Abstract
In this study PL fibers were used to analyze the influences of two key parameters in the optimization process aimed at maximizing fiber yield using the centrifugal spinning technique called Forcespinning®. The optimization process was conducted focusing on rotational velocity (rpm) and precursor polymer concentration. These variables were then correlated with both fiber yield and diameter. Rheological analysis of the precursor polymeric solutions was performed to examine the relationships between fiber production parameters and solution viscosities (η) as well as storage (G′) and loss (G″) moduli. Fiber yields were analyzed at intervals from 2,000 to 10,000 rpm. In terms of morphological properties, most fibers exhibited diameters ranging from 0.2 to 1.2 μm, with a gradual decrease observed as the rpm increased, which aligns with expectations. The 18.2 wt% pullulan solution demonstrated an optimal balance of high fiber production yield (60–67 %), low production rpm (4,000), and low viscosity (1,415 cp), facilitating the production process compared with the other systems. Additionally, thermal characterization analysis revealed that the fibers absorbed solvents in the range of 10–11 % by weight, with thermal stability exceeding 270 °C in a nitrogen atmosphere. This optimization study is a processing platform for future research on pullulan-based fibers.
Funding source: National Science Foundation (NSF, PREM) USA
Award Identifier / Grant number: DMR 2122178
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Cesar Benitez, Martin Lopez, and Ever Acosta contributed to the development of the experimental section of fiber production, rheological tests, and reproducibility of the entire experiments. Victoria Padilla and Karen Lozano contributed to the design of experiments, analysis and interpretation of data, as well as making corrections and continuous improvements to the final document. Jefferson Reinoza participated in all the previously mentioned activities. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The authors gratefully acknowledge the support received from “National Science Foundation” (NSF) under “Partnership for Research and Education in Materials Science” (PREM) award DMR 2122178.
-
Data availability: Not applicable.
References
1. Ashutosh, K. P.; Ranjna, S.; Vivek, K. G.; Ashok, P. Chapter 8 - Production and Applications of Pullulan. In Biomass, Biofuels, Biochemicals Biodegradable Polymers and Composites - Process Engineering to Commercialization; Parameswaran, B.; Sindhu, R.; Ashok, P.; Eds.; Elsevier: Amsterdam, Netherlands, 2021; pp 165–221.Search in Google Scholar
2. Ram, S. S.; Navpreet, K.; Dhandeep, S.; Sukhvinder, S. P.; John, F. K. Pullulan in Pharmaceutical and Cosmeceutical Formulations: A Review. Int. J. Biol. Macromol. 2023, 231, 123353. https://doi.org/10.1016/j.ijbiomac.2023.123353.Search in Google Scholar PubMed
3. Vipul, D. P.; Girish, K. J.; Simin, M. K. Pullulan: An Exopolysaccharide and its Various Applications. Carbohydr. Polym. 2013, 95 (1), 540–549. https://doi.org/10.1016/j.carbpol.2013.02.082.Search in Google Scholar PubMed
4. Sun, X.; Jia, D.; Kang, W.; Cheng, B.; Li, Y. Research on Electrospinning Process of Pullulan Nanofibers. Appl. Mech. Mater. 2012, 268-270, 198–201. https://doi.org/10.4028/www.scientific.net/amm.268-270.198.Search in Google Scholar
5. Tony, D.; Costas, G. B.; Dimitrios, G.; Evangelos, S. Physicochemical Properties and Application of Pullulan Edible Films and Coatings in Fruit Preservation. J. Sci. Food Agric. 2001, 81 (10), 988–1000. https://doi.org/10.1002/jsfa.883.Search in Google Scholar
6. Surendra, A.; Divya, B.; Pravina, G.; Darshan, T.; Vijay, L. Pullulan Based Derivatives: Synthesis, Enhanced Physicochemical Properties, and Applications. Drug Delivery 2022, 29 (1), 3328–3339. https://doi.org/10.1080/10717544.2022.2144544.Search in Google Scholar PubMed PubMed Central
7. Ram, S. S.; Navpreet, K.; Vikas, R.; John, F. K. Pullulan: A Novel Molecule for Biomedical Applications. Carbohydr. Polym. 2017, 171, 102–121. https://doi.org/10.1016/j.carbpol.2017.04.089.Search in Google Scholar PubMed
8. Ram, S. S.; Navpreet, K.; Muhammad, H.; John, F. K. Pullulan in Biomedical Research and Development - A Review. Int. J. Biol. Macromol. 2021, 166, 694–706. https://doi.org/10.1016/j.ijbiomac.2020.10.227.Search in Google Scholar PubMed
9. Ram, S. S.; Navpreet, K.; Vikas, R.; John, F. K. Recent Insights on Applications of Pullulan in Tissue Engineering. Carbohydr. Polym. 2016, 153, 455–462. https://doi.org/10.1016/j.carbpol.2016.07.118.Search in Google Scholar PubMed
10. Ram, S. S.; Navpreet, K.; John, F. K. Pullulan Production from Agro-Industrial Waste and its Applications in Food Industry: A Review. Carbohydr. Polym. 2019, 217, 46–57. https://doi.org/10.1016/j.carbpol.2019.04.050.Search in Google Scholar PubMed
11. Maria-Beatrice, C.; Serena, D.; Karen, D.; Andrea, L.; Pierfrancesco, M. Pullulan for Advanced Sustainable Body- and Skin-Contact Applications. J. Funct. Biomater. 2020, 11 (1), 20. https://doi.org/10.3390/jfb11010020.Search in Google Scholar PubMed PubMed Central
12. Sanjay, T.; Rahul, P.; Sunil, K. D.; Pratap, B. Derivatization Approaches and Applications of Pullulan. Adv. Colloid Interface Sci. 2019, 269, 296–308. https://doi.org/10.1016/j.cis.2019.04.014.Search in Google Scholar PubMed
13. Sabina, G.; Emine Aytunga, A. K.; Małgorzata, G.; Karolina, K. Novel Materials in the Preparation of Edible Films and Coatings-A Review. Coatings 2020, 10 (7), 674. https://doi.org/10.3390/coatings10070674.Search in Google Scholar
14. Subbulakshmi, M.; Swetha, J. A.; Ponnusamy, S. K.; Yogesan, M.; Dai-Viet, N. V.; Vinoth, K. V.; Shanmugaprakash, M. Microbial Pullulan for Food, Biomedicine, Cosmetic, and Water Treatment: a Review. Environ. Chem. Lett. 2022, 20, 3199–3234. https://doi.org/10.1007/s10311-022-01460-7.Search in Google Scholar
15. Luminita, G.; Marieta, C. A Review of the Use of Pullulan Derivatives in Wastewater Purification. React. Funct. Polym. 2020, 149, 104510. https://doi.org/10.1016/j.reactfunctpolym.2020.104510.Search in Google Scholar
16. Bishwambhar, M.; Suneetha, V.; Kalyani, R. The Role of Microbial Pullulan, a Biopolymer in Pharmaceutical Approaches: A Review. J. Appl. Pharm. Sci. 2011, 0l (06), 45–50.Search in Google Scholar
17. Ângelo, L.; Ana, R.; Fernanda, D. Pullulan–Apple Fiber Biocomposite Films: Optical, Mechanical, Barrier, Antioxidant and Antibacterial Properties. Polymers 2021, 13 (6), 870. https://doi.org/10.3390/polym13060870.Search in Google Scholar PubMed PubMed Central
18. Yuanduo, W.; Ziyang, G.; Yongfang, Q.; Zhen, Z.; Lihua, L.; Ying, W.; Fang, Y. Study on the Electrospinning of Gelatin/pullulan Composite Nanofibers. Polymers 2019, 11 (9), 1424. https://doi.org/10.3390/polym11091424.Search in Google Scholar PubMed PubMed Central
19. Marjan, H.; Elvan, Y. Pullulan Modification via poly(N-Vinylimidazole) Grafting. Int. J. Biol. Macromol. 2019, 123, 149–156. https://doi.org/10.1016/j.ijbiomac.2018.11.022.Search in Google Scholar PubMed
20. Ran, L.; Peggy, T.; Ana Margarida, M.; Shih-Chuan, L.; Michael, T.; Kevin, L.; Linshu, L. Electrospinning Pullulan Fibers from Salt Solutions. Polymers 2017, 9 (1), 32. https://doi.org/10.3390/polym9010032.Search in Google Scholar PubMed PubMed Central
21. Zhaoxuan, F.; Shuyu, C.; Abdullah, A.; Longjiao, C.; Wenqin, B. Ultra-high Molecular Weight Pullulan-Based Material with High Deformability and Shape-Memory Properties. Carbohydr. Polym. 2022, 295, 119836. https://doi.org/10.1016/j.carbpol.2022.119836.Search in Google Scholar PubMed
22. Dumitru, I. C.; Simon, P.; Karen, L. Two-Dimensional Modeling of Nonlinear Dynamics of Forcespinning Jet Formation. J. Comput. Nonlinear Dyn. 2021, 16 (8), 081006. https://doi.org/10.1115/1.4051167.Search in Google Scholar
23. Anand, K. A.; Jose, T. S.; Agarwal, U. S.; Sreekumar, T. V.; Banwari, B.; Joseph, R. PET-SWNT Nanocomposite Fibers through Melt Spinning. Int. J. Polym. Mater. Polym. Biomater. 2010, 59 (6), 438–449. https://doi.org/10.1080/00914030903538587.Search in Google Scholar
24. John, L. D.; Adam, M. B.; Anthony, D. S.; Peter, K. A Review of the Fundamental Principles and Applications of Solution Blow Spinning. ACS Appl. Mater. Interfaces 2016, 8 (51), 34951–34963. https://doi.org/10.1021/acsami.6b12994.Search in Google Scholar PubMed PubMed Central
25. Jie, Z.; Saeed, D. M.; Alan, B.; Ann, T.; Geoffrey, R. M.; Fred, J. D. Electrospinning of Food-Grade Nanofibres from Whey Protein. Int. J. Biol. Macromol. 2018, 113, 764–773. https://doi.org/10.1016/j.ijbiomac.2018.02.113.Search in Google Scholar PubMed
26. Cristobal, R.; Victoria, P.; Karen, L.; Andrew, M.; Luis, M.; Alejandra, C.; Fariha, A.; Carlos, T.; Robert, G. Fabrication of Forcespinning® Nanofibers Incorporating Nopal Extract. Polym. Int. 2020, 70 (5), 679–686. https://doi.org/10.1002/pi.6163.Search in Google Scholar
27. Kamal, S.; Carlos, G.; Steve, Z.; Michael, R.; Eugenio de, H.; Horacio, V.; Karen, L. Electrospinning to Forcespinning™. Mater. Today 2010, 13 (11), 12–14. https://doi.org/10.1016/S1369-7021(10)70199-1.Search in Google Scholar
28. Chen, C.; Mahmut, D.; Xiangwu, Z. Chapter 10 - Centrifugal Spinning—High Rate Production of Nanofibers. In Electrospinning: Nanofabrication and Applications Micro and Nano Technologies; Bin, D.; Xianfeng, W.; Jianyong, Y.; Eds.; William Andrew Publishing: Norwich, NY, USA, 2019; pp 321–338.10.1016/B978-0-323-51270-1.00010-8Search in Google Scholar
29. Xiangwu, Z.; Yao, L. Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibers at High Speed and Low Cost. Polym. Rev. 2014, 54 (4), 677–701. https://doi.org/10.1080/15583724.2014.935858.Search in Google Scholar
30. Nancy, O.; Victor, A.; Madhab, P.; Howard, C.; David, F.; David, D.; Yuanbing, M.; Javier, M.; Mataz, A. Effect of Polymer Concentration, Rotational Speed, and Solvent Mixture on Fiber Formation Using Forcespinning®. Fibers 2016, 4 (2), 20. https://doi.org/10.3390/fib4020020.Search in Google Scholar
31. Lee, G. J.; Sanders, M.-E. Forcespinning of Fibers and Filaments (WO 2015/003170 A2). World Intellectual Property Organization. PCT/US2014/045484, 2015.Search in Google Scholar
32. Simon, P.; Arturo, F.; Dumitru, C.; Karen, L. Experimental Study of Nanofiber Production through Forcespinning. J. Appl. Phys. 2013, 113, 024318. https://doi.org/10.1063/1.4769886.Search in Google Scholar
33. Fenghua, X.; Baicheng, W.; Robert, G.; Luis Alberto, M.; Karen, L. Development of Tannic Acid/chitosan/pullulan Composite Nanofibers from Aqueous Solution for Potential Applications as Wound Dressing. Carbohydr. Polym. 2015, 115, 16–24. https://doi.org/10.1016/j.carbpol.2014.08.081.Search in Google Scholar PubMed
34. Loreana, M.; Luissanyi, C.; Luis, S.; Yuanbing, M.; Nancy, F.; Efren, D.; Karen, L. Development and Characterization of Glandless Cottonseed Meal/pullulan Fine Fiber Mats. Arch. Nanomed. 2018, 1 (4). https://doi.org/10.32474/anoaj.2018.01.000117.Search in Google Scholar
35. Cristobal, R.; Victoria, P.; Karen, L.; Alexa, V.; Luis, M.; Robert, G. Development and Characterization of Forcespinning® Mesquite Gum Nanofibers. Mater. Today Commun. 2022, 33. https://doi.org/10.1016/j.mtcomm.2022.104599.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Polymer electrolytes for enhanced mechanical integrity in lithium-ion batteries: a review of recent progress and future directions
- Enhancement of some mechanical and thermal properties of epoxy nanocomposites via hybrid nanofiller reinforcement: graphene, alumina, and silica
- Preparation and Assembly
- Preparation and performance of hydrophilic PES blend membranes modified by Pluronic F127 and tannic acid based on RTIPS
- Fabrication and characterization of boron doped carbon dots@chitosan/polyvinyl alcohol hydrogels for methylene blue adsorption
- Sodium-alginate/poly (acrylamide co-acrylic acid) semi-interpenetrating hydrogels for removal of heavy metals from aqueous solutions
- Engineering and Processing
- Optimization of pullulan fiber processing parameters via the Forcespinning method
- Comparing pretraining methods with different fidelities for a 2D cooling problem in injection molding
Articles in the same Issue
- Frontmatter
- Material Properties
- Polymer electrolytes for enhanced mechanical integrity in lithium-ion batteries: a review of recent progress and future directions
- Enhancement of some mechanical and thermal properties of epoxy nanocomposites via hybrid nanofiller reinforcement: graphene, alumina, and silica
- Preparation and Assembly
- Preparation and performance of hydrophilic PES blend membranes modified by Pluronic F127 and tannic acid based on RTIPS
- Fabrication and characterization of boron doped carbon dots@chitosan/polyvinyl alcohol hydrogels for methylene blue adsorption
- Sodium-alginate/poly (acrylamide co-acrylic acid) semi-interpenetrating hydrogels for removal of heavy metals from aqueous solutions
- Engineering and Processing
- Optimization of pullulan fiber processing parameters via the Forcespinning method
- Comparing pretraining methods with different fidelities for a 2D cooling problem in injection molding