2022GK1070

Funding source: Hunan Science and Technology Innovation Program

Award Identifier / Grant number: No. 2021GK1020

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. T.Z.L.: writing-review & editing, writing-original draft, methodology, investigation, formal analysis, conceptualization. Z.K.H.: investigation, formal analysis, data curation. R.L.S.: writing-review & editing, supervision, project administration, methodology, conceptualization. G.T.L.: investigation, formal analysis. Y.L.G.: methodology.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All authors state no conflict of interest.

  6. Research funding: This research is supported by the Special Funds for Construction of Innovative Provinces in Hunan (no. 2022GK1070), and the Hunan Science and Technology Innovation Program (no. 2021GK1020).

  7. Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

1. Garg, M.; Aw, J. E.; Zhang, X.; Centellas, P. J.; Dean, L. M.; Lloyd, E. M.; Robertson, I. D.; Liu, Y.; Yourdkhani, M.; Moore, J. S.; Geubelle, P. H.; Sottos, N. R. Rapid Synchronized Fabrication of Vascularized Thermosets and Composites. Nat. Commun. 2021, 12 (1). https://doi.org/10.1038/s41467-021-23054-7.Suche in Google Scholar PubMed PubMed Central

2. Patrick, J. F.; Robb, M. J.; Sottos, N. R.; Moore, J. S.; White, S. R. Polymers with Autonomous Life-Cycle Control. Nature 2016, 540 (7633), 363–370. https://doi.org/10.1038/nature21002.Suche in Google Scholar PubMed

3. Shen, R.; Ren, M.; Amano, R. S.; Long, M.; Gong, Y. Self-Healing of Wind Turbine Blades by Pressurized Delivery of Healing Agent. J. Energy Res. Technol. 2020, 142 (8). https://doi.org/10.1115/1.4045928.Suche in Google Scholar

4. Luan, C.; Yao, X.; Zhang, C.; Fu, J.; Wang, B. Integrated Self-Monitoring and Self-Healing Continuous Carbon Fiber Reinforced Thermoplastic Structures Using Dual-Material Three-Dimensional Printing Technology. Compos. Sci. Technol. 2020, 188, 107986. https://doi.org/10.1016/j.compscitech.2019.107986.Suche in Google Scholar

5. Rifaie-Graham, O.; Apebende, E. A.; Bast, L. K.; Bruns, N. Self-Reporting Fiber-Reinforced Composites that Mimic the Ability of Biological Materials to Sense and Report Damage. Adv. Mater. 2018, 30 (19), 1705483. https://doi.org/10.1002/adma.201705483.Suche in Google Scholar PubMed

6. Wan, W.; Shen, R.; Tang, J.; Xu, Y.; Zou, X.; Guo, H. Carbon Fiber Reinforced Composites with Self-Sensing and Self-Healing Capabilities Enabled by CNT-Modified Nanofibers. Polym. Compos. 2024, 45 (8), 7301–7315. https://doi.org/10.1002/pc.28266.Suche in Google Scholar

7. Devi, U.; Pejman, R.; Phillips, Z. J.; Zhang, P.; Soghrati, S.; Nakshatrala, K. B.; Najafi, A. R.; Schab, K. R.; Patrick, J. F. A Microvascular-Based Multifunctional and Reconfigurable Metamaterial. Adv. Mater. Technol. 2021, 6 (11), 2100433. https://doi.org/10.1002/admt.202100433.Suche in Google Scholar

8. Griffin, A. S.; Pan, H.; Barrera, J. D.; Huff, G. H.; White, S. R.; Sottos, N. R. A Polarization Reconfigurable Microstrip Patch Antenna Using Liquid Metal Microfluidics. Smart Mater. Struct. 2020, 29 (4), 045032. https://doi.org/10.1088/1361-665X/ab78b3.Suche in Google Scholar

9. Pejman, R.; Gorman, J.; Najafi, A. R. Multi-Physics Design of a New Battery Packaging for Electric Vehicles Utilizing Multifunctional Composites. Composites, Part B 2022, 237, 109810. https://doi.org/10.1016/j.compositesb.2022.109810.Suche in Google Scholar

10. Gorman, J.; Pejman, R.; Kumar, S. R.; Patrick, J. F.; Najafi, A. R. Transient Topology Optimization for Efficient Design of Actively Cooled Microvascular Materials. Struct. Multidiscip. Optim. 2024, 67 (4), 60. https://doi.org/10.1007/s00158-024-03774-2.Suche in Google Scholar

11. Saeed, M.-U.; Chen, Z.; Li, B. Manufacturing Strategies for Microvascular Polymeric Composites: a Review. Composites, Part A 2015, 78, 327–340. https://doi.org/10.1016/j.compositesa.2015.08.028.Suche in Google Scholar

12. Qamar, I. P. S.; Sottos, N. R.; Trask, R. S. Grand Challenges in the Design and Manufacture of Vascular Self-Healing. Multifunct. Mater 2020, 3 (1), 013001. https://doi.org/10.1088/2399-7532/ab69e2.Suche in Google Scholar

13. Moore, D. G.; Barbera, L.; Masania, K.; Studart, A. R. Three-Dimensional Printing of Multicomponent Glasses Using Phase-Separating Resins. Nat. Mater. 2020, 19 (2), 212–217. https://doi.org/10.1038/s41563-019-0525-y.Suche in Google Scholar PubMed

14. Pety, S. J.; Tan, M. H. Y.; Najafi, A. R.; Barnett, P. R.; Geubelle, P. H.; White, S. R. Carbon Fiber Composites with 2D Microvascular Networks for Battery Cooling. Int. J. Heat Mass Transfer 2017, 115, 513–522. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.047.Suche in Google Scholar

15. Centellas, P.; Garg, M.; Chen, Z.; Zhang, X.; Parikh, N.; Geubelle, P.; Sottos, N. Energy-Efficient Manufacturing of Multifunctional Vascularized Composites. J. Compos. Mater. 2023, 57 (4), 581–592. https://doi.org/10.1177/00219983221142353.Suche in Google Scholar

16. Camera, K. L.; Wenning, B.; Lal, A.; Ober, C. K. Transient Materials from Thermally-Sensitive Polycarbonates and Polycarbonate Nanocomposites. Polymer 2016, 101, 59–66. https://doi.org/10.1016/j.polymer.2016.08.050.Suche in Google Scholar

17. Spencer, T. J.; Kohl, P. A. Decomposition of Poly(Propylene Carbonate) with UV Sensitive Iodonium Salts. Polym. Degrad. Stab. 2011, 96 (4), 686–702. https://doi.org/10.1016/j.polymdegradstab.2010.12.003.Suche in Google Scholar

18. Phillips, O.; Schwartz, J. M.; Kohl, P. A. Thermal Decomposition of Poly(Propylene Carbonate): End-Capping, Additives, and Solvent Effects. Polym. Degrad. Stab. 2016, 125, 129–139. https://doi.org/10.1016/j.polymdegradstab.2016.01.004.Suche in Google Scholar

19. Bora, D.; Dutta, H.; Saha, B.; Kumar Reddy, Y. A.; Patel, R.; Verma, S. K.; Sellamuthu, P. S.; Sadiku, R.; Jayaramudu, J. A Review on the Modification of Polypropylene Carbonate (PPC) Using Different Types of Blends/Composites and its Advanced Uses. Mater. Today Commun. 2023, 37, 107304. https://doi.org/10.1016/j.mtcomm.2023.107304.Suche in Google Scholar

20. Kwon, Y.; Gavande, V.; Im, D.; Lee, W.-K. Degradation Dynamics and Mechanical–Thermal Response of Polylactide/Poly(Propylene Carbonate) Blends: towards Sustainable Material Design. J. Polym. Environ. 2024, 32 (10), 5290–5302. https://doi.org/10.1007/s10924-024-03319-0.Suche in Google Scholar

21. Hao, Y.-p.; Yang, H.-l.; Zhang, G.-b.; Zhang, H.-l.; Gao, G.; Dong, L.-s. Rheological, Thermal and Mechanical Properties of Biodegradable Poly(Propylene Carbonate)/Polylactide/Poly(1,2-Propylene Glycol Adipate) Blown Films. Chin. J. Polym. Sci. 2015, 33 (12), 1702–1712. https://doi.org/10.1007/s10118-015-1714-z.Suche in Google Scholar

22. Jing, Y.; Chi, W.; Zhang, W.; Qiu, Y.; Gao, M.; Yu, L.; Song, L.; Wang, X.; Liu, Z.; Gao, J.; Huang, J.; Li, Y.; Gao, G.; Gao, Y.; Wang, Y.; Wang, N. An Innovative Functional Compatibility Strategy for Poly (Lactic Acid) and Polypropylene Carbonate Blends to Achieve Superior Toughness, Degradability, and Optical Properties. Int. J. Biol. Macromol. 2024, 280, 135702. https://doi.org/10.1016/j.ijbiomac.2024.135702.Suche in Google Scholar PubMed

23. Zhou, L.; Zhao, G.; Jiang, W. Effects of Catalytic Transesterification and Composition on the Toughness of Poly(Lactic Acid)/Poly(Propylene Carbonate) Blends. Ind. Eng. Chem. Res. 2016, 55 (19), 5565–5573. https://doi.org/10.1021/acs.iecr.6b00315.Suche in Google Scholar

24. Song, L.; Li, Y.; Meng, X.; Wang, T.; Shi, Y.; Wang, Y.; Shi, S.; Liu, L.-Z. Crystallization, Structure and Significantly Improved Mechanical Properties of PLA/PPC Blends Compatibilized with PLA-PPC Copolymers Produced by Reactions Initiated with TBT or TDI. Polymers. 2021, 13 (19), 3245. https://doi.org/10.3390/polym13193245.Suche in Google Scholar PubMed PubMed Central

25. Behera, A. K.; Avancha, S.; Sen, R.; Adhikari, B. Development and Characterization of Plasticized Starch-Based Biocomposites with Soy Pulp as Reinforcement Filler. J. Appl. Polym. Sci. 2013, 127 (6), 4681–4687. https://doi.org/10.1002/app.38077.Suche in Google Scholar

26. Pattnaik, S. S.; Behera, D.; Mishra, P. P.; Sahoo, S. S.; Singh, V. K.; Manna, S.; Das, N.; Behera, A. K. Development and Characterizations of Jarosite Waste Reinforced Poly(Vinyl Alcohol) Composites: a Sustainable Approach Toward Solid Waste Management. SPE Polym 2024, 5 (3), 343–352. https://doi.org/10.1002/pls2.10128.Suche in Google Scholar

27. Cui, S.; Li, L.; Wang, Q. Enhancing Glass Transition Temperature and Mechanical Properties of Poly (Propylene Carbonate) by Intermacromolecular Complexation with Poly (Vinyl Alcohol). Compos. Sci. Technol. 2016, 127, 177–184. https://doi.org/10.1016/j.compscitech.2016.03.007.Suche in Google Scholar

28. Cui, S.; Wei, P.; Li, L. Thermal Decomposition Behavior of Poly(Propylene Carbonate) in Poly(Propylene Carbonate)/Poly(Vinyl Alcohol) Blend. J. Therm. Anal. Calorim. 2019, 135 (4), 2437–2446. https://doi.org/10.1007/s10973-018-7297-5.Suche in Google Scholar

29. Yang, J.; Zhang, X.; Li, T.; Wang, Y.; Xia, B.; Jiang, J.; Chen, M.; Dong, W. A Novel Biodegradable Poly(Propylene Carbonate) with Enhanced Thermal and Mechanical Properties by Incorporating Tannic Acid. Polym. Adv. Technol. 2022, 33 (4), 1341–1347. https://doi.org/10.1002/pat.5579.Suche in Google Scholar

30. Ohlendorf, P.; Ruyack, A.; Leonardi, A.; Shi, C.; Cuppoletti, C.; Bruce, I.; Lal, A.; Ober, C. K. Transient Fiber Mats of Electrospun Poly(Propylene Carbonate) Composites with Remarkable Mechanical Strength. ACS Appl. Mater. Interfaces 2017, 9 (30), 25495–25505. https://doi.org/10.1021/acsami.7b04710.Suche in Google Scholar PubMed

31. Cui, S.; Li, L.; Wang, Q. Fabrication of (PPC/NCC)/PVA Composites with Inner-Outer Double Constrained Structure and Improved Glass Transition Temperature. Carbohydr. Polym. 2018, 191, 35–43. https://doi.org/10.1016/j.carbpol.2018.02.070.Suche in Google Scholar PubMed

32. Jiang, G.; Zhao, N.; Zhang, S.; Wang, X. Thermal, Mechanical Properties and Rheological Behavior of Poly(Propylene Carbonate)/Poly(Ethylene Glycol)/Graphene Oxide Nanocomposites. J. Polym. Environ. 2019, 27 (10), 2201–2212. https://doi.org/10.1007/s10924-019-01509-9.Suche in Google Scholar

33. Cui, S.; Li, L.; Wang, Q. Improved Molecular Chain Constraint of Poly (Propylene Carbonate) Composites by the Synergistic Effect of Poly (Vinyl Alcohol) and Carbon Nanotubes. Composites, Part B 2020, 194, 108074. https://doi.org/10.1016/j.compositesb.2020.108074.Suche in Google Scholar

34. Ma, Y.; Zhang, S. Transparent Nanocomposites with Enhanced Performances from Poly(Propylene Carbonate) and Silica. J. Appl. Polym. Sci. 2022, 139 (1), 51513. https://doi.org/10.1002/app.51513.Suche in Google Scholar

35. Li, Z.; Zhang, Z.; Cheng, H.; Qian, S.; Liu, Y. Nanofibrillated Cellulose Reinforced Polypropylene Carbonate Biocomposites with High Mechanical Properties, Dimensional Stability, and Antibacterial Properties. Polym. Compos. 2024, 45 (12), 11447–11458. https://doi.org/10.1002/pc.28577.Suche in Google Scholar

36. Jiang, G.; Xu, J.; Zhao, N.; Zhang, S.; Huang, H. Influence of Starch Oxidization and Modification on Interfacial Interaction, Rheological Behavior, and Properties of Poly(Propylene Carbonate)/Starch Blends. Polym.-Plast. Technol. Eng. 2017, 56 (10), 1084–1095. https://doi.org/10.1080/03602559.2016.1253736.Suche in Google Scholar

37. Behera, A. K.; Pattnaik, S. S.; Mohanty, C.; Srivastav, R.; Pradhan, J. Mechanical and Cytotoxic Analysis of Cutlery Developed from Phenol-Formaldehyde Modified Soy-Jute Composite. Vietnam J. Chem. 2024, 62 (2), 151–159. https://doi.org/10.1002/vjch.202200162.Suche in Google Scholar

38. Behera, A. K.; Srivastava, R.; Das, A. B. Mechanical and Degradation Properties of Thermoplastic Starch Reinforced Nanocomposites. Starch - Starke 2022, 74 (3-4), 2100270. https://doi.org/10.1002/star.202100270.Suche in Google Scholar

39. Behera, A. K.; Manna, S.; Das, N. Effect of Soy Waste/Cellulose on Mechanical, Water Sorption, and Biodegradation Properties of Thermoplastic Starch Composites. Starch - Starke 2022, 74 (1-2), 2100123. https://doi.org/10.1002/star.202100123.Suche in Google Scholar

40. He, Z.; Shen, R.; Liu, T.; He, S.; Gong, Y. Frontal Polymerization of High-Performance Glass Fiber Epoxy Composites with High Fiber Volume Fraction. Compos. Commun. 2025, 56, 102381. https://doi.org/10.1016/j.coco.2025.102381.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/polyeng-2025-0105).


Received: 2025-06-18
Accepted: 2025-09-24
Published Online: 2025-11-21

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2025-0105/pdf
Button zum nach oben scrollen