Home Optimization of pullulan fiber processing parameters via the Forcespinning method
Article
Licensed
Unlicensed Requires Authentication

Optimization of pullulan fiber processing parameters via the Forcespinning method

  • Jefferson Reinoza EMAIL logo , Cesar Benitez , Martin Lopez , Ever Acosta , Victoria Padilla and Karen Lozano EMAIL logo
Published/Copyright: March 18, 2025
Become an author with De Gruyter Brill

Abstract

In this study PL fibers were used to analyze the influences of two key parameters in the optimization process aimed at maximizing fiber yield using the centrifugal spinning technique called Forcespinning®. The optimization process was conducted focusing on rotational velocity (rpm) and precursor polymer concentration. These variables were then correlated with both fiber yield and diameter. Rheological analysis of the precursor polymeric solutions was performed to examine the relationships between fiber production parameters and solution viscosities (η) as well as storage (G′) and loss (G″) moduli. Fiber yields were analyzed at intervals from 2,000 to 10,000 rpm. In terms of morphological properties, most fibers exhibited diameters ranging from 0.2 to 1.2 μm, with a gradual decrease observed as the rpm increased, which aligns with expectations. The 18.2 wt% pullulan solution demonstrated an optimal balance of high fiber production yield (60–67 %), low production rpm (4,000), and low viscosity (1,415 cp), facilitating the production process compared with the other systems. Additionally, thermal characterization analysis revealed that the fibers absorbed solvents in the range of 10–11 % by weight, with thermal stability exceeding 270 °C in a nitrogen atmosphere. This optimization study is a processing platform for future research on pullulan-based fibers.


Corresponding authors: Jefferson Reinoza, Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA, E-mail: ; and Karen Lozano, Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA, E-mail:

Funding source: National Science Foundation (NSF, PREM) USA

Award Identifier / Grant number: DMR 2122178

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Cesar Benitez, Martin Lopez, and Ever Acosta contributed to the development of the experimental section of fiber production, rheological tests, and reproducibility of the entire experiments. Victoria Padilla and Karen Lozano contributed to the design of experiments, analysis and interpretation of data, as well as making corrections and continuous improvements to the final document. Jefferson Reinoza participated in all the previously mentioned activities. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The authors gratefully acknowledge the support received from “National Science Foundation” (NSF) under “Partnership for Research and Education in Materials Science” (PREM) award DMR 2122178.

  7. Data availability: Not applicable.

References

1. Ashutosh, K. P.; Ranjna, S.; Vivek, K. G.; Ashok, P. Chapter 8 - Production and Applications of Pullulan. In Biomass, Biofuels, Biochemicals Biodegradable Polymers and Composites - Process Engineering to Commercialization; Parameswaran, B.; Sindhu, R.; Ashok, P.; Eds.; Elsevier: Amsterdam, Netherlands, 2021; pp 165–221.Search in Google Scholar

2. Ram, S. S.; Navpreet, K.; Dhandeep, S.; Sukhvinder, S. P.; John, F. K. Pullulan in Pharmaceutical and Cosmeceutical Formulations: A Review. Int. J. Biol. Macromol. 2023, 231, 123353. https://doi.org/10.1016/j.ijbiomac.2023.123353.Search in Google Scholar PubMed

3. Vipul, D. P.; Girish, K. J.; Simin, M. K. Pullulan: An Exopolysaccharide and its Various Applications. Carbohydr. Polym. 2013, 95 (1), 540–549. https://doi.org/10.1016/j.carbpol.2013.02.082.Search in Google Scholar PubMed

4. Sun, X.; Jia, D.; Kang, W.; Cheng, B.; Li, Y. Research on Electrospinning Process of Pullulan Nanofibers. Appl. Mech. Mater. 2012, 268-270, 198–201. https://doi.org/10.4028/www.scientific.net/amm.268-270.198.Search in Google Scholar

5. Tony, D.; Costas, G. B.; Dimitrios, G.; Evangelos, S. Physicochemical Properties and Application of Pullulan Edible Films and Coatings in Fruit Preservation. J. Sci. Food Agric. 2001, 81 (10), 988–1000. https://doi.org/10.1002/jsfa.883.Search in Google Scholar

6. Surendra, A.; Divya, B.; Pravina, G.; Darshan, T.; Vijay, L. Pullulan Based Derivatives: Synthesis, Enhanced Physicochemical Properties, and Applications. Drug Delivery 2022, 29 (1), 3328–3339. https://doi.org/10.1080/10717544.2022.2144544.Search in Google Scholar PubMed PubMed Central

7. Ram, S. S.; Navpreet, K.; Vikas, R.; John, F. K. Pullulan: A Novel Molecule for Biomedical Applications. Carbohydr. Polym. 2017, 171, 102–121. https://doi.org/10.1016/j.carbpol.2017.04.089.Search in Google Scholar PubMed

8. Ram, S. S.; Navpreet, K.; Muhammad, H.; John, F. K. Pullulan in Biomedical Research and Development - A Review. Int. J. Biol. Macromol. 2021, 166, 694–706. https://doi.org/10.1016/j.ijbiomac.2020.10.227.Search in Google Scholar PubMed

9. Ram, S. S.; Navpreet, K.; Vikas, R.; John, F. K. Recent Insights on Applications of Pullulan in Tissue Engineering. Carbohydr. Polym. 2016, 153, 455–462. https://doi.org/10.1016/j.carbpol.2016.07.118.Search in Google Scholar PubMed

10. Ram, S. S.; Navpreet, K.; John, F. K. Pullulan Production from Agro-Industrial Waste and its Applications in Food Industry: A Review. Carbohydr. Polym. 2019, 217, 46–57. https://doi.org/10.1016/j.carbpol.2019.04.050.Search in Google Scholar PubMed

11. Maria-Beatrice, C.; Serena, D.; Karen, D.; Andrea, L.; Pierfrancesco, M. Pullulan for Advanced Sustainable Body- and Skin-Contact Applications. J. Funct. Biomater. 2020, 11 (1), 20. https://doi.org/10.3390/jfb11010020.Search in Google Scholar PubMed PubMed Central

12. Sanjay, T.; Rahul, P.; Sunil, K. D.; Pratap, B. Derivatization Approaches and Applications of Pullulan. Adv. Colloid Interface Sci. 2019, 269, 296–308. https://doi.org/10.1016/j.cis.2019.04.014.Search in Google Scholar PubMed

13. Sabina, G.; Emine Aytunga, A. K.; Małgorzata, G.; Karolina, K. Novel Materials in the Preparation of Edible Films and Coatings-A Review. Coatings 2020, 10 (7), 674. https://doi.org/10.3390/coatings10070674.Search in Google Scholar

14. Subbulakshmi, M.; Swetha, J. A.; Ponnusamy, S. K.; Yogesan, M.; Dai-Viet, N. V.; Vinoth, K. V.; Shanmugaprakash, M. Microbial Pullulan for Food, Biomedicine, Cosmetic, and Water Treatment: a Review. Environ. Chem. Lett. 2022, 20, 3199–3234. https://doi.org/10.1007/s10311-022-01460-7.Search in Google Scholar

15. Luminita, G.; Marieta, C. A Review of the Use of Pullulan Derivatives in Wastewater Purification. React. Funct. Polym. 2020, 149, 104510. https://doi.org/10.1016/j.reactfunctpolym.2020.104510.Search in Google Scholar

16. Bishwambhar, M.; Suneetha, V.; Kalyani, R. The Role of Microbial Pullulan, a Biopolymer in Pharmaceutical Approaches: A Review. J. Appl. Pharm. Sci. 2011, 0l (06), 45–50.Search in Google Scholar

17. Ângelo, L.; Ana, R.; Fernanda, D. Pullulan–Apple Fiber Biocomposite Films: Optical, Mechanical, Barrier, Antioxidant and Antibacterial Properties. Polymers 2021, 13 (6), 870. https://doi.org/10.3390/polym13060870.Search in Google Scholar PubMed PubMed Central

18. Yuanduo, W.; Ziyang, G.; Yongfang, Q.; Zhen, Z.; Lihua, L.; Ying, W.; Fang, Y. Study on the Electrospinning of Gelatin/pullulan Composite Nanofibers. Polymers 2019, 11 (9), 1424. https://doi.org/10.3390/polym11091424.Search in Google Scholar PubMed PubMed Central

19. Marjan, H.; Elvan, Y. Pullulan Modification via poly(N-Vinylimidazole) Grafting. Int. J. Biol. Macromol. 2019, 123, 149–156. https://doi.org/10.1016/j.ijbiomac.2018.11.022.Search in Google Scholar PubMed

20. Ran, L.; Peggy, T.; Ana Margarida, M.; Shih-Chuan, L.; Michael, T.; Kevin, L.; Linshu, L. Electrospinning Pullulan Fibers from Salt Solutions. Polymers 2017, 9 (1), 32. https://doi.org/10.3390/polym9010032.Search in Google Scholar PubMed PubMed Central

21. Zhaoxuan, F.; Shuyu, C.; Abdullah, A.; Longjiao, C.; Wenqin, B. Ultra-high Molecular Weight Pullulan-Based Material with High Deformability and Shape-Memory Properties. Carbohydr. Polym. 2022, 295, 119836. https://doi.org/10.1016/j.carbpol.2022.119836.Search in Google Scholar PubMed

22. Dumitru, I. C.; Simon, P.; Karen, L. Two-Dimensional Modeling of Nonlinear Dynamics of Forcespinning Jet Formation. J. Comput. Nonlinear Dyn. 2021, 16 (8), 081006. https://doi.org/10.1115/1.4051167.Search in Google Scholar

23. Anand, K. A.; Jose, T. S.; Agarwal, U. S.; Sreekumar, T. V.; Banwari, B.; Joseph, R. PET-SWNT Nanocomposite Fibers through Melt Spinning. Int. J. Polym. Mater. Polym. Biomater. 2010, 59 (6), 438–449. https://doi.org/10.1080/00914030903538587.Search in Google Scholar

24. John, L. D.; Adam, M. B.; Anthony, D. S.; Peter, K. A Review of the Fundamental Principles and Applications of Solution Blow Spinning. ACS Appl. Mater. Interfaces 2016, 8 (51), 34951–34963. https://doi.org/10.1021/acsami.6b12994.Search in Google Scholar PubMed PubMed Central

25. Jie, Z.; Saeed, D. M.; Alan, B.; Ann, T.; Geoffrey, R. M.; Fred, J. D. Electrospinning of Food-Grade Nanofibres from Whey Protein. Int. J. Biol. Macromol. 2018, 113, 764–773. https://doi.org/10.1016/j.ijbiomac.2018.02.113.Search in Google Scholar PubMed

26. Cristobal, R.; Victoria, P.; Karen, L.; Andrew, M.; Luis, M.; Alejandra, C.; Fariha, A.; Carlos, T.; Robert, G. Fabrication of Forcespinning® Nanofibers Incorporating Nopal Extract. Polym. Int. 2020, 70 (5), 679–686. https://doi.org/10.1002/pi.6163.Search in Google Scholar

27. Kamal, S.; Carlos, G.; Steve, Z.; Michael, R.; Eugenio de, H.; Horacio, V.; Karen, L. Electrospinning to Forcespinning™. Mater. Today 2010, 13 (11), 12–14. https://doi.org/10.1016/S1369-7021(10)70199-1.Search in Google Scholar

28. Chen, C.; Mahmut, D.; Xiangwu, Z. Chapter 10 - Centrifugal Spinning—High Rate Production of Nanofibers. In Electrospinning: Nanofabrication and Applications Micro and Nano Technologies; Bin, D.; Xianfeng, W.; Jianyong, Y.; Eds.; William Andrew Publishing: Norwich, NY, USA, 2019; pp 321–338.10.1016/B978-0-323-51270-1.00010-8Search in Google Scholar

29. Xiangwu, Z.; Yao, L. Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibers at High Speed and Low Cost. Polym. Rev. 2014, 54 (4), 677–701. https://doi.org/10.1080/15583724.2014.935858.Search in Google Scholar

30. Nancy, O.; Victor, A.; Madhab, P.; Howard, C.; David, F.; David, D.; Yuanbing, M.; Javier, M.; Mataz, A. Effect of Polymer Concentration, Rotational Speed, and Solvent Mixture on Fiber Formation Using Forcespinning®. Fibers 2016, 4 (2), 20. https://doi.org/10.3390/fib4020020.Search in Google Scholar

31. Lee, G. J.; Sanders, M.-E. Forcespinning of Fibers and Filaments (WO 2015/003170 A2). World Intellectual Property Organization. PCT/US2014/045484, 2015.Search in Google Scholar

32. Simon, P.; Arturo, F.; Dumitru, C.; Karen, L. Experimental Study of Nanofiber Production through Forcespinning. J. Appl. Phys. 2013, 113, 024318. https://doi.org/10.1063/1.4769886.Search in Google Scholar

33. Fenghua, X.; Baicheng, W.; Robert, G.; Luis Alberto, M.; Karen, L. Development of Tannic Acid/chitosan/pullulan Composite Nanofibers from Aqueous Solution for Potential Applications as Wound Dressing. Carbohydr. Polym. 2015, 115, 16–24. https://doi.org/10.1016/j.carbpol.2014.08.081.Search in Google Scholar PubMed

34. Loreana, M.; Luissanyi, C.; Luis, S.; Yuanbing, M.; Nancy, F.; Efren, D.; Karen, L. Development and Characterization of Glandless Cottonseed Meal/pullulan Fine Fiber Mats. Arch. Nanomed. 2018, 1 (4). https://doi.org/10.32474/anoaj.2018.01.000117.Search in Google Scholar

35. Cristobal, R.; Victoria, P.; Karen, L.; Alexa, V.; Luis, M.; Robert, G. Development and Characterization of Forcespinning® Mesquite Gum Nanofibers. Mater. Today Commun. 2022, 33. https://doi.org/10.1016/j.mtcomm.2022.104599.Search in Google Scholar

Received: 2024-07-05
Accepted: 2025-02-19
Published Online: 2025-03-18
Published in Print: 2025-05-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0142/html
Scroll to top button