Home Mechanical and morphological characterization of recycled HD-PE bio-composites based on alfa fibers and natural pozzolan
Article
Licensed
Unlicensed Requires Authentication

Mechanical and morphological characterization of recycled HD-PE bio-composites based on alfa fibers and natural pozzolan

  • Bouchra Achour ORCID logo EMAIL logo , Abdelkader Ziadi EMAIL logo , Lahcen Belarbi , Allel Mokaddem and Abdelkader Lousdad
Published/Copyright: November 9, 2022
Become an author with De Gruyter Brill

Abstract

In this research work, waste plastic bottle caps made of high-density polyethylene (HD-PE) were reincorporated as a matrix and reinforced by alfa short fibers and natural pozzolan particles. Using different weight percentages of both fillers of 5 wt% up to 30 wt%, three types of bio-composite materials have been produced; alfa short fibers/HDPE, pozzolan particles/HDPE, and alfa fibers pozzolan/HDPE. Specimens for each type of the biocomposites were prepared through the compression molding method. The objective of this study is to investigate the effect of different content of alfa short fibers and pozzolan particles on the mechanical and morphological properties of the recycled HDPE matrix. Tensile test results revealed an enhancement in the mechanical properties for the three types of the biocomposites, an increase in tensile strength reached the maximum of 3573 MPa plus an interesting improvement in Young’s modulus with a maximum value of 3696 MPa. The toughness of the neat recycled HD-PE decreased by 212% by adding the natural filler whereas the modulus of resilience exhibited an increase of 138% compared to the neat recycled HD-PE. Therefore, the good rheological behavior of these bio-composites makes it possible to produce competitive materials and allows the reduction of plastic waste in the environment.


Corresponding author: Bouchra Achour and Abdelkader Ziadi, Smart Structures Laboratory/DGRSDT, Faculty of Sciences and Technology, Department of Mechanical Engneering, University of Ain Temouchent-Belhadj Bouchaib, Ain Temouchent 46000, Algeria, E-mail: (B. Achour), (A. Ziadi)

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. El-Abbassi, F. E., Assarar, M., Ayad, R., Lamdouar, N. Effect of alkali treatment on alfa fiber as reinforcement for polypropylene-based eco-composites: mechanical behaviour and water aging. Compos. Struct. 2015, 133, 451–457.10.1016/j.compstruct.2015.07.112Search in Google Scholar

2. Gurunathan, T., Mohanty, S., Nayak, S. K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. A. Appl. Sci. Manuf. 2015, 77, 1–25; https://doi.org/10.1016/j.compositesa.2015.06.007.Search in Google Scholar

3. Borchani, K. E., Carrot, C., Jaziri, M. Rheological behavior of short alfa fibers reinforced Mater-Bi® biocomposites. Polym. Test. 2019, 77, 105895; https://doi.org/10.1016/j.polymertesting.2019.05.011.Search in Google Scholar

4. Chauhan, V., Kärki, T., Varis, J. Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. J. Thermoplast. Compos. Mater. 2019, 35; 1169–1209; https://doi.org/10.1177/0892705719889095.Search in Google Scholar

5. Mechakra, H., Nour, A., Lecheb, S., Chellil, A. Mechanical characterizations of composite material with short alfa fibers reinforcement. Compos. Struct. 2015, 124, 152–162; https://doi.org/10.1016/j.compstruct.2015.01.010.Search in Google Scholar

6. Essabir, H., Bouhd, R., Qaiss, A. Alfa and doum fiber-based composite materials for different applications. In Lignocellul. Fibre Biomass-Based Compos. Mater.; Woodhead Publishing: Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco, 2017; pp. 147–164.10.1016/B978-0-08-100959-8.00008-1Search in Google Scholar

7. Arrakhiz, F. Z., Elachaby, M., Bouhfid, R., Vaudreuil, S., Essassi, M., Qaiss, A. Mechanical and thermal properties of polypropylene reinforced with alfa fiber under different chemical treatment. Mater. Des. 2012, 35, 318–322; https://doi.org/10.1016/j.matdes.2011.09.023.Search in Google Scholar

8. Borchani, K. E., Carrot, C., Jaziri, M. Untreated and alkali treated fibers from alfa stem: effect of alkali treatment on structural, morphological and thermal features. Cellulose 2015, 22, 1577–1589; https://doi.org/10.1007/s10570-015-0583-5.Search in Google Scholar

9. Kandola, B. K., Mistika, S. I., Pornwannachai, W., Anand, S. C. Natural fibre-reinforced thermoplastic composites from woven-nonwoven textile preforms: mechanical and fire performance study. Compos. B 2018, 153, 456–464; https://doi.org/10.1016/j.compositesb.2018.09.013.Search in Google Scholar

10. Salem, S., Oliver-Ortega, H., Espinach, F. X., Hamed, K. B., Nasri, N., Alcalà, M., Mutjé, P. Study on the tensile strength and micromechanical analysis of alfa fibers reinforced high-density polyethylene composites. Fibers Polym. 2019, 20, 602–610; https://doi.org/10.1007/s12221-019-8568-x.Search in Google Scholar

11. Colucci, G., Simon, H., Roncato, D., Martorana, B., Badini, C. Effect of recycling on polypropylene composites reinforced with glass fibres. J. Thermoplast. Compos. Mater. 2017, 30, 707–723; https://doi.org/10.1177/0892705715610407.Search in Google Scholar

12. Fardioui, M., Guedira, T., Bouhfid, R. A comparative study of doum fiber and shrimp chitin-based reinforced low-density polyethylene biocomposites. J. Polym. Environ. 2018, 26, 443–451; https://doi.org/10.1007/s10924-017-0955-z.Search in Google Scholar

13. Nadali, E., Layeghi, M., Ebrahimi, G., Naghdi, R., Jonoobi, M., Khorasani, M. M., Mirbagheri, Y. Effects of multiple extrusions on the structure-property performance of natural fiber high-density polyethylene biocomposites. Mater. Res. 2018, 21, 1–11; https://doi.org/10.1590/1980-5373-mr-2017-0301.Search in Google Scholar

14. Cestari, S. P., Martin, P. J., Hanna, P. R., Kearns, M. P., Mendes, L. C., Millar, B. Use of virgin/recycled polyethylene blends in rotational moulding. J. Polym. Eng. 2021, 41, 509–516; https://doi.org/10.1515/polyeng-2021-0065.Search in Google Scholar

15. Hammiche, D., Bourmaud, A., Boukerrou, A., Djidjelli, H., Grohens, Y. Number of processing cycle effect on the properties of the composites based on alfa fiber. J. Thermoplast. Compos. Mater. 2016, 29, 1176–1193; https://doi.org/10.1177/0892705714563116.Search in Google Scholar

16. El Abbassi, F. E., Assarar, M., Ayad, R., Sabhi, H., Buet, S., Lamdouar, N. Effect of recycling cycles on the mechanical and damping properties of short alfa fibre reinforced polypropylene composite. J. Renewable Mater. 2019, 7, 253–267; https://doi.org/10.32604/jrm.2019.01759.Search in Google Scholar

17. Schiavone, N., Verney, V., Askanian, H. Pozzolan based 3D printing composites: from the formulation till the final application in the precision irrigation field. Materials 2020, 14, 43; https://doi.org/10.3390/ma14010043.Search in Google Scholar PubMed PubMed Central

18. Kani, E. N., Allahverdi, A. Effect of chemical composition on basic engineering properties of inorganic polymeric binder based on natural pozzolan. Ceram.-Silik. 2009, 53, 195–204.Search in Google Scholar

19. Paiva, M. C., Ammar, I., Campos, A. R., Cheikh, R. B., Cunha, A. M. Alfa fibres: mechanical, morphological and interfacial characterization. Compos. Sci. Technol. 2007, 67, 1132–1138; https://doi.org/10.1016/j.compscitech.2006.05.019.Search in Google Scholar

20. Alvarez, V. A., Vázquez, A. Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Composites Part A 2006, 37, 1672–1680; https://doi.org/10.1016/j.compositesa.2005.10.005.Search in Google Scholar

21. Labidi, O., Korhonen, K., Zrida, M., Hamzaoui, A. H., Budtova, T. All-cellulose composites from alfa and wood fibers. Ind. Crop. Prod. 2019, 127, 135–141; https://doi.org/10.1016/j.indcrop.2018.10.055.Search in Google Scholar

22. Arabeche, K., Abdelmalek, F., Delbreilh, L., Zair, L., Berrayah, A. Physical and rheological properties of biodegradable poly (butylene succinate)/alfa fiber composites. J. Thermoplast. Compos. Mater. 2020, 35; 1709–1727; https://doi.org/10.1177/0892705720904098.Search in Google Scholar

23. Firdous, R., Stephan, D., Djobo, J. N. Y. Natural pozzolan based geopolymers: a review on mechanical, microstructural and durability characteristics. Construct. Build. Mater. 2018, 190, 1251–1263; https://doi.org/10.1016/j.conbuildmat.2018.09.191.Search in Google Scholar

24. Vafaei, M., Allahverdi, A. Influence of calcium aluminate cement on geopolymerization of natural pozzolan. Construct. Build. Mater. 2016, 114, 290–296; https://doi.org/10.1016/j.conbuildmat.2016.03.204.Search in Google Scholar

25. Bechar, S., Zerrouki, D. Effect of natural pozzolan on the fresh and hardened cement slurry properties for cementing oil well. World J. Eng. 2018, 15, 513–519. https://doi.org/10.1108/WJE-10-2017-0337.Search in Google Scholar

26. Zhao, C., Qin, H., Gong, F., Feng, M., Zhang, S., Yang, M. Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym. Degrad. Stabil. 2005, 87, 183–189; https://doi.org/10.1016/j.polymdegradstab.2004.08.005.Search in Google Scholar

27. Brahem, M., Boubaker, J., Soulat, D., Ben Marzoug, I., Sakli, F. Study of the tensile and compression performance of composite materials based on rubber particles and alpha fibers. J. Ind. Textil. 2018, 48, 272–291; https://doi.org/10.1177/1528083716682921.Search in Google Scholar

28. Arrakhiz, F. Z., Benmoussa, K., Bouhfid, R., Qaiss, A. Pinecone fiber/clay hybrid composite: mechanical and thermal properties. Mater. Des. 2013, 50, 376–381; https://doi.org/10.1016/j.matdes.2013.03.033.Search in Google Scholar

29. Boujmal, R., Kakou, C. A., Nekhlaoui, S., Essabir, H., Bensalah, M. O., Rodrigue, D., Qaiss, A. E. K. Alfa fibers/clay hybrid composites based on polypropylene: mechanical, thermal, and structural properties. J. Thermoplast. Compos. Mater. 2018, 31, 974–991; https://doi.org/10.1177/0892705717729197.Search in Google Scholar

30. Fonseca-Valero, C., Ochoa-Mendoza, A., Arranz-Andrés, J., González-Sánchez, C. Mechanical recycling and composition effects on the properties and structure of hardwood cellulose-reinforced high density polyethylene eco-composites. Compos. A 2015, 69, 94–104; https://doi.org/10.1016/j.compositesa.2014.11.009.Search in Google Scholar

31. Raslan, H. A., Fathy, E. S., Mohamed, R. M. Effect of gamma irradiation and fiber surface treatment on the properties of bagasse fiber-reinforced waste polypropylene composites. Int. J. Polym. Anal. Char. 2018, 23, 181–192; https://doi.org/10.1080/1023666x.2017.1405535.Search in Google Scholar

Received: 2022-02-18
Revised: 2022-07-08
Accepted: 2022-09-05
Published Online: 2022-11-09
Published in Print: 2023-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2022-0036/html
Scroll to top button