Abstract
Rubber materials, known for their excellent physical and mechanical properties, are widely used in products such as tires, shock absorbers, and conveyor belts. However, most rubbers have a low limiting oxygen index (LOI) and are considered flammable materials, which limit their application in certain fields. Preparing rubber materials with good flame retardancy has become a key research topic. This paper mainly discusses the intrinsic flame retardancy, inorganic filler flame retardancy, nano-technology flame retardancy, and polymer flame retardancy from the aspects of chemical grafting and physical blending. It summarizes the research progress in the field of flame-retardant rubber over the past five years and predicts the research trends of flame-retardant rubber materials.
Funding source: Opening Project of Key Laboratory of Advanced Rubber Material, Ministry of Education
Award Identifier / Grant number: XJCL2025002
Funding source: Shandong Provincial Natural Science Foundation for Youth Scholars
Award Identifier / Grant number: ZR2024ME159
Funding source: Program of National Key Research and Development of China
Award Identifier / Grant number: 2021YFB3700105
Award Identifier / Grant number: 2022YFB3603702
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: B. C. and X. L. conceptualized the study and wrote the manuscript; Q. C. and B. C. analyzed the data; Y. X. and Y. C. guided and reviewed the manuscript. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors declare that they have no conflict of interest.
-
Research funding: This work was supported by the Shandong Provincial Natural Science Foundation for Youth Scholars (Project no. ZR2024ME159). and the Program of National Key Research and Development of China (2021YFB3700105, 2022YFB3603702). This work was also supported by the Opening Project of Key Laboratory of Advanced Rubber Material, Ministry of Education (XJCL2025002).
-
Data availability: Not applicable.
References
1. Zhang, D. R.; Xin, Z. X. Modern Rubber Formula Design; Chemical Industry Press: Beijing, 2002.Search in Google Scholar
2. Liao, X. X.; Tan, H. S. Research Progress on Flame-Retardant Rubber. Chin. J. Trop. Agric. 2004, 24 (3), 70–75. https://doi.org/10.3969/j.issn.1009-2196.2004.03.014.Search in Google Scholar
3. Huang, L.; Hu, H.; Wang, B.; Huang, J. F.; Cheng, G. S.; Zheng, K. H. Advance in the Research of Low-Smoke and Non-halogen Flame-Retardants. Guangdong Chem. Ind. 2011, 38 (8), 68–69.Search in Google Scholar
4. Yang, H. Y.; Xiao, P.; Hu, B. H. Research Progress on Halogen-free Flame Retardants. Plast. Ind. 2006, 34 (33), 69–72.Search in Google Scholar
5. Ye, X.; Wang, Y.; Zhao, Z.; Yan, H. A Novel Hyperbranched Poly (Phosphorodiamidate) with High Expansion Degree and Carbonization Efficiency Used for Improving Flame Retardancy of APP/PP Composites. Polym. Degrad. Stab. 2017, 142, 29–41. https://doi.org/10.1016/j.polymdegradstab.2017.05.023.Search in Google Scholar
6. Yang, Y. J. Design of Wastewater Treatment Engineering for Chloroprene Rubber Production; Shanxi University: Xi’an, 2018.Search in Google Scholar
7. Bao, Y. Preparation Methods and Research Progress of Fluororubber. Liaoning Chem. Ind. 2024, 53, 458–460; https://doi.org/10.14029/j.cnki.issn1004-0935.2024.03.032.Search in Google Scholar
8. Jones, K. P.; Allen, P. W. Historical Development of the World Rubber Industry. In Natural Rubber: Biology, Cultivation and Technology; Sethuraj, M. R.; Mathew, N. M., Eds.; Elsevier: Amsterdam, 1992; pp. 1–25.10.1016/B978-0-444-88329-2.50007-6Search in Google Scholar
9. Cornish, K. Similarities and Differences in Rubber Biochemistry among Plant Species. Phytochemistry 2001, 57 (7), 1123–1134. https://doi.org/10.1016/S0031-9422(01)00097-8.Search in Google Scholar PubMed
10. Han, H. H. CHEN Yun and the Rubber Production of New China. Contemp. China History Stud. 2005 (4), 69–74. https://doi.org/10.3969/j.issn.1005-4952.2005.04.016.Search in Google Scholar
11. Bsantley, H. L.; Fang, H. B. Prospects of Natural Rubber and Synthetic Rubber in Tire Industry. Rubber Transl. 1982, 4, 3–6.Search in Google Scholar
12. Fukahori, Y. Mechanism of the Self-Reinforcement of Cross-Linked NR Generated through the Strain-Induced Crystallization. Polymer 2010, 51 (7), 1621–1631. https://doi.org/10.1016/j.polymer.2010.01.059.Search in Google Scholar
13. Xu, J. Study on the Influence of Fillers on the Thermal Properties of Silicone Rubber. MA Thesis; Hangzhou Normal University: Hangzhou, 2016.Search in Google Scholar
14. Zhuo, J.; Dong, J.; Jiao, C.; Chen, X. Synergistic Effects between Red Phosphorus and Alumina Trihydrate in Flame Retardant Silicone Rubber Composites. Plast. Rubber Compos. 2013, 42 (6), 239–243. https://doi.org/10.1179/146580113X13650753142022.Search in Google Scholar
15. Qi, J.; Wen, Q.; Zhu, J.; He, T. Synthesis of a Novel Intumescent Flame Retardant Based on Phosphorus, Nitrogen, and Silicone, and Application in VMQ. J. Therm. Anal. Calorim. 2019, 137, 1549–1557. https://doi.org/10.1007/s10973-019-08049-3.Search in Google Scholar
16. Pan, Y.; Liu, C.; Wang, J.; Song, S. Preparation of a Novel Synergistic Flame Retardant and its Application in Silicone Rubber Composites. Fire Mater. 2020, 44 (8), 1135–1148. https://doi.org/10.1002/fam.2924.Search in Google Scholar
17. Fang, S.; Hu, Y.; Song, L.; Zhan, J.; He, Q. Mechanical Properties, Fire Performance and Thermal Stability of Magnesium Hydroxide Sulfate Hydrate Whiskers Flame Retardant Silicone Rubber. J. Mater. Sci. 2008, 43, 1057–1062. https://doi.org/10.1007/s10853-007-2241-2.Search in Google Scholar
18. Liang, S.; Wang, F.; Liang, J.; Chen, S.; Jiang, M. Synergistic Effect between Flame Retardant Viscose and Nitrogen-Containing Intrinsic Flame-Retardant Fibers. Cellulose 2020, 27, 6083–6092. https://doi.org/10.1007/s10570-020-03203-9.Search in Google Scholar
19. Zhang, X. W.; Jiang, H. W. Research on Halogen-free Flame-Retardant Silicone Rubber with High-Temperature Resistance. Rubber Ind. 2010, 57 (5), 286–290. https://doi.org/10.3969/j.issn.1000-890X.2010.05.005.Search in Google Scholar
20. Adner, D.; Helmy, M.; Otto, T.; Schellenberg, J.; Schadewald, A. A Macromolecular Halogen-free Flame Retardant and its Effect on the Properties of Thermoplastic Polyesters. Fire Mater. 2019, 43 (2), 169–174. https://doi.org/10.1002/fam.2682.Search in Google Scholar
21. Vini, R.; Thenmozhi, S.; Murugavel, S. Synthesis, Characterization and Thermal Degradation Kinetics of Azomethine-Based Halogen-free Flame-Retardant Polyphosphonates. High Perform. Polym. 2019, 31 (1), 86–96. https://doi.org/10.1177/0954008317752073.Search in Google Scholar
22. Ou, Y. X.; Li, J. J. Flame Retardants: Performance, Manufacturing, and Applications; Ordnance Industry Press: Beijing, 1997.Search in Google Scholar
23. Yu, Y. Z.; Wu, Q. H.; Ge, S. C. Flame Retardant Materials Handbook; Mass Publishing House: Beijing, 1997.Search in Google Scholar
24. Xu, Y. L.; Wang, Y. H. Practical Flame Retardant Technology for Polymer Materials; Chemical Industry Press: Beijing, 1994.Search in Google Scholar
25. Marosi, G.; Marton, A.; Anna, P.; Bertalan, G.; Marosföi, B.; Szép, A. Ceramic Precursor in Flame Retardant Systems. Polym. Degrad. Stab. 2002, 77 (2), 259–265. https://doi.org/10.1016/S0141-3910(02)00057-5.Search in Google Scholar
26. Marosi, G.; Anna, P.; Marton, A.; Bertalan, G.; Bota, A.; Toth, A.; Mohai, M.; Racz, I. Flame-retarded Polyolefin Systems of Controlled Interphase. Polym. Adv. Technol. 2002, 13 (10-12), 1103–1111. https://doi.org/10.1002/pat.284.Search in Google Scholar
27. Nontasak, W.; Thongnuanchan, B.; Ninjan, R.; Lopattananon, N.; Wannavilai, P.; Nakason, C. Fire-retardant Wood Coating Based on Natural Rubber Bearing Methacrylic Functionality. J. Polym. Eng. 2021, 41 (1), 44–53. https://doi.org/10.1515/polyeng-2020-0092.Search in Google Scholar
28. Zhou, M.; Liu, Y.; Yao, D.; Jiang, Y.; Zhang, X.; Wang, D. Y.; Wang, N. Promotion of the Flame Retardancy of 9, 10-Dihydro-9-Oxa-10-Phosphaphenanthrene-10-Oxide Grafted Natural Rubber Using Expandable Graphite. Arab. J. Chem. 2021, 14 (3), 102980. https://doi.org/10.1016/j.arabjc.2020.102980.Search in Google Scholar
29. Wang, F. Y. Research on Flame retardant Modification and Mechanism of EPDM Rubber Flame Retardant Material. MA Thesis; Qingdao University of Science and Technology: Qingdao, 2023.Search in Google Scholar
30. Li, L.; Liu, X.; Shao, X.; Jiang, L.; Huang, K.; Zhao, S. Synergistic Effects of a Highly Effective Intumescent Flame Retardant Based on Tannic Acid Functionalized Graphene on the Flame Retardancy and Smoke Suppression Properties of Natural Rubber. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105715. https://doi.org/10.1016/j.compositesa.2019.105715.Search in Google Scholar
31. Wang, J.; Wang, X.; Zhou, Z.; Liu, X.; Xu, M.; Zhao, F.; Zhao, F.; Li, S.; Liu, Z.; Li, L.; Zhao, S. Flame-retardant Effect of Tannic Acid-Based Intumescent Fire-Retardant Applied on Flammable Natural Rubber. RSC Adv. 2022, 12 (46), 29928–29938. https://doi.org/10.1039/D2RA04682B.Search in Google Scholar
32. Li, L.; Liu, X.; Huang, K.; Wang, Y.; Zheng, X.; Wang, J.; Du, Y.; Jiang, L.; Zhao, S. A Facile Strategy to Fabricate Intumescent Fire-Retardant and Smoke Suppression Protective Coatings for Natural Rubber. Polym. Test. 2020, 90, 106689. https://doi.org/10.1016/j.polymertesting.2020.106689.Search in Google Scholar
33. Qu, Q.; Xu, J.; Wang, H.; Yu, Y.; Dong, Q.; Zhang, X.; He, Y. Carbon Nanotube-Based Intumescent Flame Retardants Achieve High-Efficiency Flame Retardancy and Simultaneously Avoid Mechanical Property Loss. Polymers 2023, 15 (6), 1406. https://doi.org/10.3390/polym15061406.Search in Google Scholar PubMed PubMed Central
34. Wu, C.; Wang, X.; Zhang, J.; Cheng, J.; Shi, L. Microencapsulation and Surface Functionalization of Ammonium Polyphosphate via In-Situ Polymerization and Thiol-Ene Photograted Reaction for Application in Flame-Retardant Natural Rubber. Ind. Eng. Chem. Res. 2019, 58 (37), 17346–17358. https://doi.org/10.1021/acs.iecr.9b02464.Search in Google Scholar
35. Cheng, J.; Niu, S.; Zhao, Y.; Liu, Y.; Kang, M.; Guan, Y.; Zhang, F. The Flame Retardant and Thermal Conductivity Properties of High Thermal Conductivity Expandable Graphite Microcapsule Filled Natural Rubber Composites. Constr. Build. Mater. 2022, 318, 125998. https://doi.org/10.1016/j.conbuildmat.2021.125998.Search in Google Scholar
36. Wang, N.; Zhou, M.; Zhang, J.; Fang, Q. Modified Boron Nitride as an Efficient Synergist to Flame Retardant Natural Rubber: Preparation and Properties. Polym. Adv. Technol. 2020, 31 (9), 1887–1895. https://doi.org/10.1002/pat.4833.Search in Google Scholar
37. Su, X.; Chai, W.; Xia, Y.; Gao, M.; Li, Y.; Tang, Z.; Zhang, Z.; Han, Z.; Zheng, Z. Bio-inspired Construction of Hydrophobic, Bio-Based and Halogen-free Flame-Retardant Strategy for Silicone Rubber. J. Therm. Anal. Calorim. 2023, 148 (19), 9857–9874. https://doi.org/10.1007/s10973-023-12371-2.Search in Google Scholar
38. Peng, H.; Yang, Q. Investigation on the Effect of Supported Synergistic Catalyst with Intumescent Flame Retardant in Polypropylene. J. Polym. Eng. 2021, 41, 281–288. https://doi.org/10.1515/polyeng-2020-0225.Search in Google Scholar
39. Wu, P.; Peng, Y.; Zhang, X.; Zhang, G.; Ran, J.; Xu, M. Unsaturated Polyester Resin Modified with a Novel Reactive Flame Retardant: Effects on Thermal Stability and Flammability. J. Polym. Eng. 2022, 42, 818–826. https://doi.org/10.1515/polyeng-2021-0317.Search in Google Scholar
40. Zhou, C.; Wang, J.; Li, J.; Shi, J. Thermal Aging Properties of Flame Retardant Silicone Rubber Based on Melamine Cyanurate. J. Appl. Polym. Sci. 2021, 138 (9), 49919. https://doi.org/10.1002/app.49919.Search in Google Scholar
41. Lv, X.; Wu, X.; Cheng, P.; Wang, H. Flame-Retardant Natural Rubber. CN, 201910940222; 2019.Search in Google Scholar
42. Mao, C. H.; Chen, S. X.; Zhou, C. Q.; Jin, Q.; Zhang, S. Flame-Retardant and Anti-static Rubber for Shoe Edges and its Preparation Method. CN, 202011202747 (7), 2021.Search in Google Scholar
43. Wang, N.; Liu, H.; Zhang, J.; Zhang, M.; Fang, Q.; Wang, D. Synergistic Effect of Graphene Oxide and Boron-Nitrogen Structure on Flame Retardancy of Natural Rubber/IFR Composites. Arab. J. Chem. 2020, 13 (8), 6274–6284. https://doi.org/10.1016/j.arabjc.2020.05.016.Search in Google Scholar
44. Xu, W.; Wu, X.; Wen, Q.; Li, S.; Song, Y.; Shi, B. Effects of Collagen Fiber Addition on the Combustion and Thermal Stability of Natural Rubber. J. Leather Sci. Eng. 2020, 2, 1–10. https://doi.org/10.1186/s42825-020-00040-1.Search in Google Scholar
45. Yang, J.; Ma, W.; Hu, D.; Zhang, D.; Wu, L.; Yang, B.; Zhang, S. Facile Preparation and Flame Retardancy Mechanism of Cyclophosphazene Derivatives for Highly Flame-Retardant Silicone Rubber Composites. J. Appl. Polym. Sci. 2021, 138 (17), 50297. https://doi.org/10.1002/app.50297.Search in Google Scholar
46. Jiang, G.; Zhou, H.; Liao, K. Effect of B Enzotriazole-Protected Platinum Catalyst on Flame Retardancy and Ceramic-Forming Property of Ceramifiable Silicone Rubber. Polym. Adv. Technol. 2020, 31 (11), 2687–2700. https://doi.org/10.1002/pat.4995.Search in Google Scholar
47. Battig, A.; Fadul, N. A. R.; Frasca, D.; Schulze, D.; Schartel, B. Multifunctional Graphene Nanofiller in Flame Retarded Polybutadiene/chloroprene/carbon Black Composites. e-Polymers 2021, 21 (1), 244–262. https://doi.org/10.1515/epoly-2021-0026.Search in Google Scholar
48. Xu, W. C.; Zheng, W. C.; Zhao, L.; Wu, H. T.; Wu, Y. X.; Li, H. L.; Zhang, H.; Long, H. M. Preparation and Properties of Flame-Retardant Rubber Composites Based on Steel Slag Filler. J. Iron Steel Res. Int. 2023, 30 (7), 1334–1341. https://doi.org/10.1007/s42243-022-00901-5.Search in Google Scholar
49. Yu, J.; Hong, L.; Qu, L. Study on Char Reinforcing of Different Inorganic Fillers for Expandable Fire Resistance Silicone Rubber. J. Appl. Polym. Sci. 2021, 138 (28), 50675. https://doi.org/10.1002/app.50675.Search in Google Scholar
50. Du, W.; Yin, C.; Huang, H.; Ge, X. Vinyl-functionalized Polyborosiloxane for Improving Mechanical and Flame-Retardancy Performances of Silicone Rubber Foam Composites. Polym. Int. 2022, 71 (1), 124–131. https://doi.org/10.1002/pi.6292.Search in Google Scholar
51. Parvathi, K.; Ramesan, M. High Performance Chlorinated Natural Rubber/zinc Ferrite Nanocomposite Prepared through Industrial Compounding Technique. Polym. Bull. 2023, 80 (3), 3165–3182. https://doi.org/10.1007/s00289-022-04201-6.Search in Google Scholar
52. Younis, A.; El-Wakil, A. Improvement of Mechanical and Flame Retardant Properties of Natural Rubber by Eco-Friendly Watermelon Peel and Crumb Rubber. Fibers Polym. 2021, 22 (5), 1237–1246. https://doi.org/10.1007/s12221-021-0497-9.Search in Google Scholar
53. Wang, Y.; Liu, T.; Zhang, H.; Luo, N.; Chen, F.; Fu, Q. Effect of Spherical Alumina Crystalline Phase Content and Particle Size Distribution Polydispersity on the Properties of Silicone Rubber Composites. Compos. Sci. Technol. 2023, 243, 110273. https://doi.org/10.1016/j.compscitech.2023.110273.Search in Google Scholar
54. Kang, F.; Tu, J.; Zhao, H.; Bai, Z.; Zhang, T. Flame Retardancy and Smoke Suppression of Silicone Rubber Foam with Microencapsulated Sepiolite and Zinc Borate. Polymers 2023, 15 (13), 2927. https://doi.org/10.3390/polym15132927.Search in Google Scholar PubMed PubMed Central
55. Song, W.; Lan, Y.; Wang, J.; Zhang, C. Synergistic Effect of Diatomite and Intumescent Flame Retardant on Flame Retardant Properties of Silicone Rubber Composites. J. Rubber Res. 2021, 24, 489–499. https://doi.org/10.1007/s42464-021-00116-5.Search in Google Scholar
56. Du, W.; Zhang, Z.; Huang, H.; Yin, C. Flame Retardancy and Mechanical Properties of Silicone Rubber Foam Composite Reinforced with ZnNiAl Layered Double Hydroxides. J. Polym. Res. 2023, 30 (10), 384. https://doi.org/10.1007/s10965-023-03768-6.Search in Google Scholar
57. Abdelkhalik, A.; Makhlouf, G.; Abdel-Hakim, A. Fire Behavior of Natural Rubber Filled with Intumescent Flame Retardant Containing Graphite. J. Vinyl Addit. Technol. 2020, 26 (2), 155–164. https://doi.org/10.1002/vnl.21728.Search in Google Scholar
58. Liu, C.; Wang, J.; Zhao, W.; Song, S. Application Properties of a Cyclophosphamide-Core Polyamidoamine Dendritic Montmorillonite in Natural Rubber Composites. Polym. Polym. Compos. 2020, 28 (5), 356–366. https://doi.org/10.1177/0967391119879289.Search in Google Scholar
59. Chen, X.; Qiu, T. Natural Rubber Composites Reinforced with Basic Magnesium Oxysulfate Whiskers: Processing and Ultraviolet Resistance/flame Retardant Properties. Polym. Test. 2020, 81, 106271. https://doi.org/10.1016/j.polymertesting.2019.106271.Search in Google Scholar
60. Pang, Q.; Kang, F.; Deng, J.; Lei, L.; Lu, J.; Shao, S. Flame Retardancy Effects between Expandable Graphite and Halloysite Nanotubes in Silicone Rubber Foam. RSC Adv. 2021, 11 (23), 13821–13831. https://doi.org/10.1039/D1RA01409A.Search in Google Scholar PubMed PubMed Central
61. Pang, Q.; Deng, J.; Kang, F.; Shao, S. Effect of Expandable Graphite/Hexaphenoxycyclotriphosphazene Beads on the Flame Retardancy of Silicone Rubber Foam. Mater. Res. Express 2020, 7 (5), 055308. https://doi.org/10.1088/2053-1591/ab9250.Search in Google Scholar
62. Li, Z.; Cheng, X.; Liu, Y.; Liu, H.; Jiang, Y.; Wang, N. Intumescent Flame Retardancy and Smoke Suppression of Eucommia Ulmoides Gum/natural Rubber Blends Based on Synergistic G-C3n4@ Fe3O4 Nanocomposites. RSC Adv. 2022, 12 (34), 21704–21712. https://doi.org/10.1039/D2RA03377A.Search in Google Scholar
63. Wang, C.; Shen, J.; Hao, Z.; Luo, Z.; Shen, Z.; Li, X.; Yang, L.; Zhou, Q. Flexible Silicone Rubber/carbon Fiber/nano-Diamond Composites with Enhanced Thermal Conductivity via Reducing the Interface Thermal Resistance. J. Polym. Eng. 2022, 42, 544–553. https://doi.org/10.1515/polyeng-2021-0301.Search in Google Scholar
64. Muralidharan, N. D.; Subramanian, J.; Rajamanickam, S. K.; Gopalan, V. An Experimental Investigation of Flame Retardancy and Thermal Stability of Treated and Untreated Kenaf Fiber Reinforced Epoxy Composites. J. Polym. Eng. 2023, 43, 865–874. https://doi.org/10.1515/polyeng-2023-0128.Search in Google Scholar
65. Song, J.; Zhang, X.; Wang, J.; Sun, J.; Shi, A. Ceramifiable Flame-Retarded Silicone Rubber Composites Based on Novel Phosphorus/Nitrogen/Silicon-Containing Flame Retardants. Silicon 2023, 15 (11), 5001–5011. https://doi.org/10.1007/s12633-023-02416-4.Search in Google Scholar
66. Hu, S.; Tan, Z. W.; Chen, F.; Li, J. G.; Shen, Q.; Huang, Z. X.; Zhang, L. M. Flame-retardant Properties and Synergistic Effect of Ammonium Polyphosphate/aluminum Hydroxide/mica/silicone Rubber Composites. Fire Mater. 2020, 44 (5), 673–682. https://doi.org/10.1002/fam.2831.Search in Google Scholar
67. Li, J.; Yan, Z.; Liu, M.; Han, X.; Lu, T.; Liu, R.; Zhao, S.; Lv, Q.; Li, B.; Zhao, S.; Wang, H. Triple Silicon, Phosphorous, and Nitrogen-Grafted Lignin-Based Flame Retardant and its Vulcanization Promotion for Styrene Butadiene Rubber. ACS Omega 2023, 8 (24), 21549–21558. https://doi.org/10.1021/acsomega.3c00714.Search in Google Scholar PubMed PubMed Central
68. Yao, L.; Xu, W.; Ding, D.; Zhou, Y.; Zhang, Y. Core-shell Carbon Nanotubes/cobalt Copper Hydroxide Hybrid/silicone Rubber Composite: Flame Retardancy and Antistatic Properties. Iran. Polym. J. 2023, 32 (5), 557–570. https://doi.org/10.1007/s13726-023-01145-0.Search in Google Scholar
69. Sajith, T.; Praveen, K.; Thomas, S.; Ahmad, Z.; Kalarikkal, N.; Dhanani, C.; Maria, H. J. Effect of HAF Carbon Black on Curing, Mechanical, Thermal and Neutron Shielding Properties of Natural Rubber-Low-Density Polyethylene Composites. Prog. Nucl. Energy 2021, 141, 103940. https://doi.org/10.1016/j.pnucene.2021.103940.Search in Google Scholar
70. Abdulrahman, S. T.; Ahmad, Z.; Thomas, S.; Maria, H. J.; Rahman, A. A. Viscoelastic and Thermal Properties of Natural Rubber Low-Density Polyethylene Composites with Boric Acid and Borax. J. Appl. Polym. Sci. 2020, 137 (44), 49372. https://doi.org/10.1002/app.49372.Search in Google Scholar
71. Walong, A.; Thongnuanchan, B.; Sakai, T.; Lopattananon, N. Influence of Silicon Dioxide Addition and Processing Methods on Structure, Thermal Stability and Flame Retardancy of EVA/NR Blend Nanocomposite Foams. Prog. Rubber Plast. Recy. Technol. 2021, 37 (1), 49–65. https://doi.org/10.1177/1477760620953437.Search in Google Scholar
72. Walong, A.; Thongnuanchan, B.; Uthaipan, N.; Sakai, T.; Lopattananon, N. Enhancing Cellular Structure, Mechanical Properties, Thermal Stability and Flame Retardation of EVA/NR Blend Nanocomposite Foams by Silicon Dioxide-Based Flame Retardant. Prog. Rubber Plast. Recy. Technol. 2022, 38 (1), 70–88. https://doi.org/10.1177/14777606211042028.Search in Google Scholar
73. Sawangpet, K.; Walong, A.; Thongnuanchan, B.; Kaesaman, A.; Sakai, T.; Lopattananon, N. Foaming and Physical Properties, Flame Retardancy, and Combustibility of Polyethylene Octene Foams Modified by Natural Rubber and Expandable Graphite. J. Vinyl Addit. Technol. 2020, 26 (4), 423–433. https://doi.org/10.1002/vnl.21757.Search in Google Scholar
74. Lu, Y.; Wang, J.; Zhang, C. Preparation of a Novel Flame Retardant Based on Diatomite/polyethyleneimine Modified MWCNT for Applications in Silicone Rubber Composites. J. Rubber Res. 2021, 24, 137–146. https://doi.org/10.1007/s42464-020-00079-z.Search in Google Scholar
75. Chai, W.; Su, X.; Xia, Y.; Liao, C.; Gao, M.; Li, Y.; Zheng, Z. Fabrication of Ni-Doped Synergistic Intumescent Flame-Retarding Silicone Rubber System with Superior Flame Retardancy and Water Resistance. J. Therm. Anal. Calorim. 2023, 148 (5), 1827–1839. https://doi.org/10.1007/s10973-022-11865-9.Search in Google Scholar
76. Zirnstein, B.; Schulze, D.; Schartel, B. The Impact of Polyaniline in Phosphorus Flame Retardant Ethylene-Propylene-Diene-Rubber (EPDM). Thermochim. Acta 2019, 673, 92–104. https://doi.org/10.1016/j.tca.2019.01.019.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Impact behavior of shear thickening fluid treated CFRP by using SHPB technique
- Soft materials containing dynamic C–N bonds for fluorescence visualization
- Preparation and Assembly
- Advanced polymer nanocomposites in packaging applications
- Research and application advances in rubber flame retardant technology
- Silicone- and ester-containing polyurethanes with improved thermal stability
- Engineering and Processing
- Experimental study on the usage of biopolymer sodium alginate as drainage barrier in liners
Articles in the same Issue
- Frontmatter
- Material Properties
- Impact behavior of shear thickening fluid treated CFRP by using SHPB technique
- Soft materials containing dynamic C–N bonds for fluorescence visualization
- Preparation and Assembly
- Advanced polymer nanocomposites in packaging applications
- Research and application advances in rubber flame retardant technology
- Silicone- and ester-containing polyurethanes with improved thermal stability
- Engineering and Processing
- Experimental study on the usage of biopolymer sodium alginate as drainage barrier in liners