Startseite A waterborne uniform graphene oxide-epoxy complex with enhanced anticorrosive properties enabled by intercalation polymerization
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A waterborne uniform graphene oxide-epoxy complex with enhanced anticorrosive properties enabled by intercalation polymerization

  • Jingyi Li EMAIL logo , Ke Zhu und Zeli Fu
Veröffentlicht/Copyright: 29. März 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Dispersion of graphene in water-based epoxy resins has always been a challenge. In this work, the stable and uniform graphene oxide modified emulsifying epoxy resin curing agents (WPA@GOs) were firstly prepared by intercalation polymerization. Subsequently, WPA@GO was used to emulsify E44 to obtain WPA@GO/E44 nano-emulsions. Compared to WPA/E44 and WPA-GO/E44, the water resistance, tensile strength, and anticorrosive properties of WPA@GO/E44 were significantly increased. The corrosion density of WPA@GO2/E44 coating decreased by 5 times and polarization impedance increased by 10 times in comparison to WPA/E44 coating.


Corresponding author: Jingyi Li, College of Chemistry and Materials, Weinan Normal University, Weinan 714099, China, E-mail:

Award Identifier / Grant number: 5160030644

Award Identifier / Grant number: No. 2020JQ-899

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors express sincere thanks to the Natural Science Basic Research Plan Project Specification of Shaanxi Province (no. 2020JQ-899), Natural Science Foundation of China (5160030644), Natural Science Talent Program of Weinan Normal University (18ZRRC02), and support by Education Department of Shaanxi Province Special Science Research Program (grant no. 21JK0626).

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

  4. Data availability: All data generated or analysed during this study are included in this published article (and its Supplementary Material).

References

1. Sun, W., Wang, L., Wu, T., Pan, Y., Liu, G. Synthesis of low-electrical-conductivity graphene/pernigraniline composites and their application in corrosion protection. Carbon 2014, 79, 605–614; https://doi.org/10.1016/j.carbon.2014.08.021.Suche in Google Scholar

2. Waleed, M., Jonh, A., Vladimir, V. Corrosion performance and mechanical properties of FeCrSiNb amorphous equiatomic HEA thin film. Surf. Coat. Technol. 2021, 422, 127486–127493; https://doi.org/10.1016/j.surfcoat.2021.127486.Suche in Google Scholar

3. Bao, F., Shi, W. Synthesis and properties of hyperbranched polyurethane acrylate used for UV curing coatings. Prog. Org. Coating 2010, 68, 334–339; https://doi.org/10.1016/j.porgcoat.2010.03.002.Suche in Google Scholar

4. Huang, X., Wang, L., Lai, Y., Li, L., Jiang, X., Zhang, X. Fabrication of a nonionic self-emulsifiable waterborne epoxy curing agent with high cure properties. J. Coating Technol. Res. 2021, 18, 549–558; https://doi.org/10.1007/s11998-020-00423-3.Suche in Google Scholar

5. Liu, S., Gu, L., Zhao, H., Chen, J., Yu, H. Corrosion resistance of graphene-reinforced waterborne epoxy coatings. J. Mater. Sci. Technol. 2016, 32, 425–431; https://doi.org/10.1016/j.jmst.2015.12.017.Suche in Google Scholar

6. Llorente, O., Fernández-Berridi, M. J., González, A., Irusta, L. Study of the crosslinking process of waterborne UV curable polyurethane acrylates. Prog. Org. Coating 2016, 99, 437–442; https://doi.org/10.1016/j.porgcoat.2016.06.020.Suche in Google Scholar

7. Zhang, S.-F., Wang, R.-M., He, Y.-F., Song, P.-F., Wu, Z.-M. Waterborne polyurethane-acrylic copolymers crosslinked core–shell nanoparticles for humidity-sensitive coatings. Prog. Org. Coating 2013, 76, 729–735; https://doi.org/10.1016/j.porgcoat.2013.01.003.Suche in Google Scholar

8. Zhang, K., Huang, C., Fang, Q., Lu, Q. Synthesis of a self-emulsifiable waterborne epoxy curing agent based on glycidyl tertiary carboxylic ester and its cure characteristics. J. Appl. Polym. Sci. 2017, 134, 44246–44253; https://doi.org/10.1002/app.44246.Suche in Google Scholar

9. Huang, X., Wang, L., Lai, Y., Li, L., Jiang, X., Zhang, X. Fabrication of a nonionic self-emulsifiable waterborne epoxy curing agent with high cure properties. J. Coating Technol. Res. 2021, 18, 549–558; https://doi.org/10.1007/s11998-020-00423-3.Suche in Google Scholar

10. Sanjid, A., Banerjee, P. C., Raman, R. K. S. Multi-layer graphene coating for corrosion resistance of Monel 400 alloy in chloride environment. Surf. Coat. Technol. 2019, 370, 227–234; https://doi.org/10.1016/j.surfcoat.2019.04.077.Suche in Google Scholar

11. Ding, R., Li, W., Wang, X., Giu, T., Li, B., Han, P., Tian, H., Liu, A., Wang, X., Liu, X., Gao, X., Wang, W., Song, L. A brief review of corrosion protective films and coatings based on graphene and graphene oxide. J. Alloys Compd. 2018, 764, 1039–1055; https://doi.org/10.1016/j.jallcom.2018.06.133.Suche in Google Scholar

12. Zhou, T., Zhang, J., Zhao, J., Qu, W., Li, X., Li, S., Xing, B., Fu, Y. In-situ grafted graphene oxide-based waterborne epoxy curing agent for reinforcement corrosion protection of waterborne epoxy coating. Surf. Coat. Technol. 2021, 412, 127043–127053; https://doi.org/10.1016/j.surfcoat.2021.127043.Suche in Google Scholar

13. Zhou, X., Huang, H., Zhu, R., Chen, R., Sheng, X., Xie, D., Mei, Y. Green modification of graphene oxide with phytic acid and its application in anticorrosive water-borne epoxy coatings. Prog. Org. Coating 2020, 143, 105601–105612; https://doi.org/10.1016/j.porgcoat.2020.105601.Suche in Google Scholar

14. Mohammadkhani, R., Ramezanzadeh, M., Saadatmandi, S., Ramezanzadeh, B. Designing a dual-functional epoxy composite system with self-healing/barrier anti-corrosion performance using graphene oxide nano-scale platforms decorated with zinc doped-conductive polypyrrole nanoparticles with great environmental stability and non-toxicity. Chem. Eng. J. 2020, 382, 122819–122837; https://doi.org/10.1016/j.cej.2019.122819.Suche in Google Scholar

15. Zhu, X., Yan, Q., Cheng, L., Wu, H., Zhao, H., Wang, L. Self-alignment of cationic graphene oxide nanosheets for anticorrosive reinforcement of epoxy coatings. Chem. Eng. J. 2020, 389, 124435–124446; https://doi.org/10.1016/j.cej.2020.124435.Suche in Google Scholar

16. Wang, H., Qin, S., Yang, X., Fei, G., Tian, M., Shao, Y., Zhu, K. A waterborne uniform graphene-poly(urethane-acrylate) complex with enhanced anticorrosive properties enabled by ionic interaction. Chem. Eng. J. 2018, 351, 939–951; https://doi.org/10.1016/j.cej.2018.06.151.Suche in Google Scholar

17. Mu, J., Gao, F. J., Cui, G., Wang, S., Tang, S., Li, Z. A comprehensive review of anticorrosive graphene-composite coatings. Prog. Org. Coating 2021, 157, 106321–106346; https://doi.org/10.1016/j.porgcoat.2021.106321.Suche in Google Scholar

18. Huang, H. W., Tian, Y. Q., Xie, Y., Mo, R., Hu, J., Li, M., Sheng, X., Jiang, X., Zhang, X. Modification of graphene oxide with acrylate phosphorus monomer via thiol-Michael addition click reaction to enhance the anti-corrosive performance of waterborne epoxy coatings. Prog. Org. Coating 2020, 146, 105724–105733; https://doi.org/10.1016/j.porgcoat.2020.105724.Suche in Google Scholar

19. Liu, C., Qiu, S. H., Du, P., Zhao, H., Wang, L. An ionic liquid–graphene oxide hybrid nanomaterial: synthesis and anticorrosive applications. Nanoscale 2018, 10, 8115–8124; https://doi.org/10.1039/c8nr01890a.Suche in Google Scholar PubMed

20. Pourhashem, S., Rashidi, A., Vaezi, M. R., Bagherzadeh, M. R. Excellent corrosion protection performance of epoxy composite coatings filled with amino-silane functionalized graphene oxide. Surf. Coat. Technol. 2017, 317, 1–9; https://doi.org/10.1016/j.surfcoat.2017.03.050.Suche in Google Scholar

21. Parhizkar, N., Ramezanzadeh, B., Shahrabi, T. Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets. Appl. Surf. Sci. 2018, 436, 45–59; https://doi.org/10.1016/j.apsusc.2017.12.240.Suche in Google Scholar

22. Zhu, Q. S., Li, E., Liu, X. H., Song, W., Li, Y., Wang, X., Liu, C. Epoxy coating with in-situ synthesis of polypyrrole functionalized graphene oxide for enhanced anticorrosive performance. Prog. Org. Coating 2020, 140, 105488–105495; https://doi.org/10.1016/j.porgcoat.2019.105488.Suche in Google Scholar

23. Ramezanzadeh, B., Niroumandrad, S., Ahmadi, A., Mahdavian, M., Mohamadzadeh Moghadam, M. H. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corrosion Sci. 2016, 103, 283–304; https://doi.org/10.1016/j.corsci.2015.11.033.Suche in Google Scholar

24. Qi, K., Sun, Y., Duan, H. W., Gou, X. A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite. Corrosion Sci. 2015, 98, 500–506; https://doi.org/10.1016/j.corsci.2015.05.056.Suche in Google Scholar

25. Zheng, H., Shao, Y., Wang, Y., Meng, G., Liu, B. Reinforcing the corrosion protection property of epoxy coating by using graphene oxide-poly(urea-formaldehyde) composites. Corrosion Sci. 2017, 123, 267–277; https://doi.org/10.1016/j.corsci.2017.04.019.Suche in Google Scholar

26. Cui, M., Ren, S. M., Zhao, H., Xue, Q., Wang, L. Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating. Chem. Eng. J. 2018, 335, 255–266; https://doi.org/10.1016/j.cej.2017.10.172.Suche in Google Scholar

27. Zhu, K., Li, X. R., Wang, H., Li, J., Fei, G. Electrochemical and anti-corrosion behaviors of water dispersible graphene/acrylic modified alkyd resin latex composites coated carbon steel. J. Appl. Polym. Sci. 2016, 134, 44445–44456; https://doi.org/10.1002/app.44445.Suche in Google Scholar

28. Pan, N., Guan, D. B., Yang, Y. T., Huang, Z., Wang, R., Jin, Y., Xia, C. A rapid low-temperature synthetic method leading to large-scale carboxyl graphene. Chem. Eng. J. 2014, 236, 471–479; https://doi.org/10.1016/j.cej.2013.10.060.Suche in Google Scholar

29. Zhang, Z., Zhang, W., Li, D., Sun, Y., Wang, Z., Hou, C., Chen, L., Cao, Y., Liu, Y. Mechanical and anticorrosive properties of graphene/epoxy resin composites coating prepared by in-situ method. Int. J. Mol. Sci. 2015, 16, 2239–2251; https://doi.org/10.3390/ijms16012239.Suche in Google Scholar PubMed PubMed Central

30. Pham, T. A., Kim, J. S., Kim, J. S., Jeong, Y. T. One-step reduction of graphene oxide with L-glutathione. Colloid. Surface. 2011, 384, 543–548; https://doi.org/10.1016/j.colsurfa.2011.05.019.Suche in Google Scholar

31. Shao, Q., Tang, J., Lin, Y. X., Li, J., Qin, F., Yuan, J., Qin, L.-C. Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes. J. Power Sources 2015, 278, 751–759; https://doi.org/10.1016/j.jpowsour.2014.12.052.Suche in Google Scholar

32. Hu, X. J., Ren, N., Wu, Y. Q., Jin, L. J., Chen, S. B., Bai, Y. X. Fabrication of high strength and functional GO/PVA/PAN ternary composite fibers by gel spinning. J. Polym. Eng. 2023, 43, 135–143; https://doi.org/10.1515/polyeng-2022-0114.Suche in Google Scholar

33. Wang, H., Duan, Y.. Ma X, Wang, C., Fei, G., Ma, Y., He, Y., Sun, L., Wallace, G. G. Polyisocyanate bridged environmental graphene/epoxy nanocomposite coatings with excellent anticorrosion performance. Prog. Org. Coating 2021, 153, 106167–106176; https://doi.org/10.1016/j.porgcoat.2021.106167.Suche in Google Scholar

34. Chibowski, S., Wiśniewska, M., Urban, T. Influence of solution pH on stability of aluminum oxide suspension in presence of polyacrylic acid. Adsorption 2010, 16, 321–332; https://doi.org/10.1007/s10450-010-9243-0.Suche in Google Scholar

35. Oliveira, H. C., Lavoratti, A., Pereira, I. M., Silva, T. I., Soares, B. G., Beltrami, L. V. R., Zattera, A. Z. Hydrophobicity and corrosion resistance of waterborne fluorinated acrylate/silica nanocomposite coatings. J. Polym. Eng. 2022, 42, 695–702.10.1515/polyeng-2021-0209Suche in Google Scholar

36. Wei, H. G., Ding, D. W., Wei, S. Y., Guo, Z. Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites. J. Mater. Chem. A. 2013, 36, 10805–10813; https://doi.org/10.1039/c3ta11966a.Suche in Google Scholar

37. Eduok, U., Suleiman, R., Gittens, J., Khaled, M., Smith, T. J., Akid, R., El Ali, B., Khalil, A. Anticorrosion/antifouling properties of bacterial spore-loaded sol-gel type coating for mild steel in saline marine condition: a case of thermophilic strain of Bacillus licheniformis. RSC Adv. 2016, 93, 97–108; https://doi.org/10.1016/j.porgcoat.2016.01.006.Suche in Google Scholar

38. Zhou, T., Zhang, J., Zhao, J., Qu, W., Li, X., Li, S., Xing, B., Fu, Y. In-situ grafted graphene oxide-based waterborne epoxy curing agent for reinforcement corrosion protection of waterborne epoxy coating. Surf. Coat. Technol. 2021, 412, 127043; https://doi.org/10.1016/j.surfcoat.2021.127043.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/polyeng-2022-0295).


Received: 2022-11-28
Accepted: 2023-03-06
Published Online: 2023-03-29
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2022-0295/html?lang=de
Button zum nach oben scrollen