Home An environmentally sustainable isosorbide-based plasticizer for biodegradable poly(butylene succinate)
Article
Licensed
Unlicensed Requires Authentication

An environmentally sustainable isosorbide-based plasticizer for biodegradable poly(butylene succinate)

  • Ying Yong Jiang , Liang Ren ORCID logo EMAIL logo , Gui Hui Wu , Wei Guo , Xian Feng Guan , Ming Yao Zhang EMAIL logo and Hui Xuan Zhang
Published/Copyright: February 18, 2022
Become an author with De Gruyter Brill

Abstract

In this article, isosorbide divalerate (SDV), an alternative renewable resource plasticizer for degradable poly(butylene succinate) (PBS) was successfully synthesized with isosorbide and valeric acid, and was characterized by Fourier transform infrared (FTIR). The mechanical properties, glass transition temperature (T g ), crystallization properties, rheological behavior of PBS/SDV blends was studied in detail. The results showed that incorporation of SDV had successfully reduced T g of the PBS composites, particularly at 20 wt% SDV, where the value of T g exhibited a reduction of 12 °C or 39% compared to pure PBS, demonstrating SDV possessed plasticizing efficacy. The crystallinity of PBS was declined by presence of SDV in the blends, and the incorporation of 20 wt% SDV into PBS matrix promoted an impressive decrease of exceeding 22%. Significant enhancement of the toughness and flexibility of PBS was achieved by the addition of SDV. The rheological test revealed that the decrease of modulus and viscosity improved the processing properties of the materials, which broadened the PBS applications. Altogether the SEM showed the fracture surface of the composites undergoes a brittle-tough transition with increasing SDV content below 12% content, meanwhile, significant phase separation was observed in the composites with high content of SDV.


Corresponding author: Liang Ren and Ming Yao Zhang, National Engineering Laboratory for Polymer Materials Synthesis and Application Technology, Changchun University of Technology, Changchun 130012, China; and School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China, E-mail: ,

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Soccio, M., Dominici, F., Quattrosoldi, S., Luzi, F., Munari, A., Torre, L., Lotti, N., Puglia, D. PBS-based green copolymer as an efficient compatibilizer in thermoplastic inedible wheat flour/poly (butylene succinate) blends. Biomacromolecules 2020, 21, 3254–3269.10.1021/acs.biomac.0c00701Search in Google Scholar PubMed PubMed Central

2. Jain, N., Singh, V. K., Chauhan, S. Dynamic and creep analysis of polyvinyl alcohol-based films blended with starch and protein. J. Polym. Eng. 2019, 39, 35–47.10.1515/polyeng-2018-0032Search in Google Scholar

3. Manshor, M. R., Anuar, H., Aimi, M. N. N., Ahmad Fitrie, M. I., Wan Nazri, W. B., Sapuan, S. M., El-Shekei, Y. A., Wahit, M. U. Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Mater. Des. 2014, 59, 279–286.10.1016/j.matdes.2014.02.062Search in Google Scholar

4. Liu, Y. Y., He, J., Li, Y. D., Zhao, X. L., Zeng, J. B. Biobased, reprocessable and weldable epoxy vitrimers from epoxidized soybean oil. Ind. Crop. Prod. 2020, 153, 112576.10.1016/j.indcrop.2020.112576Search in Google Scholar

5. Khundamri, N., Aouf, C., Fulcrand, H., Dubreucq, E., Tanrattanakul, V. Bio-based flexible epoxy foam synthesized from epoxidized soybean oil and epoxidized mangosteen tannin. Ind. Crop. Prod. 2019, 128, 556–565.10.1016/j.indcrop.2018.11.062Search in Google Scholar

6. Sun, B., Chuai, C., Luo, S., Guo, Y., Han, C. Effect of different amounts of modified talc on the mechanical, thermal, and crystallization properties of poly(butylene succinate). J. Polym. Eng. 2014, 34, 379–385.10.1515/polyeng-2013-0229Search in Google Scholar

7. Standau, T., Castellón, S. M., Delavoie, A., Bonten, C., Altstädt, V. Effects of chemical modifications on the rheological and the expansion behavior of polylactide (PLA) in foam extrusion. e-Polymers 2019, 19, 297–304.10.1515/epoly-2019-0030Search in Google Scholar

8. Wei, X. F., Bohlén, M., Lindblad, C., Hedenqvist, M., Hakonen, A. Microplastics generated from a biodegradable plastic in freshwater and seawater. Water Res. 2021, 198, 117123.10.1016/j.watres.2021.117123Search in Google Scholar PubMed

9. Harada, M., Ohya, T., Iida, K., Hayashi, H., Hirano, K., Fukuda, H. Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J. Appl. Polym. Sci. 2010, 106, 1813–1820.10.1002/app.26717Search in Google Scholar

10. Wang, H., Ji, J., Wei, Z., Zhang, Y., Jiang, J., Wu, Z., Pu, S., Chu, P. K. Biocompatibility and bioactivity of plasma-treated biodegradable poly(butylene succinate). Acta Biomater. 2009, 5, 279–287.10.1016/j.actbio.2008.07.017Search in Google Scholar PubMed

11. Xie, X. L., Sun, Q. S., Lei, J., Tian, F., Xu, L., Yan, Z., Zhong, G. J., Li, Z. M. A nacre-mimetic superstructure of poly (butylene succinate) structured by using an intense shear flow and ramie fiber as a promising strategy for simultaneous reinforcement and toughening. J. Mater. Chem. 2017, 5, 22697–22707.10.1039/C7TA07654ASearch in Google Scholar

12. Soatthiyanon, N., Aumnate, C., Srikulkit, K. Rheological, tensile, and thermal properties of poly (butylene succinate) composites filled with two types of cellulose (kenaf cellulose fiber and commercial cellulose). Polym. Compos. 2020, 41, 2777–2791.10.1002/pc.25575Search in Google Scholar

13. Lorenzo, M. Poly(l-lactic acid)/poly(butylene succinate) biobased biodegradable blends. Polym. Rev. 2021, 61, 475–492.10.1080/15583724.2020.1850475Search in Google Scholar

14. Ravati, S., Favis, B. D. Tunable morphologies for ternary blends with poly(butylene succinate): partial and complete wetting phenomena. Polymer 2013, 54, 3271–3281.10.1016/j.polymer.2013.04.005Search in Google Scholar

15. Puchalski, M., Szparaga, G., Biela, T., Gutowska, A., Sztajnowski, S., Krucińska, I. Molecular and supramolecular changes in polybutylene succinate (PBS) and polybutylene succinate adipate (PBSA) copolymer during degradation in various environmental conditions. Polymers 2018, 10, 251.10.3390/polym10030251Search in Google Scholar PubMed PubMed Central

16. Xu, J., Guo, B. H. Microbial Succinic Acid, its Polymer Poly (Butylene Succinate), and Applications. Plastics from Bacteria; Springer: Berlin, Heidelberg, 2010; pp. 347–388.10.1007/978-3-642-03287-5_14Search in Google Scholar

17. Kurokawa, N., Kimura, S., Hotta, A. Mechanical properties of poly (butylene succinate) composites with aligned cellulose-acetate nanofibers. J. Appl. Polym. Sci. 2018, 135, 45429.10.1002/app.45429Search in Google Scholar

18. Ichikawa, Y., Mizukoshi, T. Bionolle (polybutylene succinate). Adv. Polym. Sci. 2012, 245, 285–314.10.1007/12_2011_145Search in Google Scholar

19. Hongsriphan, N., Pinpueng, A. Properties of agricultural films prepared from biodegradable poly (butylene succinate) adding natural sorbent and fertilizer. J. Polym. Environ. 2019, 27, 434–443.10.1007/s10924-018-1358-5Search in Google Scholar

20. Wan, C., Heeley, E. L., Zhou, Y., Wang, S., Cafolla, C. T., Crabb, E. M., Hughes, D. J. Stress-oscillation behaviour of semi-crystalline polymers: the case of poly (butylene succinate). Soft Matter 2018, 14, 9175–9184.10.1039/C8SM01889HSearch in Google Scholar PubMed

21. Gigli, M., Fabbri, M., Lotti, N., Gamberini, R., Rimini, B., Munari, A. Poly (butylene succinate)-based polyesters for biomedical applications: a review. Eur. Polym. J. 2016, 75, 431–460.10.1016/j.eurpolymj.2016.01.016Search in Google Scholar

22. Abudula, T., Saeed, U., Memic, A., Gauthaman, K., Hussain, M. A., Al-Turaif, H. Electrospun cellulose Nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering. J. Polym. Res. 2019, 26, 1–15.10.1007/s10965-019-1772-ySearch in Google Scholar

23. Wei, Z., Song, P., Sang, L., Liu, K., Zhou, C., Wang, Y., Li, Y. Radiopaque iodinated poly(ester-urethane)s based on poly(butylene succinate): retarded crystallization and dual recrystallization behaviour. Polymer 2014, 55, 2751–2760.10.1016/j.polymer.2014.04.023Search in Google Scholar

24. Li, H., Chang, J., Cao, A., Wang, J. In vitro evaluation of biodegradable poly (butylene succinate) as a novel biomaterial. Macromol. Biosci. 2005, 5, 433–440.10.1002/mabi.200400183Search in Google Scholar PubMed

25. Someya, Y., Nakazato, T., Teramoto, N., Shibata, M. Thermal and mechanical properties of poly(butylene succinate) nanocomposites with various organo-modified montmorillonites. J. Appl. Polym. Sci. 2010, 91, 1463–1475.10.1002/app.13366Search in Google Scholar

26. Yeon, H. S., Sang, Y. E., Soon, I. S. The synthesis of copolymers, blends and composites based on poly(butylene succinate). Polym. J. 2012, 44, 1179–1190.10.1038/pj.2012.157Search in Google Scholar

27. Chen, G., Yoon, J. S. Nanocomposites of poly [(butylene succinate)‐co‐(butylene adipate)](PBSA) and twice‐functionalized organoclay. Polym. Int. 2005, 54, 939–945.10.1002/pi.1793Search in Google Scholar

28. Zhu, C., Zhang, Z., Liu, Q., Wang, Z., Jin, J. Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J. Appl. Polym. Sci. 2010, 90, 982–990.10.1002/app.12722Search in Google Scholar

29. Tserki, V., Matzinos, P., Pavlidou, E., Vachliotis, D., Panayiotou, C. Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate). Polym. Degrad. Stabil. 2006, 91, 367–376.10.1016/j.polymdegradstab.2005.04.035Search in Google Scholar

30. Lin, S. H., Wang, J. M., Wang, H. T., Wu, T. M. Synthesis, mechanical properties and biodegradation of various acrylic acid-grafted poly (butylene succinate-co-terephthalate)/organically modified layered zinc phenyl phosphonate nanocomposites. Eur. Polym. J. 2019, 116, 1–8.10.1016/j.eurpolymj.2019.03.061Search in Google Scholar

31. Luo, S., Li, F., Yu, J., Cao, A. Synthesis of poly(butylene succinate-co-butylene terephthalate) (PBST) copolyesters with high molecular weights via direct esterification and polycondensation. J. Appl. Polym. Sci. 2010, 115, 2203–2211.10.1002/app.31346Search in Google Scholar

32. Zhang, H., Jiang, M., Wu, Y., Li, L., Wang, Z., Wang, R., Zhou, G. Development of completely furfural-based renewable polyesters with controllable properties. Green Chem. 2021, 23, 2437–2448.10.1039/D1GC00221JSearch in Google Scholar

33. Gigli, M., Negroni, A., Zanaroli, G., Lotti, N., Fava, F., Munari, A. Environmentally friendly PBS-based copolyesters containing PEG-like subunit: effect of block length on solid-state properties and enzymatic degradation. React. Funct. Polym. 2013, 73, 764–771.10.1016/j.reactfunctpolym.2013.03.007Search in Google Scholar

34. Hsu, K. H., Chen, C. W., Wang, L. Y., Chan, H. W., Kuo, C. C. Bio-based thermoplastic poly (butylene succinate-co-propylene succinate) copolyesters: effect of glycerol on thermal and mechanical properties. Soft Matter 2019, 15, 9710–9720.10.1039/C9SM01958HSearch in Google Scholar

35. Zaverl, M., Valerio, O., Misra, M., Mohanty, A. Study of the effect of processing conditions on the co-injection of PBS/PBAT and PTT/PBT Blends for parts with increased bio-content. J. Appl. Polym. Sci. 2014, 132, 41278.10.1002/app.41278Search in Google Scholar

36. Costa, A., Crocitti, A., Carvalho, L., Carroccio, S. C., Santagata, G. Properties of biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) blends. Polymers 2020, 12, 2317.10.3390/polym12102317Search in Google Scholar PubMed PubMed Central

37. Wang, X., Zhuang, Y., Dong, L. Study of carbon black‐filled poly (butylene succinate)/polylactide blend. J. Appl. Polym. Sci. 2012, 126, 1876–1884.10.1002/app.36944Search in Google Scholar

38. Hu, X., Su, T., Li, P., Wang, Z. Blending modification of PBS/PLA and its enzymatic degradation. Polym. Bull. 2018, 75, 533–546.10.1007/s00289-017-2054-7Search in Google Scholar

39. Wu, D., Yuan, L., Laredo, E., Zhang, M., Zhou, W. Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind. Eng. Chem. Res. 2012, 51, 2290–2298.10.1021/ie2022288Search in Google Scholar

40. Fenni, S. E., Wang, J., Haddaoui, N., Favis, B. D., Cavallo, D. Nucleation of poly (lactide) partially wet droplets in ternary blends with poly (butylene succinate) and poly (ε-caprolactone). Macromolecules 2020, 53, 1726–1735.10.1021/acs.macromol.9b02295Search in Google Scholar PubMed PubMed Central

41. Zeng, J. B., Jiao, L., Li, Y. D., Srinivasan, M., Li, T., Wang, Y. Z. Bio-based blends of starch and poly(butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption. Carbohydr. Polym. 2011, 83, 762–768.10.1016/j.carbpol.2010.08.051Search in Google Scholar

42. Phetwarotai, W., Maneechot, H., Kalkornsurapranee, E., Phusunti, N. Thermal behaviors and characteristics of polylactide/poly(butylene succinate) blend films via reactive compatibilization and plasticization. Polym. Adv. Technol. 2018, 29, 2121–2133.10.1002/pat.4321Search in Google Scholar

43. Somsunan, R., Noppakoon, S., Punyodom, W. Effect of G40 plasticizer on the properties of ternary blends of biodegradable PLA/PBS/G40. J. Polym. Res. 2019, 26, 1–11.10.1007/s10965-019-1748-ySearch in Google Scholar

44. Liu, D., Qi, Z., Zhang, Y., Xu, J., Guo, B. Poly (butylene succinate) (PBS)/ionic liquid plasticized starch blends: preparation, characterization, and properties. Starch Staerke 2015, 67, 802–809.10.1002/star.201500060Search in Google Scholar

45. Zhao, Y., Qu, J., Feng, Y., Wu, Z., Chen, F., Tang, H. Mechanical and thermal properties of epoxidized soybean oil plasticized polybutylene succinate blends. Polym. Adv. Technol. 2012, 23, 632–638.10.1002/pat.1937Search in Google Scholar

46. Beach, E. S., Weeks, B. R., Stern, R., Anastas, P. T. Plastics additives and green chemistry. Pure Appl. Chem. 2013, 85, 1611–1624.10.1142/9789814327503_0075Search in Google Scholar

47. Burgos, N., Tolaguera, D., Fiori, S., Jimenez, A. Synthesis and characterization of lactic acid oligomers: evaluation of performance as poly (lactic acid) plasticizers. J. Polym. Environ. 2014, 22, 227–235.10.1007/s10924-013-0628-5Search in Google Scholar

48. Wang, H., Schultz, J. M., Yan, S. Study of the morphology of poly(butylene succinate)/poly(ethylene oxide) blends using hot-stage atomic force microscopy. Polymer 2007, 48, 3530–3539.10.1016/j.polymer.2007.03.079Search in Google Scholar

49. Zhao, Z., Lei, B., Du, W., Zhang, X. The effects of inorganic salts with different anions on the structure and properties of starch/poly (butylene succinate) blends plasticized with ionic liquid. Polymers 2019, 11, 2004.10.3390/polym11122004Search in Google Scholar PubMed PubMed Central

50. Fortunati, E., Puglia, D., Iannoni, A., Terenzi, A., Kenny, J. M., Torre, L. Processing conditions, thermal and mechanical responses of stretchable poly (lactic acid)/poly (butylene succinate) films. Materials 2017, 10, 809.10.3390/ma10070809Search in Google Scholar PubMed PubMed Central

Received: 2021-08-08
Accepted: 2021-12-20
Published Online: 2022-02-18
Published in Print: 2022-04-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0232/pdf
Scroll to top button