Home Dual effect of maleic anhydride and gamma radiation on properties of EPDM/microcrystalline newsprint fiber composites
Article
Licensed
Unlicensed Requires Authentication

Dual effect of maleic anhydride and gamma radiation on properties of EPDM/microcrystalline newsprint fiber composites

  • Magdy A. M. Ali , Khaled F. El-Nemr ORCID logo , Salwa H. El-Sabbagh and Mohamad Bekhit ORCID logo EMAIL logo
Published/Copyright: March 2, 2022
Become an author with De Gruyter Brill

Abstract

The purpose of this research is to investigate the effect of gamma irradiation, concentration of microcrystalline newsprint fibers (MNF) and maleic anhydride as coupling agent for treating microcrystalline newsprint fibers (MA–MNF) on the mechanical and thermal properties of ethylene propylene diene monomer rubber matrix (EPDM). Maleic anhydride (MA) was used at a different ratios (5, 10, and 15 wt% according to the MNF). The EPDM/MA–MNF composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The results confirm the adhesion between MA–MNF and EPDM rubber matrix in presence of radiation. EPDM/MA–MNF composites have achieved higher mechanical properties than EPDM rubber matrix and EPDM/MNF composites. EPDM composites containing MNF that treated with 15% MA and gamma irradiated at 80 kGy have the highest tensile strength, tensile modulus at 100% strain, crosslink density and thermal stability over all other composites.


Corresponding author: Mohamad Bekhit, Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo 8029, Egypt, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chen, X., Hu, Z., Zhang, F., Zhang, Z. Natural rubber/tetra-needle-like zinc oxide whisker composites: their preparation and characterization. J. Polym. Eng. 2018, 38, 25–32; https://doi.org/10.1515/polyeng-2016-0346.Search in Google Scholar

2. Laskowska, A., Marzec, A., Zaborski, M., Boiteux, G. Reinforcement of carboxylated acrylonitrilebutadiene rubber (XNBR) with graphene nanoplatelets with varying surface area. J. Polym. Eng. 2014, 34, 883–893; https://doi.org/10.1515/polyeng-2013-0149.Search in Google Scholar

3. Li, M., Tu, W., Chen, X., Wang, H., Chen, J. NR/SBR composites reinforced with organically MWCNTs: simultaneous improvement of tensile strength and elongation and enhanced thermal stability. J. Polym. Eng. 2016, 36, 813–818; https://doi.org/10.1515/polyeng-2015-0136.Search in Google Scholar

4. Kong, L., Li, F., Wang, F., Miao, Y., Huang, X., Zhu, H., Lu, Y. High-performing multiwalled carbon nanotubes/silica nanocomposites for elastomer application. Compos. Sci. Technol. 2018, 162, 23–32; https://doi.org/10.1016/j.compscitech.2018.04.008.Search in Google Scholar

5. Alhartomy, O. A., Alghamdi, A. A., Farha, A. S., Dishovsky, N., Mihaylov, M., Ivanov, M. Influence of carbon black/silica ratio on the physical and mechanical properties of composites based on epoxidized natural rubber. J. Compos. Mater. 2016, 134, 150–151; https://doi.org/10.1177/0021998315575336.Search in Google Scholar

6. Shriver, T. E., Webb, G. R. Rethinking the scope of environmental injustice: perceptions of health hazards in a rural Native American community exposed to carbon black. Rural Soc. 2010, 74, 270–292.10.1111/j.1549-0831.2009.tb00392.xSearch in Google Scholar

7. Zhou, Y., Fan, M., Chen, L., Zhuang, J. Lignocellulosic fibre mediated rubber composites: an overview. Compos. Part B. 2015, 76, 180–191; https://doi.org/10.1016/j.compositesb.2015.02.028.Search in Google Scholar

8. Adu, C., Jolly, M., Thakur, V. K. Exploring new horizons for paper recycling: a review of biomaterials and biorefinery feedstocks derived from wastepaper. Curr. Opin. Green Sustain. Chem. 2018, 13, 21–26; https://doi.org/10.1016/j.cogsc.2018.03.003.Search in Google Scholar

9. Li, Y., Sun, H., Zhang, Y., Xu, M., Shi, S. Q. The three-dimensional heterostructure synthesis of ZnO/cellulosic fibers and its application for rubber composites. Compos. Sci. Technol. 2019, 177, 10–17; https://doi.org/10.1016/j.compscitech.2019.04.012.Search in Google Scholar

10. Abdelmouleh, M., Boufi, S., Belgacem, M. N., Dufresne, A. Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos. Sci. Technol. 2007, 67, 1627–1639; https://doi.org/10.1016/j.compscitech.2006.07.003.Search in Google Scholar

11. Fávaro, S. L., Lopes, M. S., Vieira de Carvalho Neto, A. G., Rogério de Santana, R., Radovanovic, E. Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 154.10.1016/j.compositesa.2009.09.021Search in Google Scholar

12. Kaith, B. S., Kalia, S. Graft copolymerization of MMA onto flax under different reaction conditions: a comparative study. Express Polym. Lett. 2008, 2, 93–100; https://doi.org/10.3144/expresspolymlett.2008.13.Search in Google Scholar

13. Kaci, M., Djidjelli, H., Boukerrou, A., Zaidi, L. Effect of wood filler treatment and EBAGMA compatibilizer on morphology and mechanical properties of low density polyethylene/olive husk flour composites. Express Polym. Lett. 2007, 1, 467–473; https://doi.org/10.3144/expresspolymlett.2007.65.Search in Google Scholar

14. Nedjma, S., Djidjelli, H., Boukerrou, A., Grohens, Y., Chibani, N., Benachour, D., Pillin, I. Effect of chemical treatment on newspaper fibers reinforced polymer poly (vinyl chloride) composites. J. Vinyl Addit. Technol. 2016, 2, 173–181; https://doi.org/10.1002/vnl.21425.Search in Google Scholar

15. Ardekani, S. M., Dehghani, A., Al-Maadeed, M. A., Wahit, M. U., Hassan, A. Mechanical and thermal properties of recycled poly (ethylene terephthalate) reinforced newspaper fiber composites. Fibers Polym. 2014, 15, 1531–1538; https://doi.org/10.1007/s12221-014-1531-y.Search in Google Scholar

16. Suryadiansyah, Ismail, H., Azhar, I. B. Waste paper filled polypropylene composites: the comparison effect of ethylene Diamine Dilaurate as a new compatibilizer with maleic anhydride polypropylene. J. Reinforc. Plast. Compos. 2007, 26, 51–67; https://doi.org/10.1177/0731684407069953.Search in Google Scholar

17. Nashar, D. E. E., Abd-El-Messieh, S. L., Basta, A. H. Newsprint paper Waste as a fiber reinforcement in rubber composites. J. Appl. Polym. Sci. 2004, 91, 469–478; https://doi.org/10.1002/app.13132.Search in Google Scholar

18. El-Nemr, K. F., Ali, M. A., Hassan, M. M. Waste newsprint fibers for the reinforcement of radiation-cured (Styrene-Butadiene rubber)-based composites. Part II. Characterization and thermal properties. J. Vinyl Addit. Technol. 2012, 18, 228–234; https://doi.org/10.1002/vnl.20314.Search in Google Scholar

19. Rao, V., 14 – Radiation processing of polymers. in Advances in Polymer Processing, ed. by S. Thomas, Y. Weimin, Woodhead Publishing, Cambridge, UK, 2009, pp. 402–437; https://doi.org/10.1533/9781845696429.3.402.Search in Google Scholar

20. Chmielewski, A. G., Haji-Saeid, M., Ahmed, S. Progress in radiation processing of polymers. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2005, 236, 44–54; https://doi.org/10.1016/j.nimb.2005.03.247.Search in Google Scholar

21. Bhattacharya, A. Radiation and industrial polymers. Prog. Polym. Sci. 2000, 25, 371–401; https://doi.org/10.1016/s0079-6700(00)00009-5.Search in Google Scholar

22. Ali, M. A. M., El-Nemr, K. F., Hassan, M. M., Abd-Elhady, W. S. Mechanical properties of gamma-irradiated EPDM/waste newsprint microfibers composites treated using acrylic styrene emulsion as a coupling agent. Polym. Compos. 2019, 40, 1209–1227; https://doi.org/10.1002/pc.24836.Search in Google Scholar

23. Treloar, L. R. G The Physics of Rubber Elasticity, 3rd.; Oxford Univ. Press: New York, USA, 1975.Search in Google Scholar

24. El-Nemr, K. F., Raslan, H. A., Ali, M. A., Hassan, M. M. Innovative γ rays irradiated styrene butadiene rubber/reclaimed waste tire rubber blends: a comparative study using mechano-chemical and microwave devulcanizing methods. J. Polym. Eng. 2020, 40, 267–277; https://doi.org/10.1515/polyeng-2019-0307.Search in Google Scholar

25. Ali, M. A. M., El-Nemr, K. F., Badawy, N. A., Saleh, W. Thermal and physicomechanical properties of gamma- irradiated EPDM/waste newsprint microfibers composites treated using acrylic styrene emulsion as a coupling agent. J. Vinyl Addit. Technol. 2019, 25, E91–E106; https://doi.org/10.1002/vnl.21648.Search in Google Scholar

26. Osman, H., Ismail, H., Mustapha, M. Effects of maleic anhydride polypropylene on tensile, water absorption, and morphological properties of recycled newspaper filled polypropylene/natural rubber composites. J. Compos. Mater. 2016, 44, 1477–1491.10.1177/0021998309359212Search in Google Scholar

27. Hong, C. K., Kim, N., Kang, S. L., Nah, C., Lee, Y.-S., Cho, B.-H., Ahn, J.-H. Mechanical properties of maleic anhydride treated jute fibre/polypropylene composites. Plast. Rubber Compos. 2008, 37, 325–330; https://doi.org/10.1179/174328908x314334.Search in Google Scholar

28. Lisperguer, J., Nuňez, C., Perez-Guerrero, P. Structure and thermal properties of maleated lignin-recycled polystyrene composites. J. Chil. Chem. Soc. 2013, 58, 1937–1940; https://doi.org/10.4067/s0717-97072013000400005.Search in Google Scholar

29. Ali, Z., El-Nemr, K., Youssef, H., Bekhit, M. Mechanical and physico-chemical properties of electron beam irradiated rubber/clay nanocomposites. J. Polym. Compos. 2013, 34, 1600–1610; https://doi.org/10.1002/pc.22560.Search in Google Scholar

30. Ali, M. A., Raslan, H. A., El-Nemr, K. F., Hassan, M. M. Thermal and mechanical behavior of SBR/devulcanized waste tire rubber blends using mechano–chemical and microwave methods. J. Polym. Eng. 2020, 40, 815–822; https://doi.org/10.1515/polyeng-2020-0116.Search in Google Scholar

31. Youssef, H. A., Ali, Z. I., El-Nemr, K. F., Bekhit, M. Effect of ionizing radiation on the properties of acrylonitrile butadiene K.F. rubber/clay nanocomposites. J. Elast. Plast. 2012, 45, 407–428; https://doi.org/10.1177/0095244312457797.Search in Google Scholar

32. Ali, M. A., El-Nemr, K. F., Hassan, M. M. Waste newsprint fibers for reinforcement of radiation-cured styrene butadiene rubber-based composites–Part I: mechanical and physical properties. J. Reinforc. Plast. Compos. 2011, 30, 721; https://doi.org/10.1177/0731684411407949.Search in Google Scholar

33. Kim, U.-J., Eom, S. H., Wada, M. Thermal decomposition of native cellulose: influence on crystallite size. Polym. Degrad. Stabil. 2010, 95, 778–781; https://doi.org/10.1016/j.polymdegradstab.2010.02.009.Search in Google Scholar

34. Zang, Y. H., Muller, R., Froclich, D. New representation of true stress for uniaxial extension of cross-linked rubber. J. Rheol. 1986, 30, 1165; https://doi.org/10.1122/1.549885.Search in Google Scholar

35. Zaharescu, T., Setnescu, R., Jipa, S., Setnescu, T. Radiation processing of polyolefin blends. I. crosslinking of EPDM-PP blends. J. Appl. Polym. Sci. 2000, 77, 982–987; https://doi.org/10.1002/1097-4628(20000801)77:5<982::aid-app4>3.0.co;2-f.10.1002/1097-4628(20000801)77:5<982::AID-APP4>3.0.CO;2-FSearch in Google Scholar

36. Cleland, M. R., Parks, L. A., Cheng, S. Applications for radiation processing of materials. Nucl. Instrum. Methods Phys. Res. B. 2003, 208, 66–73; https://doi.org/10.1016/s0168-583x(03)00655-4.Search in Google Scholar

37. Youssef, H. A. Effect of electron beam irradiation on the properties of high styrene rubber/styrene butadiene rubber blends. J. Macromol. Sci. Pure Appl. Chem. 2009, 46, 636–642; https://doi.org/10.1080/10601320902852007.Search in Google Scholar

38. El-Sabbagh, S. H., Yehia, A. A. Detection of crosslink density by different methods for natural rubber blended with SBR and NBR. Egypt. J. Solid. 2007, 30, 157–172.10.21608/ejs.2007.149034Search in Google Scholar

39. Prambauer, M., Paulik, C., Burgstaller, C. The influence of paper type on the properties of structural paper–Polypropylene composites. Compos. – A: Appl. Sci. Manuf. 2015, 74, 107–113; https://doi.org/10.1016/j.compositesa.2015.04.004.Search in Google Scholar

40. Mon, S. G., Ruban, Y. V., Roy, D. V. Synthesis of kaolinite-filled EPDM rubber composites by solution intercalation: structural characterization and studies on mechanical properties. Appl. Nanosci. 2011, 1, 131; https://doi.org/10.1007/s13204-011-0018-z.Search in Google Scholar

41. Khalil, A. M., El-Nemr, K. F., Khalaf, A. M. Effect of short polyethylene terephthalate fibers on properties of ethylene propylenediene rubber composites. J. Polym. Res. 2012, 19, 9883; https://doi.org/10.1007/s10965-012-9883-8.Search in Google Scholar

42. Coustet, M. E., Cortizo, M. S. Functionalization of styrenic polymer through acylation and grafting under microwave energy. Polym. J. 2011, 43, 265–271; https://doi.org/10.1038/pj.2010.131.Search in Google Scholar

43. Youssef, H. A., Ali, Z. I., EL-Nemr, K. F., Bekhit, M. Thermal and structural characterization behavior of electron beam irradiated rubber/clay nanocomposites. Adv. Polym. Technol. 2014, 33, 21396; https://doi.org/10.1002/adv.21396.Search in Google Scholar

Received: 2021-09-03
Accepted: 2022-01-11
Published Online: 2022-03-02
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0258/pdf
Scroll to top button