Home The influence of structural and chemical parameters on mechanical properties of natural fibers: a statistical exploratory analysis
Article
Licensed
Unlicensed Requires Authentication

The influence of structural and chemical parameters on mechanical properties of natural fibers: a statistical exploratory analysis

  • Nasr Bekraoui , Zakaria El Qoubaa EMAIL logo , Hajar Chouiyakh , Mustapha Faqir and Elhachmi Essadiqi
Published/Copyright: March 7, 2022
Become an author with De Gruyter Brill

Abstract

Due to environmental challenges, the demand for natural fibers (NFs) in biocomposites is expanding. Therefore, the study of the mechanical behavior of these natural fibers is increasingly requested. There is more than two thousands species of plant fibers that have been investigated. In this work, a statistical study involving, namely chemical content, mechanical and physical properties is conducted on a set of natural fibers. The relationship between these factors is studied. The Pearson correlation method is applied to investigate the sensitivity between these parameters. For this aim, a selected data set, collected from the literature, has been used. Results show that Young’s modulus exhibits greater correlation with physical and chemical parameters compared to the other mechanical properties. Additionally, the crystallinity index (CI) is a reliable parameter on predicting the mechanical behavior of natural fibers. Moreover, although the MFA° and diameter are important parameters for NFs modeling purpose, the experimental measurement of these two quantities is a source of unbiased interpretation that partially explains the large variation of the mechanical properties, reported in the literature.


Corresponding author: Zakaria El Qoubaa, School of Aerospace and Automotive Engineering, Université Internationale de Rabat (UIR), LERMA Lab, Technopolis Rabat-Shore, Rocade Rabat-Salé, Rabat 11103, Sale, 11100, Morocco, E-mail:

Acknowledgments

The authors would like to thank Université Internationale de Rabat (UIR) for the opportunity to conduct this study.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Verma, S. K., Gupta, A., Patel, V. K., Gangil, B., Ranikoti, L. The potential of natural fibers for automotive sector. In Automotive Tribology; Katiyar, J. K., Bhattacharya, S., Patel, V. K., Kumar, V., Eds. Springer: Singapore, 2019, pp. 31–49; https://doi.org/10.1007/978-981-15-0434-1_3.Search in Google Scholar

2. Mansor, M. R., Nurfaizey, A. H., Tamaldin, N., Nordin, M. N. A. Natural fiber polymer composites: utilization in aerospace engineering. In Biomass, Biopolymer-Based Materials, and Bioenergy; Verma, D., Fortunati, E., Jain, S., Zhang, X., Eds.; Woodhead Publishing: Cambridge, 2019; pp. 270–290.10.1016/B978-0-08-102426-3.00011-4Search in Google Scholar

3. Samanta, K. K., Basak, S., Chattopadhyay, S. K. Potentials of fibrous and nonfibrous materials in biodegradable packaging. In Environmental Footprints of Packaging; Muthu, S. S., Ed. Springer: Singapore, 2016, pp. 75–113; https://doi.org/10.1007/978-981-287-913-4_4.Search in Google Scholar

4. Chaudhary, V., Ahmad, F. A review on plant fiber reinforced thermoset polymers for structural and frictional composites. Polym. Test. 2020, 91, 106792; https://doi.org/10.1016/j.polymertesting.2020.106792.Search in Google Scholar

5. Mochane, M. J., Mokhena, T. C., Mokhothu, T. H., Mtibe, A., Sadiku, E. R., Ray, S. S., Ibrahim, I. D., Daramola, O. O. Recent progress on natural fiber hybrid composites for advanced applications: a review. Express Polym. Lett. 2019, 13, 159–198; https://doi.org/10.3144/expresspolymlett.2019.15.Search in Google Scholar

6. Jain, N., Ali, S., Singh, V. K., Singh, K., Bisht, N., Chauhan, S. Creep and dynamic mechanical behavior of cross-linked polyvinyl alcohol reinforced with cotton fiber laminate composites. J. Polym. Eng. 2019, 39, 326–335; https://doi.org/10.1515/polyeng-2018-0286.Search in Google Scholar

7. Boudjema, H. L., Bendaikha, H., Maschke, U. Green composites based on Atriplex halimus fibers and PLA matrix. J. Polym. Eng. 2020, 40, 693–702; https://doi.org/10.1515/polyeng-2020-0068.Search in Google Scholar

8. Nouar, Y., Zouaoui, F., Nekkaa, S., Rouabah, F., Fernández-García, M., López, D., Fois, M. Effect of chemical treatment on thermophysical behavior of Spanish broom flour-reinforced polypropylene biocomposite. J. Polym. Eng. 2021, 41, 9–18; https://doi.org/10.1515/polyeng-2020-0073.Search in Google Scholar

9. Salehi, H. R., Salehi, M. Effect of TiO2 nanoparticles on the viscoelastic and time-dependent behaviors of TiO2/epoxy particulate nanocomposite. J. Polym. Eng. 2017, 37, 185–196; https://doi.org/10.1515/polyeng-2015-0183.Search in Google Scholar

10. Wang, J., Dong, J., Zhang, J., Zhu, B., Cui, D. Effects of fiber-surface modification on the properties of bamboo flour/polypropylene composites and their interfacial compatibility. J. Polym. Eng. 2018, 38, 157–166; https://doi.org/10.1515/polyeng-2016-0432.Search in Google Scholar

11. Shen, Z., Song, W., Li, X., Yang, L., Wang, C., Hao, Z., Luo, Z. Enhancing performances of hemp fiber/natural rubber composites via polyhydric hyperbranched polyester. J. Polym. Eng. 2021, 41, 404–412; https://doi.org/10.1515/polyeng-2020-0331.Search in Google Scholar

12. Zhu, C., Nie, L., Yan, X., Li, J., Qi, D. Ramie fiber reinforced composites with flame retardant structure design: flammability, smoke suppression, and mechanical properties. J. Polym. Eng. 2021, 42, 9–17.10.1515/polyeng-2021-0221Search in Google Scholar

13. Ghazali, A. E. M., Pickering, K. L. The effect of fibre surface treatment and coupling agents to improve the performance of natural fibres in PLA composites. J. Polym. Eng. 2021, 41, 842–853; https://doi.org/10.1515/polyeng-2021-0120.Search in Google Scholar

14. Baley, C. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos. Appl. Sci. Manuf. 2002, 33, 939–948; https://doi.org/10.1016/s1359-835x(02)00040-4.Search in Google Scholar

15. Abir, Md. M. R., Kashif, S. M., Razzak, Md. A. Tensile and statistical analysis of Sisal fibers for natural fiber composite manufacture. AMR (Adv. Magn. Reson.) 2015, 1115, 349–352; https://doi.org/10.4028/www.scientific.net/amr.1115.349.Search in Google Scholar

16. Mostafa, N. H. Tensile and fatigue properties of Jute-Glass hybrid fibre reinforced epoxy composites. Mater. Res. Express 2019, 6, 085102; https://doi.org/10.1088/2053-1591/ab21f9.Search in Google Scholar

17. Mwaikambo, L. Y., Ansell, M. P. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials II. Sisal fibres. J. Mater. Sci. 2006, 41, 2497–2508; https://doi.org/10.1007/s10853-006-5075-4.Search in Google Scholar

18. Alkbir, M. F. M., Sapuan, S. M., Nuraini, A. A., Ishak, M. R. Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: a literature review. Compos. Struct. 2016, 148, 59–73; https://doi.org/10.1016/j.compstruct.2016.01.098.Search in Google Scholar

19. Adeniyi, A. G., Ighalo, J. O., Onifade, D. V. Banana and plantain fiber-reinforced polymer composites. J. Polym. Eng. 2019, 39, 597–611; https://doi.org/10.1515/polyeng-2019-0085.Search in Google Scholar

20. Vinogradov, G. V., Malkin, A. Y. Comparative description of the peculiarities of deformation of polymer and plastic disperse systems. Rheol. Acta 1966, 5, 188–193; https://doi.org/10.1007/bf01982425.Search in Google Scholar

21. El Qoubaa, Z., Colard, L., Matadi Boumbimba, R., Rusinek, A. Experimental study and modelling of poly (methyl methacrylate) and polycarbonate compressive behavior from low to high strain rates. J Dynam. Behav. Mater. 2018, 4, 179–189; https://doi.org/10.1007/s40870-018-0147-5.Search in Google Scholar

22. Bai, S.-L., G’Sell, C., Hiver, J.-M., Mathieu, C. Polypropylene/polyamide 6/polyethylene-octene elastomer blends. Part 3. Mechanisms of volume dilatation during plastic deformation under uniaxial tension. Polymer 2005, 46, 6437–6446; https://doi.org/10.1016/j.polymer.2005.03.111.Search in Google Scholar

23. El-Qoubaa, Z., Othman, R. Temperature, strain rate and pressure sensitivity of the polyetheretherketone’s yield stress. Int. J. Mech. Appl. 2017, 09, 1750099; https://doi.org/10.1142/s1758825117500995.Search in Google Scholar

24. Parry, D. J. The effect of strain rate on the compressive stress-strain properties of PEEK and epoxy carbon fibre composites. J. Phys. IV France 1997, 07. C3-605–C3-610; https://doi.org/10.1051/jp4:19973104.10.1051/jp4:19973104Search in Google Scholar

25. Zou, H., Yin, W., Cai, C., Wang, B., Liu, A., Yang, Z., Li, Y., He, X. The out-of-plane compression behavior of cross-ply AS4/PEEK thermoplastic composite laminates at high strain rates. Materials 2018, 11, 2312; https://doi.org/10.3390/ma11112312.Search in Google Scholar PubMed PubMed Central

26. Khan, A., Farrokh, B. Thermo-mechanical response of nylon 101 under uniaxial and multi-axial loadings: Part I, Experimental results over wide ranges of temperatures and strain rates. Int. J. Plast. 2006, 22, 1506–1529; https://doi.org/10.1016/j.ijplas.2005.10.001.Search in Google Scholar

27. Baley, C. Fibres naturelles de renfort pour matériaux composites. Techniques de l’ingénieur 2013, 25, am5130. https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/plastiques-et-environnement-42657210/fibres-naturelles-de-renfort-pour-materiaux-composites-am5130/ (accessed Oct 25, 2020).10.51257/a-v3-am5130Search in Google Scholar

28. Virk, A. S., Hall, W., Summerscales, J. Modulus and strength prediction for natural fibre composites. Mater. Sci. Technol. 2012, 28, 864–871; https://doi.org/10.1179/1743284712y.0000000022.Search in Google Scholar

29. Peponi, L., Biagiotti, J., Torre, L., Kenny, J. M., Mondragòn, I. Statistical analysis of the mechanical properties of natural fibers and their composite materials. I. Natural fibers. Polym. Compos. 2008, 29, 313–320; https://doi.org/10.1002/pc.20408.Search in Google Scholar

30. Razali, N., Salit, M. S., Jawaid, M., Ishak, M. R., Lazim, Y. A study on chemical composition, physical, tensile, morphological, and thermal properties of Roselle fibre: effect of fibre maturity. Bioresources 2015, 10, 1803–1824; https://doi.org/10.15376/biores.10.1.1803-1824.Search in Google Scholar

31. Pickering, K. Properties and Performance of Natural-Fibre Composites; Elsevier: Cambridge, 2008.10.1533/9781845694593Search in Google Scholar

32. Naveen, J., Jawaid, M., Vasanthanathan, A., Chandrasekar, M. Finite element analysis of natural fiber-reinforced polymer composites. In Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Woodhead Publishing: Cambridge, 2019; pp. 153–170.10.1016/B978-0-08-102289-4.00009-6Search in Google Scholar

33. Mukherjee, P. S., Satyanarayana, K. G. An empirical evaluation of structure-property relationships in natural fibres and their fracture behaviour. J. Mater. Sci. 1986, 21, 4162–4168; https://doi.org/10.1007/bf01106524.Search in Google Scholar

34. Noryani, M. Material selection of natural fibre using a stepwise regression model with error analysis. J. Mater. Res. Technol. 2019, 15, 2865–2879; https://doi.org/10.1016/j.jmrt.2019.02.019.Search in Google Scholar

35. Komuraiah, A., Kumar, N. S., Prasad, B. D. Chemical composition of natural fibers and its influence on their mechanical properties. Mech. Compos. Mater. 2014, 50, 359–376; https://doi.org/10.1007/s11029-014-9422-2.Search in Google Scholar

36. Pari, L., Baraniecki, P., Kaniewski, R., Scarfone, A. Harvesting strategies of bast fiber crops in Europe and in China. Ind. Crop. Prod. 2015, 68, 90–96; https://doi.org/10.1016/j.indcrop.2014.09.010.Search in Google Scholar

37. Pickering, K. L., Efendy, M. G. A., Le, T. M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Appl. Sci. Manuf. 2016, 83, 98–112; https://doi.org/10.1016/j.compositesa.2015.08.038.Search in Google Scholar

38. Kulkarni, A. G., Satyanarayana, K. G., Rohatgi, P. K., Vijayan, K. Mechanical properties of banana fibres (Musa sepientum). J. Mater. Sci. 1983, 18, 2290–2296; https://doi.org/10.1007/bf00541832.Search in Google Scholar

39. Md. J. S., Madhu, S., Chakravarthy, K. S., Siva Naga Raju, J. Characterization of natural cellulose fibers from the stem of Albizia Julibrissin as reinforcement for polymer composites. J. Nat. Fibers 2020, 1–14. https://doi.org/10.1080/15440478.2020.1807440.Search in Google Scholar

40. Ma, Z., Pan, G., Xu, H., Huang, Y., Yang, Y. Cellulosic fibers with high aspect ratio from cornhusks via controlled swelling and alkaline penetration. Carbohydr. Polym. 2015, 124, 50–56; https://doi.org/10.1016/j.carbpol.2015.02.008.Search in Google Scholar PubMed

41. Gopinath, R., Ganesan, K., Saravanakumar, S. S., Poopathi, R. Characterization of new cellulosic fiber from the stem of Sida rhombifolia. Int. J. Polym. Anal. Char. 2016, 21, 123–129; https://doi.org/10.1080/1023666x.2016.1117712.Search in Google Scholar

42. Gopi Krishna, M., Kailasanathan, C., NagarajaGanesh, B. Physico-chemical and morphological characterization of cellulose fibers. J. Nat. Fibers 2020, 21, 123–129; https://doi.org/10.1080/15440478.2020.1843102.Search in Google Scholar

43. Ravindran, D., Sundara Bharathi, S. R., Indran, S . Characterization of surface-modified natural cellulosic fiber extracted from the root of Ficus religiosa tree. Int. J. Biol. Macromol. 2020, 156, 997–1006; https://doi.org/10.1016/j.ijbiomac.2020.04.117.Search in Google Scholar

44. Balaji, A., Karthikeyan, B., Raj, C. S. Bagasse fiber – the future biocomposite material: a review. Int. J. Cemtech Res. 2014, 7, 223–233.Search in Google Scholar

45. Cao, Y., Chan, F., Chui, Y.-H., Xiao, H. Characterization of flax fibres modified by alkaline, enzyme, and steam. Heat Treat. 2012, 14, 4109–4121.Search in Google Scholar

46. Viju, S., Thilagavathi, G. Characterization of surface modified nettle fibers for composite reinforcement. J. Nat. Fibers 2020, 1–9; https://doi.org/10.1080/15440478.2020.1788491.Search in Google Scholar

47. Mwaikambo, L. Y., Ansell, M. P. Hemp fibre reinforced cashew nut shell liquid composites. Compos. Sci. Technol. 2003, 63, 1297–1305; https://doi.org/10.1016/s0266-3538(03)00101-5.Search in Google Scholar

48. Mathew, L., Joseph, K. U., Joseph, R. Isora fibre: morphology, chemical composition, surface modification, physical, mechanical and thermal properties–A potential natural reinforcement. J. Nat. Fibers 2007, 3, 13–27; https://doi.org/10.1300/j395v03n04_02.Search in Google Scholar

49. Moudood, A., Rahman, A., Öchsner, A., Islam, M., Francucci, G. Flax fiber and its composites: an overview of water and moisture absorption impact on their performance. J. Reinforc. Plast. Compos. 2019, 38, 323–339; https://doi.org/10.1177/0731684418818893.Search in Google Scholar

50. Satyanarayana, K. G., Guimarães, J. L., Wypych, F. Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and applications. Compos. Appl. Sci. Manuf. 2007, 38, 1694–1709; https://doi.org/10.1016/j.compositesa.2007.02.006.Search in Google Scholar

51. Mwaikambo, L. Review of the history, properties and application of plant fibres. Afr. J. Sci. Technol. 2006, 7, 120–133.Search in Google Scholar

52. Segal, L., Creely, J. J., Martin, A. E., Conrad, C. M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textil. Res. J. 1959, 29, 786–794; https://doi.org/10.1177/004051755902901003.Search in Google Scholar

53. ASTM D2320 – 98(2017) standard test method for density (relative density) of solid pitch (pycnometer method). https://www.astm.org/Standards/D2320.htm (accessed May 26, 2021).Search in Google Scholar

54. Lee Rodgers, J., Nicewander, A. Thirteen Ways to Look at the Correlation Coefficient; American Statistical Association, 1988.10.2307/2685263Search in Google Scholar

55. Dayal, V. Anscombe’s Quartet: graphs can reveal. In An Introduction to R for Quantitative Economics: Graphing, Simulating and Computing; Dayal, V., Ed. Springer: New Delhi, 2015.10.1007/978-81-322-2340-5_9Search in Google Scholar

56. Djafari Petroudy, S. R. Physical and mechanical properties of natural fibers. In Advanced High Strength Natural Fibre Composites in Construction; Woodhead Publishing: Cambridge, 2017; pp. 59–83.10.1016/B978-0-08-100411-1.00003-0Search in Google Scholar

57. Benin, S. R., Kannan, S., Bright, R. J., Jacob Moses, A. A review on mechanical characterization of polymer matrix composites & its effects reinforced with various natural fibres. Mater. Today Proc. 2020, 33, 798–805; https://doi.org/10.1016/j.matpr.2020.06.259.Search in Google Scholar

58. Mclaughlin, E. C., Tait, R. A. Fracture mechanism of plant fibres. J. Mater. Sci. 1980, 15, 89–95; https://doi.org/10.1007/bf00552431.Search in Google Scholar

59. Baley, C., Gomina, M., Breard, J., Bourmaud, A., Davies, P. Variability of mechanical properties of flax fibres for composite reinforcement. A review. Ind. Crop. Prod. 2020, 145, 111984; https://doi.org/10.1016/j.indcrop.2019.111984.Search in Google Scholar

60. Baillie, C. Green Composites: Polymer Composites and the Environment; CRC Press: Cambridge, 2005.10.1201/9781439823408Search in Google Scholar

61. Mwaikambo, L. Y., Ansell, M. P. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. hemp fibres. J. Mater. Sci. 2006, 41, 2483–2496; https://doi.org/10.1007/s10853-006-5098-x.Search in Google Scholar

62. Ganapathy, T., Sathiskumar, R., Senthamaraikannan, P., Saravanakumar, S. S., Khan, A. Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. Int. J. Biol. Macromol. 2019, 138, 573–581; https://doi.org/10.1016/j.ijbiomac.2019.07.136.Search in Google Scholar

63. Manimaran, P., Pillai, G. P., Vignesh, V., Prithiviraj, M. Characterization of natural cellulosic fibers from Nendran Banana Peduncle plants. Int. J. Biol. Macromol. 2020, 162, 1807–1815; https://doi.org/10.1016/j.ijbiomac.2020.08.111.Search in Google Scholar

64. Bledzki, A. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999, 24, 221–274; https://doi.org/10.1016/s0079-6700(98)00018-5.Search in Google Scholar

65. Biagiotti, J., Fiori, S., Torre, L., López-Manchado, M. A., Kenny, J. M. Mechanical properties of polypropylene matrix composites reinforced with natural fibers: a statistical approach: mechanical properties of PP matrix composites. Polym. Compos. 2004, 25, 26–36; https://doi.org/10.1002/pc.20002.Search in Google Scholar

66. Griffith, A. A., Taylor, G. I. V. I. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. – Ser. A Contain. Pap. a Math. or Phys. Character 1921, 221, 163–198.10.1098/rsta.1921.0006Search in Google Scholar

67. Monteiro, S. N., Lopes, F. P. D., Barbosa, A. P., Bevitori, A. B., Silva, I. L. A. D., Costa, L. L. D. Natural lignocellulosic fibers as engineering materials—an overview. Metall. Mater. Trans. 2011, 42, 2963–2974; https://doi.org/10.1007/s11661-011-0789-6.Search in Google Scholar

68. Drzal, L. T Natural Fibers, Biopolymers, and Biocomposites; CRC Press: Florida, 2005.10.1201/9780203508206Search in Google Scholar

69. Almeida, J., Mauricio, M., Paciornik, S. Evaluation of the cross-section of lignocellulosic fibers using digital microscopy and image analysis. J. Compos. Mater. 2012, 46, 3057–3065; https://doi.org/10.1177/0021998311435532.Search in Google Scholar

70. Sakurada, I., Nukushina, Y., Ito, T. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J. Polym. Sci. 1962, 57, 651–660; https://doi.org/10.1002/pol.1962.1205716551.Search in Google Scholar

71. Osorio, L., Trujillo, E., Van Vuure, A. W., Verpoest, I. Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites. J. Reinforc. Plast. Compos. 2011, 30, 396–408; https://doi.org/10.1177/0731684410397683.Search in Google Scholar

72. Walter, R. H The Chemistry and Technology of Pectin; Academic Press: Massachusetts, 2012.Search in Google Scholar

Received: 2021-08-16
Accepted: 2022-01-06
Published Online: 2022-03-07
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0241/html
Scroll to top button